
3.5 Harmonic Analysis on Homogenous Spaces

Let f(g) ∈ L2(G/H), H massive with Hx⃗0 = x⃗0
⇒ f(x⃗) = f(gx⃗0) =: f̂(g) ∈ L2(G) such that f̂(gh) = f̂(g) for all h ∈ H.
All f(g) ∈ L2(G/H) are associate spherical functions.

Peter-Weyl Theorem: continuous version

f̂(g) =
∑

all UIR j of G

dj
∑
m,n

f̃ jnmD
j
mn(g)

f̃ jnm =

∫
G
dg f̂(g)Dj ∗

mn(g)

Fourier coefficient for associate spherical functions:

f̃ jnm =

∫
G
dg f̂(g)Dj ∗

mn(g) =

∫
G
dg f̂(g)Dj ∗

mn(gh) =

∫
G
dg f̂(g)

∑
k

Dj ∗
mk(g)D

j ∗
kn (h)

Integration over h:

f̃ jnm =

∫
G
dg f̂(g)Dj ∗

mn(g) =

∫
G
dg f̂(g)Dj ∗

mn(gh) =

∫
G
dg f̂(g)

∑
k

Dj ∗
mk(g)

∫
H
dhDj ∗

kn (h)

Note: The UIR Dj of G is in general a reducible unitary reps of H ⊂ G. So let’s decompose
into UIR Dα of H

Dj =
∑
α

cαD
α

1) Let j ̸= class 1: No invariant vector in Dj ⇒ Dj does not contain trivial representation∫
H
dhDj ∗

kn (h) = 0 for all j ̸= class 1

2) Let j = class 1: AsH is massive⇒ exists only one vector |φ0⟩ such thatDj(h)|φ0⟩ = |φ0⟩.
That is, Dj

00(h) = ⟨φ0|Dj(h)|φ0⟩ = 1.
In other words, the trivial reps of H appears exactly once in above decomposition and∫

H
dhDj ∗

kn (h) = δk0δn0 for all j = class 1

Result:

f̃ jnm =

∫
G
dg f̂(g)Dj ∗

m0(g)δn0

Let Λ be the set of class 1 reps of G:

f(x⃗) = f̂(g) =
∑
j∈Λ

dj

dj−1∑
m=0

f̃ jmD
j
m0(g)

f̃ jm =

∫
G
dg f̂(g)Dj ∗

m0(g)

Generalised spherical harmonics:

Yℓm(x⃗) :=
√
dℓD

ℓ
m0(g) , x⃗ = gx⃗0

Form complete orthonormal set on L2(G/H):∫
G/H

dµ(x⃗)Yℓm(x⃗)Y
∗
ℓ′m′(x⃗) =

∫
G
dg
√
dℓdℓ′ D

ℓ
m0(g)D

ℓ′ ∗
m′0(g)︸ ︷︷ ︸

δ′ℓℓδmm′/dℓ

= δ′ℓℓδmm′
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Harmonic analysis on homogenous spaces G/H (with massive H):

f(x⃗) =
∑
ℓ∈Λ

∑
m

cℓm Yℓm(x⃗)

cℓm =

∫
G/H

dµ(x⃗) f(x⃗)Y ∗
ℓm(x⃗)

Note: Yℓm(x⃗) are also eigenfunctions of Laplace-Beltrami operator on M = G/H.

Harmonic analysis for zonal spherical functions: f(h−1
1 gh2) = f(g), h1, h2 ∈ H

f(g) =
∑
ℓ∈Λ

dℓ λℓD
ℓ
00(g)

λℓ =

∫
G
dg f(g)Dℓ ∗

00 (g)

3.6 Generators of Lie Groups

Let G be a Lie group with g = g(α) ∈ G, α = (α1, . . . , αn), e = g(0) neutral element
Consider reps of G in some H: D(g) = D(g(α)) with D(g(0)) = 1

Generator:

Xa :=
∂D(g(α))

∂αa

∣∣∣∣
α=0

In quantum mechanics often Ta = ±iXa as they are self-adjoint operators for unitary reps

Generators are in essence the reps matrices near neutral element as

D(g(δα)) = 1 + δαaXa +O(δα2)

D(g−1(δα)) = [D(g(δα))]−1 = 1− δαaXa +O(δα2)

We now use summation convention, so in above sum over a

Comments:

� Generators depend on parametrisation of G

� For unitary reps D(g−1(δα)) = D†(g(δα)) ⇒ X†
a = −Xa or T †

a = Ta

� For dimH = d <∞: Xa or Ta are d× d matrices

� For dimH = ∞: Xa or Ta are linear operators acting on vectors in H

Consider:
D(g(δγ)) = D(g−1(β)g(δα)g(β))

= 1 + δαaD(g−1(β))XaD(g(β))
= 1 + δγaXa

That is D(g−1(β))XaD(g(β)) is a linear combination of generators
Now β → δβ small

(1− δβbXb)Xa(1 + δβbXb) = Xa + δβb(XaXb −XbXa) +O(δβ2)

⇒
[Xa, Xb] := (XaXb −XbXa) = cdabXd

The constants cdab are called structure constants

Properties
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� Depend on parametrisation of G

� cdab = −cdba antisymmetric in lower indices, cdaa = 0

� From Jacobi identity [[Xa, Xb], Xc] + [[Xb, Xc], Xa] + [[Xc, Xa], Xb] = 0 follows

cdabc
e
dc + cdbcc

e
da + cdcac

e
db = 0

� G abelian ⇔ cdab = 0
Obvious as D(g−1(β))XaD(g(β)) = Xa ⇔ [Xa, Xb] = 0 for all a, b, d

Example: G = SO(3) (see Homework 4 Problem 10 with ℏ = 1)

[Li, Lj ] = iεijkLk ⇒ ckij = iεijk

3.7 Generators for transformation groups

Consider transfomation on M: x′ = g(α)x and let α→ δα
Then the µ-component of x′µ is given by

x′µ = xµ + δxµ = xµ + δαa Uaµ(x) +O(δ2α)

where

Uaµ(x) :=
δxµ
δαa

.

Consider reps in H = L2(M):

(D(g(α))ψ)(x) = ψ(g−1(α)x)

then again let α→ δα

(ψ + δαaXaψ)(x) = ψ(x− δx) = ψ(x)− δαaUaµ(x)
∂ψ

∂xµ
(x)

Generator: Is a linear differential operator on H

Xa = −Uaµ(x)
∂

∂xµ
= −Uaµ(x)∂µ

Example: M = R2, G = SO(2)(
x′1
x′2

)
=

(
cos(δα) − sin(δα)
sin(δα) cos(δα)

)(
x1
x2

)
≈
(

1 −δα
δα 1

)(
x1
x2

)
=

(
x1
x2

)
+ δα

(
−x2
x1

)

Hence U1(x) =
δx1
δα

= −x2 and U2(x) =
δx2
δα

= x1
⇒

X = −Uµ(x)∂µ = −
(
−x2∂1 + x1∂

2
)
= x2

∂

∂x1
− x1

∂

∂x2

Or with T = iℏX
T = iℏ

(
x2

∂

∂x1
− x1

∂

∂x2

)
= L3

Rotations in the plane are generated by the angular momentum operator L3 on L2(R2) .
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Generator of rotation matrix (2-dim reps in R2)(
cos(δα) − sin(δα)
sin(δα) cos(δα)

)
≈ 1 + δα

(
0 −1
1 0

)
= 1− iδα σ2

Generator for rotation matrix in R2 is given by Pauli matrix X = −iσ2
Finite rotation by angle α is given

eαX =

∞∑
n=0

1

n!
αnXn

=
∞∑
n=0

1

n!
(−iα)nσn2 (σ22 = 1)

= 1
∞∑
k=0

(−1)k

(2k)!
α2k − iσ2

∞∑
k=0

(−1)k

(2k + 1)!
α2k+1

=

(
cosα − sinα
sinα cosα

)
= e−iασ2

Finite group elements can be represented by generators via exponentiation.

For each generator exists an one-parameter subgroup represented by

D(g(t)) = etXt

Recall with δt = t/n for large n

D(g(t)) = [D(g(δt))]n = lim
n→∞

[1 + δtXt]
n = lim

n→∞

[
1 +

t

n
Xt

]n
= etXt
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4 Lie Algebras

4.1 Definitions

A finite-dimensional vector space L (real or complex) is called Lie Algebra if there exists a
Lie Product ◦ such that

� X ◦ Y ∈ L ∀X,Y ∈ L

� (αX + βY ) ◦ Z = αX ◦ Y + βY ◦ Z ∀X,Y, Z ∈ L , α, β ∈ R or C

� Z ◦ Y = −Y ◦X antisymmetric

� X ◦ (Y ◦ Z) + Y ◦ (Z ◦X) + Z ◦ (X ◦ Y ) = 0 Jacobi Identity

Example: L = R3 with x⃗ ◦ y⃗ := x⃗× y⃗

Theorem: The generators of a Lie Group form a Lie Algebra with

X ◦ Y := [X,Y ] = XY − Y X

Comments:

� Notation G = SO(n) ⇔ L = so(n) , that is, use lower case notation for algebra

� locally isomorphic groups :⇔ have the same (isomorphic) Lie Algebra
Example: so(3) ≃ su(2) are isomorphic

� Reps of group ⇔ Reps of algebra

� dimG = dimL

From now on we consider only
X ◦ Y = [X,Y ]

Homomorphism:

T :
L → L′

X 7→ T (X)

such that T (αX + βY ) = αT (x) + βT (Y ) and T ([X,Y ]) = [T (X), T (Y )]

Subalgebra: Subspace N ⊂ L with [N ,N ] ⊂ N

Ideal: Subalgebra N ⊂ L with [L,N ] ⊂ N
trivial ideals are L = {0} and N = L, rest are called proper ideals

Center: max. ideal such that [N ,N ] = 0 abelian algebra

Simple Lie algebra: L has no proper ideal

Semi-simple Lie Algebra: L has no abelian ideals

4.2 Representations of Lie Algebras

Homomorphism:

D :
L → lin. operators on D
X 7→ D(X)

is called representation of L in D

Reps of Lie Group ⇔ Reps of Lie Algebra
D(g(α)) = eα

aXa Xa

D(g(α)) = eiα
aTa Ta

unitary X†
a = −Xa , T

†
a = Ta

irreducible irreducible
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Adjoint Representation:
Let X ∈ L be fixed

ad(X) :
L → L
Y 7→ [X,Y ]

[ad(X), ad(Y )]Z = ad(X)ad(Y )Z − ad(Y )ad(X)Z
= ad(X)[Y, Z]− ad(Y )[X,Z]
= [X, [Y,Z]]− [Y, [X,Z]]
= −[Z, [X,Y ]] Jacobi Id.
= [[X,Y ], Z]
= ad([X,Y ])Z ∀Z ∈ L

Let X1, . . . , Xn be basis in L with

[Xi, Xk] = clikXl

then
ad(Xi)Xk = [Xi, Xk] = clikXl

The structure constants are the matrix elments of the adjoint representation

ad(Xi)
l
k = clik

Note: dim ad(X) = dimL = dimG

Example so(3): dim so(3) = 3 (see Homework 4 Problem 10)

4.3 Cartan Metric

Scalar product in L: (Killing form)

(X,Y ) := Tr (ad(X)ad(Y ))

Using above basis X1, . . . , Xn in L

Cartan metric:

gkl := Tr (ad(Xk)ad(Xl)) = cskrc
r
ls = glk symmetric

Let X = akXk and Y = blXl then

(X,Y ) = Tr(ak ad(Xk) b
l ad(Xl)) = Tr(ad(Xk) ad(Xl)) a

kbl = gkla
kbl

Cartan Criterium:
det(gkl) ̸= 0 ⇔ L semi-simple

This implies the existence of the inverse metric tensor: gklg
lm = δlk

Lie algebra compact :⇔ gkl positive or negative definite
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Examples:

� so(3): [Xi, Xj ] = εijkXk ⇒ gkl = εkrsεlrs = 2δkl
semi-simple and compact
also with Li = iXi ⇒ [Li, Lj ] = iεijkLk ⇒ gkl = −2δkl

� so(2, 1): [X1, X2] = X3, [X2, X3] = −X1, [X3, X1] = X2

⇒ c312 = 1 = −c321 , c123 = −1 = −c132 , c231 = 1 = −c213
⇒ g11 = Tr (ad(X1)ad(X1)) = 2c312c

2
13 = −2

⇒ g22 = Tr (ad(X2)ad(X2)) = 2c123c
3
21 = 2

⇒ g33 = Tr (ad(X3)ad(X3)) = 2c231c
1
32 = 2

⇒ (gkl) =

 −2 0 0
0 2 0
0 0 2

 semi-simple and NOT compact

Let Ti = iXi ⇒ [T1, T2] = iT3, [T2, T3] = −iT1, [T3, T1] = −iT2

⇒ (gkl) =

 −2 0 0
0 −2 0
0 0 2


This so(2, 1) ≃ su(1, 1) algebra is often used in QM as spectrum generating algebra
T3 is called the compact operator

Consider:
cijk := gilc

l
jk = csirc

r
lsc

l
jk = csir

(
−clkscrlj − clsjc

r
lk

)
= csirc

r
jlc

l
ks + csric

l
sjc

r
lk

⇒ cijk is totally anti-symmetric

4.4 The Casimir Operator

Definition:
C := gklXkXl = gklX

kX l

Consider
[C,Xi] = gkl[XkXl, Xi]

= gklXk[Xl, Xi] + gkl[Xk, Xi]Xl

= gklXk c
r
liXr + gkl crkiXrXl

= gklXk c
r
liXr + gkl crliXrXk as gkl = glk

= gklcrli (XkXr +XrXk)

= gklgrs (XkXr +XrXk)︸ ︷︷ ︸
sym. k↔r︸ ︷︷ ︸

sym. l↔s

clis︸︷︷︸
antisym. l↔s

= 0

The Casimir operator commutes with all elements of L
In case of an irreducible reps follows via Schur lemma: C = λ1
These eigenvalues are used to characterise the irreducible reps

Examples:

� so(3) ≃ su(2) : gkl = −2δkl , gkl = −1
2δ
kl

C = −1
2

(
X2

1 +X2
2 +X2

3

)
= 1

2 J⃗
2 with Jk = −iXk , J⃗

2 = j(j + 1)1 , j = 0, 12 , 1,
3
2 , . . ..

� so(2, 1) ≃ su(1, 1) :

gkl =
1
2

 −1 0 0
0 1 0
0 0 1

 , C = 1
2(−X

2
1 +X2

2 +X2
3 ) unbounded operator
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Comment: The UIR of non-compact groups/algebras are ALL infinite dimensional.
This becomes a problem for Lorentz group SO(3, 1) = SO(3)⊗ SO(2, 1) and the classifica-
tion of elementary particles. Way out is to use non-unitary but finite-dimensional irreducible
reps. More later (Wigner states).

Generalisation of Racah:

Cn := cl2k1l1c
l3
k2l2

· · · cl1knln X
k1Xk2 · · ·Xkn

commute with all Xi: [Cn, Xi] = 0

Range of L :⇔ No. of independent Cn’s

4.5 Representations of Lie Algebras in Quantum Mechanics

4.5.1 The angular momentum algebra so(3) ≃ su(2)

Algebra:
[Ji, Jk] = iℏεikl Jl

UIR have dimension dj = 2j + 1 with j = 0, 12 , 1,
3
2 , . . .

Dj = span {|j,m⟩|m = −j, . . . , j} ≃ C2j+1

Cartan-Weyl basis: J± := J1 ± J2 , J0 := J3

[J0, J±] = ±ℏJ± , [J+, J−] = 2ℏJ0

Usual basis: J0|j,m⟩ = mℏ|j,m⟩ ⇒ J± change eigenvalue by ±ℏ
Ansatz:

J±|j,m⟩ = N±ℏ|j,m± 1⟩

Casimir: C = 1
2 J⃗

2 ∼ 1 ⇒ J⃗ 2|j,m⟩ = λj |j,m⟩ with λj ≥ 0 as J⃗ 2 ≥ 0.

Calculation of N±: (J±)
† = J∓ , J†

0 = J0

|N±|2ℏ2 = ||J±|j,m⟩||2 = ⟨j,m|J∓J±|j,m⟩ = ⟨j,m|[J⃗ 2 − J0(J0 ± 1)]|j,m⟩

= [λj −m(m± 1)]ℏ2 ≥ 0

Hence m must be bounded mmin ≤ m ≤ mmax with J+|j,mmax⟩ = 0 and J−|j,mmin⟩ = 0
Consider

J⃗ 2|j,mmax⟩ = J−J+|j,mmax⟩+ J0(J0 + 1)|j,mmax⟩ = mmax(mmax + 1)|j,mmax⟩

J⃗ 2|j,mmin⟩ = J+J−|j,mmin⟩+ J0(J0 − 1)|j,mmax⟩ = mmin(mmin − 1)|j,mmax⟩

With λj := j(j + 1) we find mmax = j = −mmin and

N± =
√
(j ∓m)(j ±m+ 1) eiϕ±

4.5.2 The so(4) symmetry of the H-atom

Classical Kepler problem:

E =
p⃗ 2

2m
− α

r
, α = GMm

with

ℓ⃗ = r⃗ × p⃗ = mr2ω⃗ = const. ,
d

dt
e⃗r = ω⃗ × e⃗r

and Newton equation

F⃗ = ˙⃗p = − α

r2
e⃗r
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Laplace-Runge-Lenz vector:

A⃗ := p⃗× ℓ⃗−mαe⃗r = const. , and A⃗ 2 = m2α2 + 2mℓ⃗ 2E

Proofs:

�

˙⃗
A = ˙⃗p× ℓ⃗−mα ˙⃗er = − α

r2
e⃗r × (mr2ω⃗)−mαω⃗ × e⃗r = 0⃗

� A⃗ 2 = (p⃗× ℓ⃗)2 − 2mαe⃗r · (p⃗× ℓ⃗) +m2α2 = p⃗2ℓ⃗2 − (p⃗ · ℓ⃗)2 − 2mα
r ℓ⃗ · (r⃗ × p⃗)) +m2α2 =

= p⃗2ℓ⃗2 − 2mα
r ℓ⃗2 +m2α2 = 2mEℓ⃗2 +m2α2

Quantum mechanical hydrogen atom:
Hamiltonian:

H =
1

2m
P⃗ 2 − α

|Q⃗|
on H = L2(R3)

Angular Momentum:
L⃗ = Q⃗× P⃗

Laplace-Runge-Lenz vector: (re-scaled and symmetrized)

A⃗ :=
1

2mα

(
P⃗ × L⃗− L⃗× P⃗

)
− Q⃗

|Q⃗|

⇒ Two conserved vector operators

[H, L⃗] = 0⃗ , [H, A⃗] = 0⃗

and

A⃗ 2 = 1 +
2

mα2

(
ℏ2 + L⃗ 2

)
H , L⃗ · A⃗ = 0 = A⃗ · L⃗

Algebra:
[Ai, Aj ] = iℏεijkLk

(
− 2H
mα2

)
[Li, Lj ] = iℏεijkLk
[Ai, Lj ] = iℏεijkAk = [Li, Aj ]

Consider subspace with fixed energy E < 0:

HE ⊂ L2(R3) with HE := {|ψ⟩ ∈ L2(R3)|H|ψ⟩ = E|ψ⟩}

Redefine: N⃗ :=
(
− 2E
mα2

)−1/2
A⃗, M⃗ := L⃗ then

[Mi,Mj ] = iℏεijkMk

[Mi, Nj ] = iℏεijkNk

[Ni, Nj ] = iℏεijkMk

 so(4)-algebra (see homework)

Decoupling: J⃗ := 1
2(M⃗ + N⃗) and K⃗ := 1

2(M⃗ − N⃗)

[Ji, Jj ] = iℏεijkJk
[Ki,Kj ] = iℏεijkKk

[Ki, Jj ] = 0

 so(4) ≃ so(3)⊕ so(3)

Consider UIR:
K⃗ 2|k,mk⟩ = k(k + 1)ℏ2|k,mk⟩

J⃗ 2|j,mj⟩ = j(j + 1)ℏ2|j,mj⟩

40



Recall: L⃗ · A⃗ = 0 = M⃗ · K⃗ = J⃗ 2 − K⃗ 2 ⇒ k = j
Hence: HE = Dk ⊗Dk product space of two UIR of so(3)
Product basis: |k,mk,mj⟩ := |k,mk⟩ ⊗ |j,mj⟩
Consider:

(J⃗ 2 + K⃗ 2)|k,mk,mj⟩ = 2k(k + 1)ℏ2|k,mk,mj⟩

On the other hand:

J⃗ 2 + K⃗ 2 = 1
2(M⃗

2 + N⃗ 2)

= 1
2

(
L⃗ 2 − mα2

2E A⃗ 2
)

= 1
2

(
L⃗ 2 − mα2

2E

(
1 + 2E

mα2 (ℏ2 + L⃗2)
))

= −mα2

4E − ℏ2
2

⇒
−mα

2

4E
=

ℏ2

2
+ 2k(k + 1)ℏ2 =

ℏ2

2
(4k2 + 4k + 1) =

ℏ2

2
(2k + 1)2

⇒
E = −mα

2

2ℏ2
1

(2k + 1)2
= −mα

2

2ℏ2
1

n2
with n := 2k + 1

Note: k ∈ {0, 12 , 1,
3
2 , . . .} ⇒ n ∈ {1, 2, 3, 4, . . .}

Degeneracy: dimHE = dim(Dk ⊗Dk) = (2k + 1)2 ⇒ E = En is n2 degenerate.

Angular momentum: L⃗ = J⃗ + K⃗ coupling of j and k
⇒

ℓ ∈ {|j − k|, |j − k|+ 1, . . . j + k} but k = j
= {0, 1, 2, . . . , 2k} only integer ℓ

With n = ℓ+ 1 + nr and m = mk +mj we change to new

|k,mk,mj⟩ −→ |n, ℓ,m⟩

Eigenstates with
H|n, ℓ,m⟩ = En|n, ℓ,m⟩
L⃗2|n, ℓ,m⟩ = ℏ2ℓ(ℓ+ 1)|n, ℓ,m⟩
Lz|n, ℓ,m⟩ = mℏ|n, ℓ,m⟩

Comments:

� For E > 0 one obtains a SO(3, 1) = SO(3) ⊗ SO(2, 1) symmetry. See later for an
algebraic approach via so(2, 1) ≃ su(1, 1) (spectrum-generating algebra).

In essence: N⃗ :=
(

2E
mα2

)−1/2
A⃗

[Mi,Mj ] = iℏεijkMk

[Mi, Nj ] = iℏεijkNk

[Ni, Nj ] = −iℏεijkMk

 so(3, 1)-algebra

Bertrand’s Theorem: There are only two types of central-force (radial) scalar poten-
tials with the property that all bound orbits are also closed orbits.

� The 3-D Kepler problem may also be mapped onto a 4-D harmonic oscillator problem
via the so-called Kustaanheimo-Stiefel transformation (c.f. Homework Problem 8).
This Newton-Hook duality was already know to both in 17th century.

� A fixed SO(4)-UIR spans the subspace HE corresponding to a single energy shell of
a bound state (fixed n = 2k + 1 and varying ℓ,m).
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� An irreducible representation of SO(4, 1) spans the full bound spectrum. The group
SO(4, 1) is also called de Sitter group (Willem de Sitter 1872–1934). de Sitter space is
a maximally symmetric Lorentzian manifold with constant positive scalar curvature.
Embed S3 in R4

� An SO(3, 2) irreducible representation spans the full continuous spectrum. The group
SO(3, 2) is also called anti-de Sitter group. Anti-de Sitter space is a maximally sym-
metric Lorentzian manifold with constant negative scalar curvature.

� SO(4, 2) is called the full dynamical group of the Kepler (or Hydrogen atom problem).
It is the smallest group whose irreducible representations span both the continuous
and the discrete spectrum.

Some proofs:

L⃗ · A⃗ = 0 = A⃗ · L⃗ is obvious as L⃗ · (P⃗ × L⃗) = 0 and L⃗ · Q⃗ = 0

With L⃗× P⃗ = 2iℏP⃗ − P⃗ × L⃗ and R := |Q⃗| follows

A⃗ =
1

αm

(
P⃗ × L⃗− iℏP⃗

)
− Q⃗

R
⇒

α2m2(A⃗2 − 1) = (P⃗ × L⃗− iℏP⃗ )2 − αm(P⃗ × L⃗− iℏP⃗ ) · Q⃗
R

− αm
Q⃗

R
· (P⃗ × L⃗− iℏP⃗ )

Using following relations (proofs are below)

(P⃗ × L⃗) · (P⃗ × L⃗) = P⃗ 2L⃗2

(P⃗ × L⃗) · P⃗ = 2iℏP⃗ 2

P⃗ · (P⃗ × L⃗) = 0

(P⃗ × L⃗) · Q⃗ = L⃗2 + 2iℏP⃗ · Q⃗
Q⃗ · (P⃗ × L⃗) = L⃗2

⇒
(P⃗ × L⃗− iℏP⃗ )2 = P⃗ 2(L⃗2 + ℏ2)
(P⃗ × L⃗− iℏP⃗ ) · Q⃗ = L⃗2 + iℏP⃗ · Q⃗
Q⃗ · (P⃗ × L⃗− iℏP⃗ ) = L⃗2 − iℏQ⃗ · P⃗

follows

α2m2(A⃗2 − 1) = P⃗ 2(L⃗2 + ℏ2)− 2αm
L⃗2

R
− iℏαm

(
P⃗ · Q⃗

R
− Q⃗

R
· P⃗

)
︸ ︷︷ ︸

−2iℏ/R

= 2mH
(
L⃗2 + ℏ2

)

Auxiliary formulas:

� (P⃗ × L⃗) · (P⃗ × L⃗) = εijkPjLkεilmPlLm = εijkεilmPjLkPlLm =
= εijkεilmPj(PlLk + iℏεklrPr)Lm = (δjlδkm − δjmδkl)(PjPlLkLm + iℏεklrPjPrLm) =
= P⃗ 2L⃗2 + iℏεkjrPjPrLk − PjP⃗ · L⃗Lj − iℏεkkrPjPrLj) = P⃗ 2L⃗2

� (P⃗ × L⃗) · P⃗ = εijkPiLjPk = εijkPi(PkLj + iℏεjklPl) = iℏ2δilPiPl = 2iℏP⃗ 2

� P⃗ · (P⃗ × L⃗) = εijkPiPjLk = 0

� (P⃗ × L⃗) · Q⃗ = εijkPiLjQk = εijkPi(QkLj + iℏεjklQl) = εijkQkPiLj + iℏ2δilPiQl =
= L⃗2 + 2iℏP⃗ · Q⃗

� Q⃗ · (P⃗ × L⃗) = εijkQiPjLk = L⃗2

� (P⃗ × L⃗− iℏP⃗ )2 = (P⃗ × L⃗) · (P⃗ × L⃗)− iℏ(P⃗ × L⃗) · P⃗ − iℏP⃗ · (P⃗ × L⃗)− ℏ2P⃗ 2 =

= P⃗ 2L⃗2 − i2iℏ2P⃗ 2 − ℏ2P⃗ 2 = P⃗ 2(L⃗2 + ℏ2)

� (P⃗ × L⃗− iℏP⃗ ) · Q⃗ = L⃗2 + 2iℏP⃗ · Q⃗− iℏP⃗ · Q⃗ = L⃗2 + iℏP⃗ · Q⃗

� Q⃗ · (P⃗ × L⃗− iℏP⃗ ) = L⃗2 − iℏQ⃗ · P⃗

• P⃗ · Q⃗R − Q⃗
R · P⃗ = ℏ

i (∇⃗ · Q⃗) 1
R + ℏ

i Q⃗ · (∇⃗ 1
R) =

ℏ
i
3
R − ℏ

i Q⃗ · Q⃗
R3 = ℏ

i
2
R
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Finally the proof for [A⃗,H] = 0

With

P⃗ × L⃗ = P 2Q⃗− (P⃗ · Q⃗)P⃗ + iℏP⃗ and L⃗× P⃗ = −P 2Q⃗+ (P⃗ · Q⃗)P⃗ + iℏP⃗

follows

A⃗ =
1

mα

(
P 2Q⃗− (P⃗ · Q⃗)P⃗

)
− Q⃗

R
Using following formulas

� [P⃗ , 1/R] = iℏ Q⃗
R3

� [P 2, 1/R] = iℏ 1
R3 (Q⃗ · P⃗ ) + iℏ(P⃗ · Q⃗) 1

R3

� [(P⃗ · Q⃗)P⃗ , 1/R] = iℏ(P⃗ · Q⃗) 1
R3 + iℏ 1

R P⃗

one finds

mα[A⃗, 1
R ] = [P 2Q⃗, 1

R ]− [(P⃗ · Q⃗)P⃗ , 1
R ]

= iℏ 1
R3 (Q⃗ · P⃗ )Q⃗+ iℏ(P⃗ · Q⃗) Q⃗

R3 − iℏ(P⃗ · Q⃗) Q⃗
R3 − iℏ 1

R P⃗

= iℏ 1
R3 (Q⃗ · P⃗ )Q⃗− iℏ 1

R P⃗

Consider now

[A⃗, P 2] = 1
αm

(
[P 2Q⃗, P 2]− [(P⃗ · Q⃗)P⃗ , P 2]

)
− [ Q⃗R , P

2]

= 1
αm

(
P 2[Q⃗, P 2]− [(P⃗ · Q⃗), P 2]P⃗

)
− 1

R [Q⃗, P
2]− [ 1R , P

2]Q⃗

= 1
αm

(
P 22iℏP⃗ − P⃗ · [Q⃗, P 2]P⃗

)
︸ ︷︷ ︸

=0

− 1
R [Q⃗, P

2]− [ 1R , P
2]Q⃗

= − 1
R2iℏP⃗ + iℏ 1

R3 (Q⃗ · P⃗ )Q⃗+ iℏ(P⃗ · Q⃗) Q⃗
R3 with [P⃗ · Q⃗, 1

R3 ] = 3iℏ 1
R3

= −2iℏ 1
R P⃗ + iℏ 1

R3

(Q⃗ · P⃗ ) + (P⃗ · Q⃗) + 3iℏ︸ ︷︷ ︸
(Q⃗·P⃗ )

 Q⃗

= −2iℏ 1
R P⃗ + 2iℏ 1

R3 (Q⃗ · P⃗ )Q⃗

= 2mα[A⃗, 1
R ]

Hence
1

2m
[A⃗, P 2] = [A⃗, α/R] ⇒ [A⃗,H] = 0

Good References:
M.J. Englefield, Group Theroy and the Coulomb Problem (Wiley & Sohns, 1972)
A. Hirshfeld, The Supersymmetric Dirac Equation (Imperial College Press, 2021)
G.J. Maclay, Dynamical Symmetries of the H Atom, One of the Most Important Tools of
Modern Physics: SO(4) to SO(4,2), Symmetry 12 (2020) 1323; https://doi.org/10.3390/sym12081323

*** End of Lecture 4 ***
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