3.5 Harmonic Analysis on Homogenous Spaces

Let f(g) € LQ(G/H),AH massive with HZo = & )
= f(Z) = f(g9%0) =: f(g) € L*(G) such that f(gh) = f(g) for all h € H.
All f(g) € L*(G/H) are associate spherical functions.

Peter-Weyl Theorem: continuous version

floy=""Y &> FimDiul9)

all UIR j of G m,n
j = /G dg £(9) D32 (9)

Fourier coefficient for associate spherical functions:

i, = /G dg f(g) DI (g) = /G dg f(g) D35 (gh) = /G dg f(9) 3" D21 (9) DL, (h)

k

Integration over h:

i = /G dg f(g) Di5(g) = /G dg f(g) DI, (gh) = /G dg f(9) 3D 2(0) /H dh D% (h)

k

Note: The UIR D’ of G is in general a reducible unitary reps of H C G. So let’s decompose
into UIR D% of H ‘
D’ = g co D¥

o

1) Let j # class 1: No invariant vector in D7 = DJ does not contain trivial representation
/H dh Din*(h) =0 forall  j #class 1

2) Let j = class 1: As H is massive = exists only one vector |¢g) such that D?(h)|¢o) = |¢o).
That is, D}y(h) = (wo|D? (h)|po) = 1.
In other words, the trivial reps of H appears exactly once in above decomposition and

/H dh Din*(h) = 0x00n0 for all j=class 1

Result:
im = [ d9.(0) Dhi0)ouo
Let A be the set of class 1 reps of G:
dj—1
f@) =Ffl9) =D _dj > Fi Do)
JEA m=0
fir= [ a0 (o) Dhito)
Generalised spherical harmonics:
Y () = V/de Djnol9) . & = gy
Form complete orthonormal set on L?(G/H):
L ) Yoni@Yi@) = [ 9/ Dh(9) D(a) = S
—_——
8468 o /e
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Harmonic analysis on homogenous spaces G/H (with massive H):

1@ =33 com Yin(@)

leA m

%z/dmwm%m

Note: Yy, (Z) are also eigenfunctions of Laplace-Beltrami operator on M = G/H.

Harmonic analysis for zonal spherical functions: f (hl_1 gha) = f(g), hi,he € H

£(9) =Y _de M Diol9)

e
A = /G dg f(9) DGg(9)

3.6 Generators of Lie Groups

Let G be a Lie group with g = g(a) € G, a = (a!,...,a"), e = g(0) neutral element
Consider reps of G in some H: D(g) = D(g(«)) with D(g(0)) =1
Generator:
x. . 0Dlg(a)
oo |,

In quantum mechanics often T, = +iX, as they are self-adjoint operators for unitary reps
Generators are in essence the reps matrices near neutral element as
D(g(dc)) =1+ 6a*X, + O(5a?)
D(g~'(5)) = [D(9(6c))] " =1 — da’X, + O(5a?)
We now use summation convention, so in above sum over a
Comments:
e Generators depend on parametrisation of G
e For unitary reps D(g~1(da)) = DT(g(da)) = XJ = -X, or TI=T,
e For dimH =d < c0: X, or T, are d x d matrices
e For dimH = oco: X, or T, are linear operators acting on vectors in H

Consider:

D(g(07)) = D(g 1 (8)g(6a)g(B))
=1+6a"D(g~1(8))XaD(g9(B))
=14+ 6*X,

That is D(g7(8))X.D(g(B)) is a linear combination of generators
Now 8 — 03 small

(1 - 5BbXb)Xa(1 + 5BbXb) =Xa+ 55b(XaXb - XbXa) + 0(562)

[Xa,Xb] = (XaXb — XbXa) = Cngd

The constants cgb are called structure constants

Properties
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Depend on parametrisation of G

. cgb = —c‘lfa antisymmetric in lower indices, ¢?, = 0

From Jacobi identity [[X4, Xs], X¢] + [ Xb, X, Xa] + [[Xe; Xa, Xp] = 0 follows

d e d e d e __
CabCdc + CbeCda + CeaCdp = 0

G abelian & cfllb =0
Obvious as D(g7(8))XaD(g(B)) = Xa < [Xa, Xp] = 0 for all a,b,d

Example: G = SO(3) (see Homework 4 Problem 10 with A =1)

. k .
[Li, Lj] = 15ijkLk = Cij = 1€k

3.7 Generators for transformation groups
Consider transfomation on M: 2’ = g(a)z and let a — do
Then the pi-component of z;, is given by

), = xy + 01y, = 1y + 60° Uy () + O(8° )

where
oz,

Ugu() == ot

Consider reps in H = L?(M):

(D(g(@)¥) (@) = P(g~" (a)z)
then again let o — d«

(6 + 60" X)) () = (a — o) = h(x) — 5aaUau<x>$<x>

Generator: Is a linear differential operator on H

0

Xa = —Uau(x)é)T =
o

—Uqp(x)0"

Example: M =R? G = SO(2)
(5) = (St e ) ()= (o ) ()
= (o) o7

ox ox
Hence U;(x) = 5—; = —x9 and Uy(z) = (57052 =1
- 0 0
X = — o 1 2 — - _
Up(z)0 ( 220" + 210 ) T2 92y 1 D
Or with T' = ihX 5 5
T =ih <$28$1_I18(L‘2> :L3

Rotations in the plane are generated by the angular momentum operator Lz on L?(R?) .
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Generator of rotation matrix (2-dim reps in R?)

cos(da) —sin(dar) \ _ 0 -1\ _, .
< sin(d«) cos(da) ) L+ 0da 1 0/ 1 —idao

Generator for rotation matrix in R? is given by Pauli matrix X = —ioy
Finite rotation by angle « is given

o0

1
X nymn
e = g —n!a X
n=0
1

— ()"0} (03 =1)

3

l [l
et

(D% 5 X (-
. (2k)! o —ioy kzo (2k + 1)!“2k+1

cosa —sina —iaoy
. =e
sina  cosa

Finite group elements can be represented by generators via exponentiation.

ol

o

For each generator exists an one-parameter subgroup represented by
D(g(t)) = et

Recall with 6t = t/n for large n

D(g(t)) = [D(g(6t))]" = lim [1 + 6tX,]" = lim [1 + :LXt]n = et Xt

n—o0 n—o0
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4 Lie Algebras

4.1 Definitions

A finite-dimensional vector space L (real or complex) is called Lie Algebra if there exists a
Lie Product o such that

e XoYeL VX, Y el
e (aX+pY)oZ=aXoY+5YoZ VXY, Z e L, a,BeERor C
e /oY =—-YoX antisymmetric
e Xo(YoZ)+Yo(ZoX)+Zo(XoY)=0 Jacobi Identity
Example: £ = R?3 with Zo ¢ :=F x ¢
Theorem: The generators of a Lie Group form a Lie Algebra with
XoYV =[X,Y]=XY-YX
Comments:
e Notation G = SO(n) < L = so(n), that is, use lower case notation for algebra

e locally isomorphic groups :< have the same (isomorphic) Lie Algebra
Example: so(3) ~ su(2) are isomorphic

e Reps of group < Reps of algebra
e dimG =dim L

From now on we consider only

XoY =[X,Y]
Homomorphism:
r. £ L
X = T(X)

such that T(aX + 8Y) = aT(z) + BT(Y) and T([X, Y]) = [T(X), T(Y)]
Subalgebra: Subspace N’ C £ with [N, N] C N

Ideal: Subalgebra N' C £ with [L,N] C N
trivial ideals are £ = {0} and N = L, rest are called proper ideals

Center: max. ideal such that [V, N] = 0 abelian algebra
Simple Lie algebra: £ has no proper ideal

Semi-simple Lie Algebra: £ has no abelian ideals

4.2 Representations of Lie Algebras

Homomorphism:
L — lin. operators on D

Py s px)

is called representation of L in D

Reps of Lie Group < Reps of Lie Algebra

D(g(a)) = ex"Xe X,
D(g(a)) = e T,
unitary X; =-X, ,TJ =T,
irreducible irreducible
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Adjoint Representation:

Let X € L be fixed
L—=L

ad(X):y [X,Y]

l[ad(X),ad(Y)]Z = ad(X)ad(Y)Z — ad(Y)ad(X)Z
— ad(X)[Y, 7] - ad(Y)[X, 7]
= [X,[Y.Z]] - [V, [X, Z]]
= —[Z,[X,Y]] Jacobi Id.
= [[X,Y],Z]
= ad([X,Y))Z VZeLl

Let X1,...,X,, be basis in £ with
[Xi, Xi] = Cék X

then

The structure constants are the matrix elments of the adjoint representation
ad(X;)j, = ¢y

Note: dimad(X) = dim £ =dim G

Example so(3): dim so(3) = 3 (see Homework 4 Problem 10)

4.3 Cartan Metric

Scalar product in L: (Killing form)
(X,Y) :=Tr(ad(X)ad(Y))
Using above basis X1,...,X,, in £
Cartan metric:
gt = Tr (ad(Xe)ad(X0)) = cf,cf = g symmetric
Let X = a¥X}, and Y = ' X; then
(X,Y) = Tr(a® ad(Xy) b ad(X;)) = Tr(ad(Xy) ad(X;)) a*b' = gra®d!

Cartan Criterium:

det(gr1) # 0 & L semi-simple
This implies the existence of the inverse metric tensor: gpg'™ = (5}C

Lie algebra compact :<= gx; positive or negative definite
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Examples:

° 80(3)3 [XM XJ] = Eiijk = gkl = €krs€lrs = 25kl
semi-simple and compact
also with L; = iX; = [LZ', Lj] = igijkLk = gp = —20k

e s0(2,1): (X1, Xo] = X3, [Xo, X3] = — X1, [X3,X1] =X»

= 0?2:1:—631, 653:—1:_0%2’ 6:231:1:—0%3
S gu = Tr(ad(X))ad(X))) = 265 = 2
= g22 = Tr (ad(X2)ad(X2)) = 2cisc3; =2
= g33 = Tr (ad(X3)ad(X3)) = 2c3cly = 2
2.0 0
= (gr) = 0 20 semi-simple and NOT compact
0 0 2
Let T; =iX; = [Ty, Tp) = i3, [Ty, T3] = —iTy, [T3,T1] = —iTs
-2 0 0
= (gm) = 0 -2 0
0 0 2

This so(2,1) ~ su(1,1) algebra is often used in QM as spectrum generating algebra

T3 is called the compact operator

Consider:

e o s r s (e e sl s 1 .r
Cijk -= GilCjk, = CirCisCik = Cir ( CrsClj Csj%) = CipCj1Chs T CriCsjCli;
= ¢ is totally anti-symmetric

4.4 The Casimir Operator

Definition:

C = g"X, X = guXFX!

Consider
C,X;] = ¢"[XpX), X
M X[ X0, Xi] + g X, Xi] X
= "X Xo + g™ ¢, X0 X
Xy X+ gM G X X as gt =gk
el (XpXo + X, X5

kl
g grs (XkXT + X’/‘Xk) Clis =0
" v
sym. k<>r antisym.l<s
sym. l<>s

The Casimir operator commutes with all elements of £
In case of an irreducible reps follows via Schur lemma: C' = A1
These eigenvalues are used to characterise the irreducible reps
Examples:

e 50(3) ~ su(2) : g = —20k, g = —%5“
C=-Y(X}+X3+X3) = 17?2 with J, = —iX},, J2 =4+ 11,5 =0,31,

1

0 0

10|, C=3(—X}+ X2+ X3) unbounded operator
01
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Comment: The UIR of non-compact groups/algebras are ALL infinite dimensional.

This becomes a problem for Lorentz group SO(3,1) = SO(3) ® SO(2,1) and the classifica-
tion of elementary particles. Way out is to use non-unitary but finite-dimensional irreducible
reps. More later (Wigner states).

Generalisation of Racah:

Cp = 0221110232[2 e Ci/'lnln Xk xhke . o xkn
commute with all X;: [Cy, X;] =0
Range of L :< No. of independent C),’s

4.5 Representations of Lie Algebras in Quantum Mechanics
4.5.1 The angular momentum algebra so(3) ~ su(2)

Algebra:
(i, Ji] = ihei J

UIR have dimension d; = 2j + 1 with j =0, 3,1,3,...
D7 = span {|j,m)|m = —j, ..., j} = C¥*!

Cartan-Weyl basis: J. :=J, £ Jo, Jy: = J3
[Jo, Jx| = £hJy, [y, J_] = 2hJy

Usual basis: Jy|j, m) = mh|j,m) = Ji change eigenvalue by +h
Ansatz:
J:I:’ja m> = Nﬂ:h‘]7m + 1)

Casimir: C' = %J_? ~1= J2j,m)= Ajlg,m) with Aj > 0 as J2>0.
Calculation of Ny: (J3)T = J+, Jg =Jo
‘Nﬂ:‘2h2 = ‘|Ji‘]7m>”2 = <]7m’J:FJ:t’jvm> = <]7m|[j2 - JO(JO + 1)]‘]7m>
=[N —m(mE£1)]R* >0

Hence m must be bounded my,in < m < Mmypqe With Ji|j, Mpmaez) = 0 and J_|j, mpin) =0
Consider

j2|j7 mmax> = J7J+ ’.]7 mma:):> + JO(JO + 1)|j7 mmax) = mmax(mmax + ]-)|.]7 mma:p)
jQ’jvmmin> = J—i—J—’jvmmin) + JO(JO - 1)’j7mmaaz> - mmm(mmm - 1)‘]7 mmax>

With A := j(j + 1) we find mpee = j = —Mpin and

Ny =G Fm)(Em+1)elo

4.5.2 The so(4) symmetry of the H-atom

Classical Kepler problem:

=2
«
E=F 2 G —GMm
2m r
with
P oo o 9 d, .
{=7Xp=mr°d = const., aerzwxr
and Newton equation
= " a
F:p:——QeT
T



Laplace-Runge-Lenz vector:
A= 7 X F—m o€, = const. , and A? = m2a? + 2ml*E
Proofs:

. A:ﬁxﬁfmaa:f%é}x(mr2@')fmozdﬁ><é}:0

. /p:(ﬁx[)z—Zmaé}-(ﬁxF)—}—mQaQ—132!72—(17%32—27;”‘6 (7 x p)) + m?a?
= p202 — MTO‘EQ—i—mQa? = 2mER + m2a?

Quantum mechanical hydrogen atom:

Hamiltonian:
H= P2 % o H=I2®
2m Q|
Angular Momentum: L
L=@QxP

Laplace-Runge-Lenz vector: (re-scaled and symmetrized)

A= (Pxi-LxP)- 2
2ma @
= Two conserved vector operators
[H’E]:_’v [H,fﬂ:_’
and 2
A1 = (BRI H, L[-A=0=4-L

mo

Algebra:

[Ai, Aj) = ihegjnli (— o)

[Li, Lj] = ihaijkLk

[A;, Lj] = ihe;ju Ay = [Li, Aj]
Consider subspace with fixed energy E < 0:

Hp C L*(R%)  with  Hp:= {|¢) € L*(R®)|H|¢) = E[)}

Redefine: N := (—2£ )71/2 A, M := L then

ma?

[Mi; M]] = ihgijkMk
[M;, N;] = iheiji Ny so(4)-algebra (see homework)
[Ni, Nj} = ihEijkMk

Decoupling: J := %(M +N)and K := ( M — N)
[Js, J;] = ihesjiJi
(K, K] lhffzngk ~ s0(3) & so(3)

(K5, Jj] =

Consider UIR: .
K2|k,mk) = k(k + 1)R2|k, mz)

J2|j,m;) = § (5 + 1)R2|5,m;)
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= —

Recall ~ L-A=0=M-K=J?-K = k=3

Hence: HE = D* ® D product space of two UIR of so(3)
Product basis: |k, my, mj) = |k, my) @ |4, m;)
Consider:

(T2 + B 2)[k, my, my) = 2k(k + 1Rk, g, my)
On the other hand:

J?+K? =5(M?+N?)
_1(72 2 12
=3 (02 -
=3 (L2 - (1 2B+ 1))
ma? h2
T 4E T 2
= 2 h2 h2 h2
mao
- = — 42 1 4k% + 4k +1) = —(2k +1)2
1E 2+k(k+)h 2(l€—|—k+) 2(k+)
= 2 2
1 1
E=_"1¢ =M with n=2%k+1

o2 2k + 12 2K n?
Note: k€ {0,3,1,3,...} = ne{l,2,34,..}
Degeneracy: dimHg = dim(D* @ D¥) = (2k + 1)? = E = E, is n? degenerate.

Angular momentum: L=J+K coupling of j and k

=
={0,1,2,...,2k} only integer 14

With n = ¢+ 1+ n, and m = my, + m; we change to new

‘kamkamj> — ’n7£7m>
Eigenstates with

H|n,¢,m) = E,|n,£,m)

L2|n, 0,m) = K200 + 1)|n, £, m)

L.|n,¢,m) = mh|n,l, m)

Comments:

e For E > 0 one obtains a SO(3,1)
algebraic approach via so(2,1) ~ su

In essence: N := (7252) 1/2A

SO(3) ® SO(2,1) symmetry. See later for an
1) (spectrum-generating algebra).

;1

[MZ', MJ] = ihEijkMk
[M;, Nj| = ihe;;jp Ni, s0(3,1)-algebra
[Ni,Nj] = —ihé‘i]’kMk

Bertrand’s Theorem: There are only two types of central-force (radial) scalar poten-
tials with the property that all bound orbits are also closed orbits.

e The 3-D Kepler problem may also be mapped onto a 4-D harmonic oscillator problem
via the so-called Kustaanheimo-Stiefel transformation (c.f. Homework Problem 8).
This Newton-Hook duality was already know to both in 17th century.

e A fixed SO(4)-UIR spans the subspace Hp corresponding to a single energy shell of
a bound state (fixed n = 2k + 1 and varying ¢, m).
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e An irreducible representation of SO(4,1) spans the full bound spectrum. The group
SO(4,1) is also called de Sitter group (Willem de Sitter 1872-1934). de Sitter space is
a maximally symmetric Lorentzian manifold with constant positive scalar curvature.
Embed S3 in R*

e An SO(3,2) irreducible representation spans the full continuous spectrum. The group
S0O(3,2) is also called anti-de Sitter group. Anti-de Sitter space is a maximally sym-
metric Lorentzian manifold with constant negative scalar curvature.

e SO(4,2) is called the full dynamical group of the Kepler (or Hydrogen atom problem).
It is the smallest group whose irreducible representations span both the continuous
and the discrete spectrum.

Some proofs:
L-A=0=A-Lisobviousas L- (PxL)=0and L-Q =
With L x P=2ihP — Px L and R := |c§y follows

L1 NG
A=— —ihP) — <
am ' ) R
2m?(A? — 1) = (P x L —ihP)? — am(P x L — ihP) - % am % (P x L —ihP)
Using following relations (proofs are below)
(PxL)- (P x L) =P2L?
(P x L) - P = 2ihP? (P x L —ihP)? = P2(L? + h?)
P (PxL)=0 = (Px L—ihP)-Q =L2+ihP-Q
(PxL)-Q=L*+2hP-Q Q-(PxL—ihP)=L*—ihQ P
Q- (PxL)=L?
follows
I 50 a4 4
2.2/ A2 2/172 2\ = i _ 2 2
a‘m*(A® — 1) = P*(L* + h*) 2amR 1ham<P 2 R P) 2mH(L +h)
—211/R

Auxiliary formulas:

o (Px L) (PxL)=¢iuPLicimPiLm = cijkcitm P L PiLn =
= €ijk€itm Pj(Pi Ly + ihe gy Pr) Ly = (010km — 0jmOni) (PP Ly Ly + ihe iy Py PrLy,) =
= P2[? + iheyj, PjP, Ly — PjP - LL; — ihe P; P, Lj) = P2L?

o (PxL)-P=c¢ijpP,LiPy = ciji P,(PyL; + ihe i P) = ih20; P, P, = 2ih P>

o P.(PxL)=e¢ijP,PjL, =0

o (P x E) Q= eijk iLiQr = eijiPi(QiLj + ihe ju@i) = eijnQuPiLj + 1h204 PQ1 =
= [2 4 2ihP - Q

¢4 (13 L) = e;jxQiPjLy = L?

.(“§E ihP)2 = (PxL)-(PxL)—ih(PxL)-P—ihP.(P x L) — h*P% =
= P2[? — 2ih2P? — h2P? = P2(I2 + K?)

o (PxL—ihP)-Q=1L*+2hP-Q—ihP-Q=L?+ihP -Q

e Q- (PxL—ihP)=1IL?—inQ-P

P R-R PV DR TR -t 10 H -



Finally the proof for [f_f, H|=0

With
PxL=PQ—(P-Q)P+ihP and LxP=-P>Q+(P-Q)P+ihP
follows o
L1 L @
A= —(PQ—-(P-QP)-=
ma( @ Q)> R

Using following formulas
o [P,1/R] =ih$
o [P%1/R] = ihgs(Q - P) +ih(P - Q) g
o [(P-Q)P,1/R] =ih(P Q)fs +ih%sP

one finds

= ih (G- P)G+in(P-Q) G —in(P- Q)& —inkP
=il (Q - P)Q — ih %P
Consider now
AP =L (1P2Q. P~ [(P- Q)P PY]) — [§, P
= L (PGP~ (P Q), PYIP) - 110, P? - [, PIQ
- L (P221hP - P-[G.PP) ~(G, P* - [, PIQ

= 21k P +ihs ((Q’-ﬁ)+(ﬁ Q)+3ih| Q@
(

—ﬂ,ﬂ_/
oo (Q-P)
= —2ih 5P + 2ili5(Q - P)Q
:2ma[A,%]
Hence 1
—[A,P=A A H] =
(AP =[Aa/R] =  [AH]

Good References:

M.J. Englefield, Group Theroy and the Coulomb Problem (Wiley & Sohns, 1972)

A. Hirshfeld, The Supersymmetric Dirac Equation (Imperial College Press, 2021)

G.J. Maclay, Dynamical Symmetries of the H Atom, One of the Most Important Tools of
Modern Physics: SO(4) to SO(4,2), Symmetry 12 (2020) 1323; https://doi.org/10.3390/sym12081323

*** Bind of Lecture 4 ***
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