
Recall orthogonality relation for matrix elements of UIR:

1

n

∑
g∈G

Di
µν(g)D

j ∗
ρσ(g) =

1

di
δijδµρδνσ

Recall Peter-Weyl-Theorem: f : G→ C

f(g) =
∑

all UIR i

di

di∑
µ,ν=1

f̃ iνµD
i
µν(g)

f̃ iνµ =
1

n

∑
g∈G

f(g)
(
Di
µν(g)

)∗
For Abelian groups all UIR are 1-dimensional, i.e. Di is a complex number and di = 1.
Peter-Weyl-Theorem for Abelian groups:

f(g) =
∑

all UIR i

f̃ iDi(g)

f̃ i =
1

n

∑
g∈G

f(g)
(
Di(g)

)∗
Example: Z2 = {−1,+1}, or g = σ = ±1. 2 classes ⇒ 2 UIR: D0(g) = 1 and D1(g) = σ.
Let f(g) := fσ with fσ ∈ C.

f(g) = f̃0 + f̃1σ where f̃0 =
1

2
(f+ + f−) , f̃1 =

1

2
(f+ − f−)

Check: f(g) = 1
2 (f+ + f−) +

σ
2 (f+ − f−)

2.7.3 Characters of representations

Definition: The function

χj :
G→ C
g 7→ χj(g) := TrDj(g)

is called Character of representation Dj with finite dimension dj .

Comments:

� Equivalent reps have the same character as TrS−1D(g)S = TrD(g).

� Characters are class functions (functions on classes of a group) as for g1 and g2 being
within same class exists a g ∈ G with g1 = gg2g

−1. Hence χj(g1) = χj(gg2g
−1) =

χj(g2), that is, is constant within the class.

� Characters of UIR are orthogonal

1

n

∑
g∈G

χi(g)χj ∗(g) = δij

That is, {χi} is complete orthogonal set for class functions. Recall orthogonality
relation above. (Proof as little Exercise)

� UIR are uniquely characterised by the characters. Consider fully reducible reps
D(g) =

⊕
j cj D

j(g) with Di UIR, then χ(g) =
∑

j cjχ
j(g) with

cj =
1

n

∑
g∈G

χ(g)χj ∗(g)

The decomposition of D into UIR is unique!
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Example: Let us consider the regular representation

gµgν =:
n∑
ρ=1

Dreg
ρν (gµ)gρ

which is fully reducible and n-dimensional. Then, χreg(e) = n and χreg(g) = 0 for all g ̸= e.
That is,

cj =
1

n

∑
g

χreg(g)χj ∗(g) =
1

n
nχj ∗(e) = dj

for all UIR j. Hence, all UIR of a finite group have multiplicity dj (their dimension) in the
regular representation. That is,

χreg(g) =
∑

all UIR

dj χ
j(g)

In above let g = e, then

χreg(e) = n =
∑

all UIR

dj χ
j(e) =

∑
all UIR

d2j

which proofs the theorem of Burnside.
The problem of finding all UIR is equivalent to the full reduction of the regular representa-
tion.

Theorem: The number of inequivalent UIR of a finite group is identical to the number of
classes.

Proof: Consider arbitrary class function f(g) = f(g−1
0 gg0) for all g, g0 ∈ G.

From Peter-Weyl theorem follows

f(g) =
∑
j

dj
∑
µν

f̃ jνµD
j
µν(g

−1
0 gg0)

Now take group average over g0

f(g) =
∑
j

dj
∑
µν

f̃ jνµ
1

n

∑
g0

∑
αβ

Dj
µα(g

−1
0 )Dj

αβ(g)D
j
βν(g0)

use
1

n

∑
g0

Dj
µα(g

−1
0 )Dj

βν(g0) = δµνδαβ

=
∑
j

dj
∑
µν

f̃ jνµ
∑
αβ

1

dj
δµνδαβD

j
αβ(g)

=
∑
j

∑
µ

f̃ jµµ
∑
α

Dj
αα(g)

=
∑
j

Tr (f̃ j)χj(g)

with Tr (f̃ j) :=
∑
µ

f̃ jµµ =
1

n

∑
g∈G

f(g)χj(g−1)

Peter-Weyl theorem for class functions f(g) = f(g−1
0 gg0):

f(g) =
∑

all UIR i

ai χ
i(g)

ai =
1

n

∑
g∈G

f(g)χi ∗(g)
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⇒ {χj(g)} is a complete orthonormal set for class functions, which are constant on a class
⇒ f⃗ = (f(g1), f(g2), . . . , f(gk)), gi ∈ Ki (i-th class), i = 1, 2, . . . , k = # of classes of G,
f⃗ is an element of a k-dimensional vector space K ⊂ Cn, k ≤ n
⇒ there exist exact k UIR for a finite group.

Character tables: Are used for finite groups of low order to classify their UIR

G g1 = e g2 ∈ K2 · · · gk ∈ Kk

D0 1 1 · · · 1 trivial reps
...
Di di χi(g2) χi(gk) i-th reps

Construction:

� # of UIR = # classes ⇒ quadratic table

� Burnside:
∑
i

d2i = n = ordG

�

∑
g∈G

χi(g)χj ∗(g) =

k∑
ℓ=1

mℓ χ
i(gℓ)χ

j ∗(gℓ) = nδij ,

where gℓ ∈ Kℓ and mℓ = # of elements in class Kℓ.
⇒ sum rule for each row i

k∑
ℓ=1

mℓ |χi(gℓ)|2 = n

Example: C3 = {e, d, d2} has 3 classes, abelian, n = 3 and d3 = e ⇒
[
χi(d)

]3
= 1

⇒ χi(d) ∈
{
1, e2πi/3, e4πi/3

}
C3 e d d2

D0 1 1 1

D1 1 e2πi/3 e4πi/3

D2 1 e4πi/3 e2πi/3

Projection Operators: Let G be a finite group, D a unitary fully reducible reps in some
vector space V , χj the character of the UIR labeled with j and dimension dj .

Theorem: The operator

Ej :=
dj
n

∑
g∈G

χj ∗(g)D(g)

fulfills following relations

1. Ej† = Ej self-adjoint

2. EjEk = Ejδjk ortho-normal projector

3.
∑
j

Ej = 1 completeness

4. D(g)Ej = EjD(g)

Proof: See Homework Problem 7

Comments:

� Ej is ortho-normal projector onto invariant subspace of V spanned by the UIR j
within D (with possible multiplicities)
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� Ej can be used to find invariant subspaces

� Extension to compact groups obvious

Ej = dj

∫
G
dg χj ∗(g)D(g)

� E0 =
1

n

∑
g

D(g) or E0 =

∫
G
dg D(g)

projects on invariant subspace of trivial reps = average of D on group
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3 Lie Groups

3.1 Pragmatic Approach to Lie Groups

For some more details please see, e.g., book by Lucha & Schöberl.
A continuous or topological group has uncountable infinite group elements.

Parametrisation and Notation:

� g = g(α) = g(α1, α2, . . . , αn),

� α = (α1, α2, . . . , αn) independent group parameters, that is, g(α) ̸= g(α′) ⇔ α ̸= α′

� α ∈ I ⊆ Rn, I is group space, one or more not necessarily connected subsets of Rn

� n ∈ N is the dimension of the group

� Convention for neutral element e = g(0) = g(0, 0, . . . , 0)

Examples:

� SO(2): g = g(φ), φ ∈ [0, 2π[⊂ R, I = S1 unit circle, 1-dim. continuous group

� T 3: g = g(x⃗), x⃗ ∈ R3, I = R3, 3-dim. continuous group

Composition laws and composition functions:

multiplication g(γ) = g(α)g(β) ⇒ ∃Φ :
I × I → I
(α, β) 7→ γ = Φ(α, β)

inverse element g(α′) = g−1(α) ⇒ ∃Ψ :
I → I
α 7→ α′ = Ψ(α)

Properties:

g(γ)(g(β)g(α)) = (g(γ)g(β))g(α) ⇒ Φ(γ,Φ(β, α)) = Φ(Φ(γ, β), α)

g(0)g(α) = g(α)g(0) ⇒ Φ(0, α) = α = Φ(α, 0)

g(α)g−1(α) = g−1(α)g(α) ⇒ Φ(α,Ψ(α)) = 0 = Φ(Ψ(α), α)

These are rather strong conditions!

Definition: Topological or Continuous group

� I is topological space not necessarily connected (limits, continuity, connectedness)

� Composition functions are continuous

Definition: Lie Group is topological group with

� I is analytical manifold not necessarily connected (manifold with analytic atlas =
analytic transformation functions)

� Composition functions are analytic
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Examples:

� SO(2):

g(φ) =

(
cosφ − sinφ
sinφ cosφ

)
Composition laws = trigonometric addition theorems

� O(2):

gd(φ) =

(
cosφ − sinφ
sinφ cosφ

)
pure rotations det gd(φ) = 1

gs(φ) = gd(φ)

(
1 0
0 −1

)
=

(
cosφ sinφ
sinφ − cosφ

)
rot. & refl. det gd(φ) = −1

Group space not connected , SO(2) is normal subgroup O(2)/SO(2) ≃ Z2

Comment: Let G0 ⊂ G be the connected subset containing e = g(0) ⇒ G0 is normal
subgroup of G.

Compact Groups: A topological group is called compact when its group space I is com-
pact. The group space may consist of several compact components.

� SO(2): I = S1 unit circle is compact

� SO(1, 1): Boosts in (1 + 1) dimensions

g(β) :=

(
coshβ sinhβ
sinhβ coshβ

)
. β ∈ R

I ≃ R hyperbola unbounded, is NOT compact but locally compact

Locally compact Groups: If for all g ∈ G there exists a compact environment (incl.
boundaries) which is completely within G, then G is called locally compact.

3.2 Invariant Measure for Topological Groups

Basic Assumption:
There exists a positive measure µ on G, that is, for any µ-measureable function

f :
G→ C
g 7→ f(g)

the integration over a topological group is well-defined:∫
G
dµ(g) f(g) =

∫
I
dnαρ(α)f(g(α))

dnα: usual Lebesque measure
ρ(α): density of group elements at α

Definitions: For all µ-measurable f and all g0 ∈ G

� Left-invariant Haar measure:∫
G
dµ(g) f(g0g) =

∫
G
dµ(g) f(g) ⇔ µ(g0g) = µ(g)

� Right-invariant Haar measure:∫
G
dµ(g) f(gg0) =

∫
G
dµ(g) f(g) ⇔ µ(gg0) = µ(g)
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� Invariant Haar measure:∫
G
dµ(g) f(g0gg1) =

∫
G
dµ(g) f(g) ⇔ µ(g0gg1) = µ(g)

Example: G = SO(2), g = g(φ).
Let g0 = g(α) and g1 = g(β) then g0gg1 = g(α+ φ+ β) and
f(g) = f(g(φ)) = f(g(φ+ 2π)) periodic function on unit circle
⇒ dµ(g) = 1

2πdφ is invariant Haar measure for SO(2) as∫
SO(2)

dµ(g) f(g0gg1) =
1

2π

∫ 2π

0
dφf(g(α+φ+β)) =

1

2π

∫ 2π

0
dφ̃ f(g(φ̃)) =

∫
SO(2)

dµ(g) f(g)

Theorem:
For each locally compact group there exists a (non-trivial) positive left-invariant measure
which is, up to a (normalization) constant, unique.

Proof: See for example,
J. Dieudomé, Grundzüge der modernen Analysis II, Chapter 14.1, pp249-255.

Normalization:

� For compact groups:

∫
G
dµ(g) = 1 = µ(G)

� For finite groups:
1

ordG

∑
g∈G

1 = 1

� For infinite discrete groups: µ(e) = 1

Comments:

� Construction of a left-invariant measure for Lie groups always possible in principle
(see E. Wigner, Group Theory, p. 95-99 and optional tutorial after test). In practice
this might be difficult for non-abelian groups

� The existence is often sufficient even without explicitly knowing the density ρ.

� An educated guess of the measure is usually faster than its formal construction a la
Wigner

Modular function of a locally compact group G
Let µ be the left-invariant measure on G, i.e. µ(g0g) = µ(g).
Then obviously µ(g0gg1) = µ(gg1) is also left-invariant.
Hence, uniqueness implies that µ(gg1) = ∆G(g1)µ(g), where

∆G :
G→ R+

g 7→ ∆G(g)

is called the modular function of G.

Definition:

G uni-modular :⇔ ∆G(g) = 1

⇒ µ(gg1) = µ(g) is also right-invariant ⇒ invariant Haar measure

Notation: For uni-modular groups dµ(g) = dg from now on
and ∫

G
dg f(g) =

∫
G
dg f(g0g) =

∫
G
dg f(gg0) =

∫
G
dg f(g−1)
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Example: SU(2)

g =

(
a b

−b∗ a∗

)
, |a|2 + |b|2 = 1 , a, b ∈ C

Choose parametrization with Euler angles (bi-polar coordinates on S3 ⊂ R4):

a = cos
θ

2
exp

{
i
φ+ ψ

2

}
b = i sin

θ

2
exp

{
i
φ− ψ

2

} 0 ≤ φ < 2π

0 ≤ θ ≤ π

−2π ≤ ψ < 2π

Then

dg =
1

16π2
sin θdθ dφdψ

Proof: Consider bi-polar coordinates in R4

x1 = r cos θ2 cos
φ+ψ
2

x2 = r cos θ2 sin
φ+ψ
2

x3 = r sin θ
2 cos

φ−ψ
2

x2 = r sin θ
2 sin

φ−ψ
2

d4x =

∣∣∣∣∂(x1, x2, x3, x4))∂(r, θ, φ, ψ)

∣∣∣∣︸ ︷︷ ︸
= r3

8
sin θ

drdθdφdψ

Hence d4x = d3Ω r3dr with d3Ω = 1
8 sin θdθdφdψ

Obviously d4x is invariant under SU(2) rotations in R4 leaving r fixed.
Hence, d3Ω is also SU(2) invariant measure on SU(2) ≃ S3.
Noting that

∫
S3 d

3Ω = 2π2 provides us with above normalised Haar measure

List of some uni-modular groups:

� All discrete groups

� All compact groups

� All Abelian groups

� GL(n,R) = {X|real n× n matrices with detx ̸= 0}

� . . .

Left-invariant measure of GL(n,R):

gX = X =

 x11 · · · x1n
...

...
x1n · · · xnn

 ⇒ dgX = |detX|−n
n∏

i,j=1

dxij

Left-invariance: Let Y = AX that is yij =
n∑
k=1

aikxkj

⇒ ∂(y11, . . . , ynn)

∂(x11, . . . , xnn)
= (detA)n

Hence

dgY = |detY |−n
n∏

i,j=1

dyij = | detA · detX|−n
∣∣∣∣ ∂(y11, . . . , ynn)∂(x11, . . . , xnn)

∣∣∣∣ n∏
i,j=1

dxij

= |detX|−n
n∏

i,j=1

dxij = dgX = dgAX
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Right-invariance analogous

Consider subgroup of triangular matrices

gZ = Z =


z11 z12 · · · z1n
0 z22 · · · z2n
...

. . .
. . .

...
0 · · · 0 znn

 is NOT uni-modular

Left-invariant measure: dµL(gZ) = |zn11zn−1
22 · · · znn|−1

∏
i≤j

dzij

Right-invariant measure: dµL(gZ) = |z11z222 · · · znnn|−1
∏
i≤j

dzij

Remark: Subgroups of uni-modular groups are not necessarily uni-modular!

3.3 Transformation Groups

Transformation: Bijective mapping of a set M onto M

g :
M → M
x 7→ gx

Transformation Group: Exists for all g ∈ G a transformation on M such that ex = x
for all x ∈ M (identical transformation) and (g1g2)x = g1(g2)x for all g1, g2 ∈ G, then G is
called transformation group acting on M.

Examples:

� M = {x1, x2, . . . , xn} G = Sn Permutations

� M = R3 G = SO(3) or G = T 3

� M = G obvious, for example SU(2) ≃ S3

Transformation groups are called

effective :⇔ ∀ g ̸= e∃x ∈ M such that gx ̸= x

transitive :⇔ ∀x, y ∈ M∃ g ∈ G such that gx = y

Obviously SO(3) is NOT transitive on M = R3 but it is transitive on M = S2

Homogenous Space:
Exists a transitive group G acting on M then M is called homogenous space

From now on we will ONLY consider homogenous spaces M and transitive transformation
groups G

Stationary Subgroup: Also called little group or isotropy group
Let x0 ∈ M and G be transitive on M, then

H := {h ∈ G|hx0 = x0}

is a subgroup of G called stationary subgroup of G with respect to x0 ∈ M.

Proof: Consider arbitrary h1, h2 ∈ H

� h−1
1 h1x0 = h−1

1 x0 ⇒ h1x0 = x0 ⇒ h−1
1 ∈ H

� h1h2x0 = h1x0 = x0 ⇒ h1h2 ∈ H
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� ex0 = x0 ⇒ e ∈ H

⇒ H is a group

Example: Let M = S2, G = SO(3) and choose x0 = e⃗z
⇒ H = SO(2) all rotation about z-axis keeping x0 fixed (stationary)

In general, let gx0 = x, that is for all g̃ = gh with h ∈ H we have g̃x0 = x.
That is, the set of all transformations mapping x0 → x is represented by gH (left coset).
For each pair (x, x0) exists a left coset gH such that gHx0 = x
⇒ The homogenous space M ≃ set of all cosets

Notation: M = G/H := {gH|g ∈ G} for homogenous spaces
is in general NOT a (factor) group as in general H is NOT a normal subgroup.

Recall:

� S2 = SO(3)/SO(2)

� S3 = SO(4)/SO(3)

� S3 = SU(2) here H = {e} effective transformation group

Choice of x0:
Consider two different x0 and x̃0 and let hx0 = x0 for all h ∈ H.
Let gx0 = x̃0 then ghg−1x̃0 = ghx0 = gx0 = x̃0.
Hence the stationary subgroup for x̃0 is H̃ := gHg−1, H is conjugate to H̃
⇒ M = G/H ≃ G/H̃
homogenous space is uniquely defined by transitive G and one stationary subgroup H.

Invariant Measure on M:
Let gA := {gx|x ∈ A ⊂ M} arbitrary transformation of subset A in M
A measure µ is called G-invariant measure on M if for all g ∈ G and all A ⊂ M

µ(A) = µ(gA)

This implies for a µ-measurable function f on M and all g ∈ G∫
M

dµ(x) f(x) =

∫
M

dµ(x) f(gx)

Connection with invariant Haar measure∫
M=G/H

dµ(x) f(x) =

∫
G
dg f(gx0)

In essence dg = dµ(x)dh.

3.4 Representations of Transformation Groups

Consider H = L2(G/H) being invariant under transformation, that is,

ψ(x) ∈ H ⇒ ψ(gx) ∈ H ∀ g ∈ G

Unitary Representations in H

(D(g)ψ) (x) := ψ(g−1x)

or
⟨x|D(g)ψ⟩ = ⟨g−1x|ψ⟩ = ψ(g−1x)
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Representation:

(D(g1)D(g2)ψ) (x) = ⟨g−1
2 g−1

1 x|ψ⟩ = ψ((g1g2)
−1x) = (D(g1g2)ψ)(x)

Unitarity: scalar product via G-invariant measure on G/H

⟨ψ1|ψ2⟩ =
∫
G/H

dµ(x)ψ∗
1(x)ψ2(x) =

∫
G/H

dµ(x)ψ∗
1(g

−1x)ψ2(g
−1x) = ⟨D(g)ψ1|D(g)ψ2⟩

Comments:

� For H = {e} G ≃ M ⇒ D(g) is (left) regular represnetation

H =
∑

all UIR j

dj Hj dj = dimHj

� General Case

D(g) =
∑
ℓ∈Λ

Dℓ(g) , H =
∑
ℓ∈Λ

Hℓ , dimHℓ = dℓ = dimDℓ

Λ: Set of all class 1 representations, appear with multiplicity 1 in H.

Known Example: H = L2(S2) =
∞∑
ℓ=0

Hℓ, dimHℓ = 2ℓ+ 1

Hℓ = span {|ℓm⟩|m = −ℓ, . . . .ℓ} , Lz|ℓm⟩ = m|ℓm⟩ , Lz =
ℏ
i
∂
∂φ

Spherical harmonics ⟨θφ|ℓm⟩ = Yℓm(θ, φ) = (−1)m
√

(2ℓ+1)
4π

(ℓ−m)!
ℓ+m)! P

m
ℓ (cos θ) eimφ

Orthogonality relation:

∫
S2

d2ΩY ∗
ℓm(θ, φ)Yℓ′m′(θ, φ) = δℓℓ′δmm′ , d2Ω = sin θdθdφ

⟨θφ|ℓ 0⟩ =
√

2ℓ+1
4π Pℓ(cos θ) independent of φ, rotations about z-axis

Dℓ(h)|ℓ0⟩ = |ℓ 0⟩ invariant under h ∈ SO(2) ⊂ SO(3), rotations about z-axis

3.4.1 Representations of class 1

Let H = L2(G/H) , Hℓ ⊂ H, Hℓ irreducible invariant subspace with UIR Dℓ(g)

Definition: Exists an invariant vector |φ0⟩ ∈ Hℓ, that is, Dℓ(h)|φ0⟩ = |φ0⟩ for all h ∈ H,
then Dℓ(g) is called representation of class 1 (relative to H).

Definition: Exists for each class 1 representation exact one invariant vector in Hℓ then H
is called massiv subgroup.

Comment: |φ0⟩ ∈ Hℓ corresponds to x0 ∈ G/H with hx0 = x0 for all h ∈ H.

Let us choose basis in Hℓ: {|φ0⟩, |φ1⟩, . . . , |φdℓ−1⟩}

Representation matrices: Dℓ
mn(g) := ⟨φm|Dℓ(g)|φn⟩

In particular: For all h, h1, h2 ∈ H

Dℓ
m0(gh) = ⟨φm|Dℓ(gh)|φ0⟩ = Dℓ

m0(g)

Dℓ
00(h

−1
1 gh2) = ⟨φ0|Dℓ(h−1

1 gh2)|φ0⟩ = Dℓ
00(g)

Comment

� Associate spherical functions :⇔ f(gh) = f(g)

� Zonal spherical functions :⇔ f(h1gh2) = f(g)
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Known Example: G = SO(3), M = S2, e⃗(θ, φ) = ge⃗z

Dℓ
m0(g) = ⟨φm|Dℓ(g)|φ0⟩ =

√
4π

2ℓ+1 Yℓm(θ, φ)

Dℓ
00(g) = ⟨φ0|Dℓ(g)|φ0⟩ =

√
4π

2ℓ+1 Pℓ(cos θ)

Orthogonality of UIR matrix elements: continuous version∫
G
dg Dℓ

mn(g)D
k ∗
sr (g) =

1

dℓ
δℓkδmsδnr

*** End of Lecture 3 ***
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