Recall orthogonality relation for matrix elements of UIR:

T n 1
n Z Duu(g)D]pO' (g) - Eidijéupéua
geG

Recall Peter-Weyl-Theorem: f: G — C

d;
flog = D &Y fLDi(9)

all UIR ¢ pu,v=1

% > fl9) (D],(9)

geG

fou

For Abelian groups all UIR are 1-dimensional, i.e. D? is a complex number and d; = 1.
Peter-Weyl-Theorem for Abelian groups:

flgg = D "Dy
all UIR 1

fio= %Zf(g)(Di(g))*
geG

Example: Zy = {—1,+1}, or g = o = 1. 2 classes = 2 UIR: D%(g) = 1 and D!(g) = 0.
Let f(g) := f, with f, € C.

1

flo) =+ Flo whee  P=l(f+f). F=g (- f)

Check: f(g) =5 (f++f-) +§ (f+ - f-)

2.7.3 Characters of representations

Definition: The function

v ¢7¢ .
" g X (g9) :=TrD/(g)

is called Character of representation D’ with finite dimension d;.

Comments:

Equivalent reps have the same character as Tr S~1D(g)S = Tr D(g).

Characters are class functions (functions on classes of a group) as for g; and g2 being

within same class exists a ¢ € G with g1 = ggog~!. Hence x’(g1) = X/ (9g297') =

X’ (g2), that is, is constant within the class.
Characters of UIR are orthogonal
1 , :
n D> X @)X "(9) = b
geG

That is, {x'} is complete orthogonal set for class functions. Recall orthogonality
relation above. (Proof as little Exercise)

UIR are uniquely characterised by the characters. Consider fully reducible reps
D(g) = @, ¢; D/(g) with D* UIR, then x(g) = >, ¢;x’ (g) with

¢j = % > x(@9)x*(9)

geG

The decomposition of D into UIR is unique!
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Example: Let us consider the regular representation
9ugv = ZD;?/g gu

which is fully reducible and n-dimensional. Then, x**8(e) = n and x**8(g) = 0 for all g # e.
That is,

n

= % D X" B9 (9) = Lod*(e) = 4;

for all UIR j. Hence, all UIR of a finite group have multiplicity d; (their dimension) in the
regular representation. That is,

= 3
all UIR
In above let g = e, then
X" (e Z dj X Z d2
all UIR all UTR

which proofs the theorem of Burnside.
The problem of finding all UIR is equivalent to the full reduction of the regular representa-
tion.

Theorem: The number of inequivalent UIR of a finite group is identical to the number of
classes.

Proof: Consider arbitrary class function f(g) = f(gq ! g90) for all g, go € G.
From Peter-Weyl theorem follows

Zd wa , (95" 990)

Now take group average over g

Zd wa ZZDW (Q)D]éy(go)

go apf
use Z Dw go (90) = O bap
o 1 :

T

:ZZ 7. Din(9)
i ow o

= ZTr ()X (9)

with Tr (f7) : Z fi, = Z F@)x' (g7

gEG

Peter-Weyl theorem for class functions f(g) = f(g, Ygg0):

flg) = D aix(e)
all UIR 1

= 3 Hox* (o)
geG
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= {x?(9)} is a complete orthonormal set for class functions, which are constant on a class

= f: (f(g1), f(g2),---, f(9x)), gi € K; (i-th class), i = 1,2,...,k = # of classes of G,
f is an element of a k-dimensional vector space K C C", k < n
= there exist exact k UIR for a finite group.

Character tables: Are used for finite groups of low order to classify their UIR

Glog=c|gpeKy| | gnekKy|
DY 1 1 . 1 trivial reps
D' | 4, X' (g2) X" (gk) i-th reps

Construction:

e # of UIR = # classes = quadratic table

e Burnside: Z d?=n=ordG

k
o > X (@ (9) =D mex‘(g0)x)*(ge) = nbij,
geG /=1

where gy € Ky and my = # of elements in class K.

= sum rule for each row i

k
S me i (ge) 2 = n
=1

Example: C3 = {e,d,d?} has 3 classes, abelian, n = 3 and d® = ¢ = [Xi(d)]?’ =1
= \i(d) {176271'1/3,647?1/3}

Cs \ e d d?
DY |1 1 1
Dl |1 e27rl/3  o4ni/3
D2 |1 edrl/3  g2ni/3

Projection Operators: Let G be a finite group, D a unitary fully reducible reps in some
vector space V, x? the character of the UIR labeled with j and dimension dj.

Theorem: The operator
o ds .
E =2 1*(g)D
- > x’*(9)D(9)

gelG
fulfills following relations
1L BT =g self-adjoint
2. E'EF = FJ djk ortho-normal projector
3. ZEj =1 completeness
J

4. D(9)E/ =E'D(g)
Proof: See Homework Problem 7
Comments:
e E/ is ortho-normal projector onto invariant subspace of V spanned by the UIR j

within D (with possible multiplicities)
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e EJ can be used to find invariant subspaces

e Extension to compact groups obvious

W=%L@%%W@

o o1 or B0 =
E nzg:D(g) E /Gng(g)

projects on invariant subspace of trivial reps = average of D on group
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3 Lie Groups

3.1 Pragmatic Approach to Lie Groups

For some more details please see, e.g., book by Lucha & Schéoberl.
A continuous or topological group has uncountable infinite group elements.

Parametrisation and Notation:

® g= g(Oé) = g(a17a27" . 7a7l)7

e a=(aj,as,...,q,) independent group parameters, that is, g(«a) # g(o/) & a # o/

a el CR™ I is group space, one or more not necessarily connected subsets of R”
e n € N is the dimension of the group
e Convention for neutral element e = g(0) = ¢(0,0,...,0)
Examples:
e SO2): g=g(p), p €0,2r[C R, I = ST unit circle, 1-dim. continuous group
o T3: g =g(&), Z € R3, I = R3, 3-dim. continuous group

Composition laws and composition functions:

c e IxIT—1
multiplication g(v) = g(a)g(B) =30 (@, 8) = 7 = B(a, B)
inverse element  g(a’) = g~ () =3V fx:{x’ ~ ¥(a)
Properties:
9M(9B)g(@)) = (9Mg(B)g(a) = @(v, 2(5,a)) = ((7, ), @)
g(O)g(a) = g(a)g(O) = (I)(Oﬂ a) =a=®(a, 0)
g9(a)g~(a) = g~ (a)g(a) = ®(a,¥(a)) =0=2(¥(a),a)

These are rather strong conditions!

Definition: Topological or Continuous group
e [ is topological space not necessarily connected (limits, continuity, connectedness)
e Composition functions are continuous

Definition: Lie Group is topological group with

e [ is analytical manifold not necessarily connected (manifold with analytic atlas =
analytic transformation functions)

e Composition functions are analytic
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Examples:
e SO(2):
cos —sin
9(p) = < i i >

sin Cos ¢
Composition laws = trigonometric addition theorems
e O(2):

[ cosp —singp . .
ga(p) = < sing  cosg > pure rotations det g4(p) =1

. 1 0\ [ cosp sin ¢ _
9s(p) = galp) ( 0 —1 ) = < sing —cos > rot. & refl. det gq(¢) = —1

Group space not connected , SO(2) is normal subgroup O(2)/SO(2) ~ Z,

Comment: Let Gy C G be the connected subset containing e = ¢(0) = Gy is normal
subgroup of G.

Compact Groups: A topological group is called compact when its group space I is com-
pact. The group space may consist of several compact components.

e SO(2): I = S! unit circle is compact
e SO(1,1): Boosts in (1 + 1) dimensions

~_( coshf3 sinhg
9(B) = < sinh 3 coshf > ' BER

I ~ R hyperbola unbounded, is NOT compact but locally compact
Locally compact Groups: If for all ¢ € G there exists a compact environment (incl.
boundaries) which is completely within G, then G is called locally compact.
3.2 Invariant Measure for Topological Groups

Basic Assumption:
There exists a positive measure p on G, that is, for any pu-measureable function

G—C

I g~ f(g)

the integration over a topological group is well-defined:

/ du(g) f(g) = /d”ap(a)f(g(a))
G

I

d"a: usual Lebesque measure
p(a): density of group elements at «

Definitions: For all y-measurable f and all gg € G

o Left-invariant Haar measure:
L@ tang) = [ auta) fla) > nlang) = (o)
o Right-invariant Haar measure:

/dmmﬂwwz/dmwﬂw & ulgg) = ulg)
G G
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o Invariant Haar measure:

[ duto) flongan) = [ duto)s(9) = lovgen) = ulo)
G G

Example: G = SO(2), g = g(¢).

Let go = g(a) and g1 = g(B) then gogg1 = g(a + ¢ + ) and
f(g) = f(g(p)) = f(g(p + 27)) periodic function on unit circle
= du(g) = 5=dy is invariant Haar measure for SO(2) as

1 27 1 o ) )
/50(2) du(g) f(g0991) = 27T/O do f(g(ate+B)) = 27r/0 dg f(g(@)) :/50(2) dulg) f(g)

Theorem:
For each locally compact group there exists a (non-trivial) positive left-invariant measure
which is, up to a (normalization) constant, unique.

Proof: See for example,
J. Dieudomé, Grundziige der modernen Analysis II, Chapter 14.1, pp249-255.

Normalization:

e For compact groups: / du(g) =1 = p(G)
G

1
For finit P — 1=1
e For finite groups: — -~ QEZG

e For infinite discrete groups: p(e) =1
Comments:

e Construction of a left-invariant measure for Lie groups always possible in principle
(see E. Wigner, Group Theory, p. 95-99 and optional tutorial after test). In practice
this might be difficult for non-abelian groups

e The existence is often sufficient even without explicitly knowing the density p.

e An educated guess of the measure is usually faster than its formal construction a la
Wigner

Modular function of a locally compact group G

Let p be the left-invariant measure on G, i.e. p(gog) = u(g).
Then obviously 1(gogg1) = 1(gg1) is also left-invariant.
Hence, uniqueness implies that p(gg1) = Ag(g1)p(g), where

G —RT

Ac
“ g Agly)

is called the modular function of G.

Definition:

G uni-modular = Ag(g) =1
= 1(gg1) = p(g) is also right-invariant = invariant Haar measure

Notation: For uni-modular groups du(g) = dg from now on

and
/Gdgf(g)Z/Gdgf(gog)Z/Gdgf(ggo):/Gdgf(g1)
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Example: SU(2)

o a b 2 2
g_<_b* a*)v |a|+|b| _]-7 a,bG(C

Choose parametrization with Euler angles (bi-polar coordinates on S% C R*):

a:cosZexp{igO—;w} 0<e<2m
0<e<mnw
bZISIHQeXp il
2 9 =27 <Y <27
Then .
dg = = sin df dp dv

Proof: Consider bi-polar coordinates in R*

1 :7“cosgcosM

<p+¢
562 —TCOS2SID d4 - 8(x1’x2,x37$4)) d ded d
0 ¥ S T rddedy
r3 = rsin 5 cos T5~ (7,0,0,9)
. . o— 3
Ty = rsmgsm —“’21/’ =5 sind

Hence d*z = d*Qr?dr with d*Q = £ sin 6d0dpdy)

Obviously d*z is invariant under SU(2) rotations in R* leaving 7 fixed.
Hence, d3Q is also SU(2) invariant measure on SU(2) ~ S3.

Noting that | g3 d3Q = 272 provides us with above normalised Haar measure

List of some uni-modular groups:
e All discrete groups
e All compact groups
e All Abelian groups
e GL(n,R) = {X|real n x n matrices with detx # 0}
o ...

Left-invariant measure of GL(n,R):

Zir - Tin

n
Tin ' Zpn ij=1
n
Left-invariance: Let Y = AX that is y;; = Z QikThj
k=1
0 -
= M = (det A)n
(3(1‘11, e axnn)
Hence
- Oy yun) | T
dgy =|detY[™" dy;; = |det A - det X|~™ | 2L Inn) A
gy =|detY] 1__I Yij = | de et X| —— 1__I Tij
17]_1 ,L’]_l
n
= |det X|™" H dz;j = dgx = dgax
i,j=1
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Right-invariance analogous

Consider subgroup of triangular matrices

211 212 't Zn
0 222 - 22p . _

9z = 4 = . ) . is NOT uni-modular
0 - 0 zm

Left-invariant measure: dur,(9z) = |24 255 * - Znn| ™! Hdzij
1<j

Right-invariant measure: dur(gz) = 211259 - - 2%, | 7 Hdzij
1<j

Remark: Subgroups of uni-modular groups are not necessarily uni-modular!

3.3 Transformation Groups

Transformation: Bijective mapping of a set M onto M

M= M

T gT

Transformation Group: Exists for all ¢ € G a transformation on M such that ex = z
for all x € M (identical transformation) and (g1g2)x = g1(g2)z for all g1, g2 € G, then G is
called transformation group acting on M.

Examples:
o M= {z1,x9,...,2n} G = S,, Permutations
e M=R? G=80(3)orG=T53
e M = G obvious, for example SU(2) ~ S3
Transformation groups are called
effective s Vg # edxr € M such that gr # x
transitive R Va,y € Mdg € G such that gr =y
Obviously SO(3) is NOT transitive on M = R3 but it is transitive on M = S?

Homogenous Space:
Exists a transitive group G acting on M then M is called homogenous space

From now on we will ONLY consider homogenous spaces M and transitive transformation
groups G

Stationary Subgroup: Also called little group or isotropy group
Let x9p € M and G be transitive on M, then

H = {h S G‘h.’I}o = xo}

is a subgroup of G called stationary subgroup of G with respect to xy € M.
Proof: Consider arbitrary hy, ho € H
° hl_lhlx() = hl_laﬁo = hixg = 20 = hl_l eH

° hthZL‘o = h1$0 =9 = hiho € H
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s exg=x0=>e€H

= H is a group

Example: Let M = S%, G = SO(3) and choose xo = €,
= H = S0O(2) all rotation about z-axis keeping x fixed (stationary)

In general, let gxg = z, that is for all g = gh with h € H we have gzg = x.

That is, the set of all transformations mapping xo — z is represented by gH (left coset).
For each pair (z,x) exists a left coset gH such that gHxg = x

= The homogenous space M =~ set of all cosets

Notation: M = G/H :={gH|g € G} for homogenous spaces
is in general NOT a (factor) group as in general H is NOT a normal subgroup.

Recall:
e 5?2 =50(3)/50(2)
e 53 =2S50(4)/50(3)
e $3=SU(2) here H = {e} effective transformation group

Choice of xg:

Consider two different xg and Zg and let haxg = xq for all h € H.

Let gxo = & then ghg~ 4y = ghxo = gxg = o.

Hence the stationary subgroup for % is H := gHg ', H is conjugate to H

= M=G/H~G/H

homogenous space is uniquely defined by transitive G and one stationary subgroup H.

Invariant Measure on M:
Let gA := {gz|zr € A C M} arbitrary transformation of subset A in M
A measure p is called G-invariant measure on M if for all g € G and all A C M

n(A) = p(gA)
This implies for a u-measurable function f on M and all g € G
[ @) @) = [ duta) s(9)
M M

Connection with invariant Haar measure

/ du(z) f(x) = / dg f(gzo)
M=G/H G

In essence dg = du(x)dh.

3.4 Representations of Transformation Groups
Consider H = L?(G/H) being invariant under transformation, that is,
Y(x) €eH = Y(gr) € H Vge G
Unitary Representations in H
(D(9)¥) (z) = (g "x)

or

(xD(g)) = (g~ wlp) = (g x)

29



Representation:

(D(g1)D(g2)®) (x) = (g3 g1 "wlv)) = ¥((g192) ') = (D(g192)) ()

Unitarity: scalar product via G-invariant measure on G/H

($1lapm) = /G @) = /G dpu(z) (g7 a9~ 'x) = (D(g)n | D(g)ia)

/H
Comments:

e For H ={e} G~ M = D(g) is (left) regular represnetation

H= > &M  dj=dimH
all UIR j

e General Case

D(g)=) D), M=) H',  dimH =d =dimD’
LeA LeA

A: Set of all class 1 representations, appear with multiplicity 1 in H.

Known Example: H = L?(S?) = Z’He, dimH! =20 +1

(=0
H = span {|m)|m = —¢,... .0}, L.[tm) = m|fm) , L,= ?%
Spherical harmonics (6p|fm) = Yy, (0,0) = (—1)" (Qiil) (f;:;))!! P (cosf) e

Orthogonality relation: /
S

(Opll0) = %Pg(cos 6) independent of ¢, rotations about z-axis
DY(h)|60) = |£0) invariant under h € SO(2) C SO(3), rotations about z-axis

d2QY; (0,0)Ye m (0,0) = SpprOpmmr ,  d2Q = sin HdOde
2

3.4.1 Representations of class 1

Let H = L*(G/H), H' € H, H! irreducible invariant subspace with UIR D*(g)

Definition: Exists an invariant vector o) € HY, that is, D(h)|¢o) = |¢o) for all h € H,
then D(g) is called representation of class 1 (velative to H).

Definition: Exists for each class 1 representation ezact one invariant vector in H! then H
is called massiv subgroup.

Comment: |p) € H’ corresponds to zg € G/H with hag = o for all h € H.
Let us choose basis in H: {|0), [¢1),-- -, |¢d,-1)}

Representation matrices: DY, (g) := (©m|D*(9)]n)

In particular: For all h,hi, heo € H

Dy0(gh) = {#m|D*(gh)|wo) = Dio(9)
Dio(hy " gh2) = (0| D (hy " gh2)lwe) = Do(9)
Comment
e Associate spherical functions :< f(gh) = f(g)

e Zonal spherical functions < f(higha) = f(9g)
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Known Example: G = SO(3), M =52, &0, ) = gé.

Dio(9) = (em|D (9)l0) = \/ 5757 Yem (0, ©)

Dfy(g) = (vl D (9)0) = \/ 5725 Pelcos0)

Orthogonality of UIR matrix elements: continuous version

1
/ dg Dfnn(g)Dfr*(g) = 75€k6m85nr
G dy

*** Bnd of Lecture 3 ***
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