
2.3 Representations of an Abstract Group

Let V be a d-dimensional linear vector space (real or complex).
That is for u⃗, v⃗ ∈ V ⇒ u⃗+ v⃗ ∈ V and αv⃗ ∈ V , α ∈ R or C with

v⃗ + u⃗ = u⃗+ v⃗ α(βv⃗) = (αβ)v⃗

(v⃗ + u⃗) + w⃗ = v⃗ + (u⃗+ w⃗) 1v⃗ = v⃗, 0v⃗ = 0⃗, −1v⃗ = −v⃗

v⃗ + 0⃗ = v⃗ (α+ β)v⃗ = αv⃗ + βv⃗

v⃗ + (−v⃗) = 0⃗ α(v⃗ + u⃗) = αv⃗ + αu⃗

Let D : V → V be a linear invertible transformation (operator) acting on V

D(αu⃗+ βv⃗) = αDu⃗+ βDv⃗

Definition: A d-dimensional linear representation of a group G is a group homomorphism

D :
G → GL(V ) := group of linear invertible transformations acting on V
g 7→ D(g)

with group law
D(g1g2) = D(g1)D(g2)

Remarks:

� Usually for finite-dimensional reps GL(V ) = GL(d,C) set of linear complex-valued
d× d matrices

� d = ∞ is allowed, for example V = L2(R3) Hilbert space ⇒ GL(V ) is set of linear
operators acting on V

� V is called representation space

� Let {e⃗1, e⃗2, . . . , e⃗d} be complete orthonormal basis in V with scalar product

(e⃗i, e⃗j) = δij

Then
Dij(g) := (e⃗i,D(g)e⃗j)

are the matrix elements of the matrix representation D(g).
Often no difference is made between D(g) and D(g)

� Is D(g) linear operator ∀ g ∈ G ⇔: linear representation
Non-linear representations are also called realisations

� Exists a similarity transformation S such that

D̃(g) := S−1D(g)S ∀ g ∈ G

is also a representation of G, then D̃ and D are called equivalent representations
(change of basis).

� Notation: Dd(g) usually stands for a d-dimensional representation, {Di(g)} or {Di(g)}
stands for set of reps. enumerated by an index i. Known example for rotation group
is ℓ = 0, 1, 2, 3, . . . with dimension dℓ = 2ℓ+ 1.

Unitary representation:

D(g) unitary ∀ g ∈ G :⇔ (D(g)u⃗,D(g)v⃗) = (u⃗, v⃗) ∀ g ∈ G and ∀ u⃗, v⃗ ∈ V

⇒ D(g−1) = D†(g) = D−1(g)
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Faithful representation: Homomorphism is an isomorphism

g1 ̸= g2 ⇒ D(g1) ̸= D(g2)

Trivial representation: unitary but not faithful

Dtrivial(g) := 1 ∀ g ∈ G

Regular representation: G = {g1, g2, . . . , gn} finite

ggj =:
n∑

i=1

Dreg
ij (g)gi

Dreg(g) is an n× n matrix with a single 1 and rest zeros in each row and column
n-dimensional faithful representation (group table)

2.4 Representations of D3

Recall: D3 = {e, d, d2, s, sd, sd2}, d3 = e = s2, sd = d−1s

� D1
s(g) := 1 1-dimensional symmetric reps. = trivial reps.

� D1
a(g) 1-dimensional anti-symmetric reps. with

D1
a(g) :=

{
1 g ∈ {e, d, d2} = E

−1 g ∈ {s, sd, sd2} = D

� D2(g) 2-dimensional reps. explicitly constructed for generators d, s on R2

x

y

s

φ = 120◦

Obviously:

D2(e) =

(
1 0
0 1

)
D2(d) =

(
cos 120◦ − sin 120◦

sin 120◦ cos 120◦

)
=

(
−1

2 −
√
3
2√

3
2 −1

2

)
D2(s) =

(
1 0
0 −1

)
Proof:

D2(d2) = D2(d)D2(d) =

(
−1

2

√
3
2

−
√
3
2 −1

2

)
=
[
D2(d)

]†
= D2(d−1) unitary

D2(d3) = D2(d)D2(d)D2(d) = D2(e) =

(
1 0
0 1

)
D2(sd) = D2(s)D2(d) =

(
−1

2 −
√
3
2

−
√
3
2

1
2

)
= D2(d−1)D2(s) = D2(d−1s)
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D2(sd2) = D2(sd)D2(d) =

(
−1

2

√
3
2√

3
2

1
2

)
= D2(d−1)D2(d−1s) = D2(d−1)D2(s) =

D2(d−2s)
⇒ 2-dim. faithful and unitary reps.

Comment: 3 conjugacy classes ⇒ 3 unitary irreducible reps. (see later)

2.5 Properties of Representations for Finite Groups

Maschke’s Theorem:
Each representation of a finite group is equivalent to a unitary representation.

Proof: See Tutorial

Comment: Can be extended to continuous (uni-modular) groups with invariant Haar
measure. In physics we usually deal with unitary irreducible representations UIR.

Reducible Representation:
Let D(g) be a d-dimensional reps. in V , dimV = d.
If there exists an invariant subspace U ⊂ V with dimU < dimV , that is, with u⃗ ∈ U ⇒
D(g)u⃗ ∈ U for all g ∈ G, then the representation is called reducible.

The representation matrices are of the form

D(g) =

(
D1(g) R(g)

0 D2(g)

)
Irreducible Representation:
If there exists NO invariant subspace in V the representation is called irreducible.

Theorem:
Let D(g) be unitary and reducible with invariant subspace U . Then U⊥ is also invariant
subspace and V = U ⊕ U⊥. That is R(g) = 0 for unitary reducible reps.

Proof: Let u⃗ ∈ U and w⃗ ∈ U⊥ then for all g ∈ G D(g)u⃗ ∈ U
⇒ 0 = (D(g)u⃗, w⃗) = (u⃗,D†(g)w⃗) = (u⃗, D(g−1)w⃗) for all g ∈ G
⇒ (u⃗, D(g)w⃗) = 0 for all g ∈ G

Conclusion: Representation matrices of unitary reducible reps. are (in a proper basis) block-
diagonal

D(g) =

(
D1(g) 0

0 D2(g)

)
or D = D1 ⊕D2

Fully reducible representations:
Can the representation space of a reducible representation D be decomposed into invariant
irreducible subspaces then D is called fully reducible

D = r1D1 ⊕ r2D2 ⊕ · · · ⊕ rsDs

Here ri ∈ N denotes the multiplicity of occurrence of irr. reps. Di in D
The representation matrices are block-diagonal

D(g) =


D1(g) 0 · · ·

0 D1(g) 0
. . .

... 0 D2(g) 0
... 0

. . .


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Comments:
Unitary reps. are either irreducible or fully reducible.
All reps. of finite groups are either irreducible or fully reducible.

Example: The natural reps. of S3 = {e, a, b, c, d, f}
Recall:

e :=

(
1 2 3
1 2 3

)
, a :=

(
1 2 3
2 3 1

)
, b :=

(
1 2 3
3 1 2

)
,

c :=

(
1 2 3
1 3 2

)
, d :=

(
1 2 3
3 2 1

)
, f :=

(
1 2 3
2 1 3

)
.

Let {e⃗1, e⃗2, e⃗3, } be the natural basis of R3 and P :=

(
1 2 3
π1 π2 π3

)
then

Dnat(P ) :=
3∑

i=1

e⃗πi e⃗
T
i permutation of base vectors e⃗i → e⃗πi

Explicit

Dnat(e) =

 1 0 0
0 1 0
0 0 1

 , Dnat(a) =

 0 0 1
1 0 0
0 1 0

 , Dnat(b) =

 0 1 0
0 0 1
1 0 0

 ,

Dnat(c) =

 1 0 0
0 0 1
0 1 0

 , Dnat(d) =

 0 0 1
0 1 0
1 0 0

 , Dnat(f) =

 0 1 0
1 0 0
0 0 1

 ,

1-dim. invariant subspace: v⃗ := 1√
3
(e⃗1 + e⃗2 + e⃗3) obvious

2-dim. subspace orthogonal to v⃗:

u⃗1 :=
1√
2

 0
1

−1

 , u⃗2 := v⃗ × u⃗1 =
1√
6

 −2
1
1

 obvious

Change of basis:

S := (u⃗1, u⃗2, v⃗) =

 0 − 2√
6

1√
3

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

 obviously S†S = 1

Equivalent reps.:

D̃nat(a) := S†Dnat(a)S =

 −1
2 −

√
3
2 0√

3
2 −1

2 0

0 0 1

 = D2(d)⊕D1
s(d)

D̃nat(c) := S†Dnat(c)S =

 −1 0 0
0 1 0

0 0 1

 = D2(s)⊕D1
s(s)

Remember S3 ≃ D3 with a ≃ d and c ≃ s
Hence Dnat = D2 ⊕D1

s
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2.6 First and Second Schur Lemma

2.6.1 First Lemma

1. Schur Lemma:
Let D be an irreducible matrix representation of a group G in representation space V and
M be a matrix representing an operator in V such that

MD(g) = D(g)M ∀ g ∈ G

then
M = λ1 , λ = const.

That is, if M has G-symmetry then it is proportional to the unit matrix 1 in V .

Proof:
Let x⃗ ∈ V be eigenvector of M , Mx⃗ = λx⃗
⇒ x⃗g := D(g)x⃗ is also eigenvector with same eigenvalue for all g ∈ G as [M,D(g)] = 0
⇒ ∃Uλ ⊆ V such that D(g)Uλ = Uλ is invariant subspace for eigenvalue λ
But D is irreducible and therefore Uλ = V ⇒ M = λ1 in V

Comments:

� If the only matrix commuting with all D(g) is proportional to the unit matrix then
D is irreducible reps.

� All irreducible reps. of abelian groups are 1-dimensional
D irreducible ⇒ D(gi)D(g) = D(g)D(gi) for all g, gi ∈ G. So let M = D(gi) ⇒
D(gi) = λ1 and irreducible ⇒ 1-dimensional

� Unitary irreducible representations (UIR) of abelian groups are of the form

D(g) = eiα(g) , α :
G → [0, 2π[
g 7→ α(g)

with α(g1g2) = α(g1) + α(g2) mod 2π

2.6.2 Second Lemma

2. Schur Lemma:
Let D1 and D2 be non-equivalent UIR of dimension d1 and d2. Then any rectangular d1×d2
matrix M which obeys

MD1(g) = D2(g)M ∀ g ∈ G

is the null matrix
M = 0

Proof:
Consider adjoint equation D1†(g)M † = M †D2†(g) then
D1(g−1)M † = M †D2(g−1) ⇒ D1(g)M † = M †D2(g) for all g ∈ G
⇒ MD1(g)M † = D2(g)MM † = MM †D2(g)
1. Lemma ⇒ MM † = λ1

Case d1 = d2: Let detM ̸= 0, then there exist a M−1 such that D1(g) = M−1D2(g)M
⇒ D1 and D2 are equivalent, which contradicts assumption ⇒ detM = 0
⇒ detMM † = |λ|d2 = 0 ⇒ λ = 0 ⇒ MM † = 0 ⇒ M = 0

Case d1 < d2 (without loss of generality): Complete M to d2 × d2 matrix M̃ := (M |0) with

additional zero columns ⇒ M̃M̃ † = (M |0)
(

M †

0

)
= MM † = λ1 ⇒ M̃ = 0 ⇒ M = 0.
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Both Schur lemmata in a nut shell:
For UIR

MDi(g) = Dj(g)M ⇒ M = λ δij

with δij =

{
0
1

for
i ̸= j inequivalent reps.
i = j equivalent reps.

2.6.3 Application to Eigenvalue Problems

Let H be linear operator in V . For example: H = P⃗ 2/2m+ V (|Q⃗|), V = L2(R3).
LetD be unitary reducible reps ofG in V . For exampleG = SO(3), D(g(ω⃗)) = exp{−iω⃗·L⃗}.

We say H has G-symmetry if

[D(g), H] = 0 ∀ g ∈ G ⇔ D(g)H = HD(g)

Problem: Find eigenvalues and eigenvectors of H in V , |H − λ1| = 0.

Note: D is completely reducible

D(g) = c1D
1(g) + c2D

2(g) + . . .+ cnD
n(g) , n ≤ ∞

Di(g) : UIR of dimension di

ci : multiplicity of Di in D

Reduction of Problem:
With suitable basis in V the reps. matrix for D is block diagonal
Example: D(g) = 2D1(g) +D2(g)

D(g) =

 D1(g) 0 0
0 D1(g) 0

0 0 D2(g)

 Σ1

Σ2

Conglomerate: Σi inv. subspace of V containing all the UIR Di.
Write H in that basis

H =

 H
(1)
11 H

(1)
12 H

(12)
11

H
(1)
21 H

(1)
22 H

(12)
21

H
(21)
11 H

(21)
22 H

(2)
11

 Σ1

Σ2

In general:

H
(i)
lm = di × di matrix, lm element of a submatrix of H in Σi

l = m submatrix of H in subspace belonging to a fixed Di

l ̸= m overlap of m-th and l-th UIR Di, l and m ∈ {1, 2, . . . , ci}
H

(ij)
lm = di × dj matrix, overlap of l-th UIR Di with m-th UIR Di ̸= Dj

Symmetry of H: D(g)H = HD(g) for all g ∈ G

⇒

 Di(g)H
(i)
lm = H

(i)
lmDi(g)

1. SL⇒ H
(i)
lm = h

(i)
lm1di

Di(g)H
(ij)
lm = H

(ij)
lm Dj(g)

2. SL⇒ H
(ij)
lm = 0

In our example:

H =

 h
(1)
11 1d1 h

(1)
12 1d1 0

h
(1)
21 1d1 h

(1)
22 1d1 0

0 0 h
(2)
11 1d2


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In subspace Σi operator H consists of ci×ci blocks of dimension di being diagonal matrices.

In general with definition
(
H̃(i)

)
lm

:= h
(i)
lm ⇒ H̃(i) is ci × ci matrix

⇒ H =
n∑

i=1

(
H̃(i) × 1di

)
V =

n⊕
i=1

Vi , dimVi = cidi

In our example:

H =

(
H̃(1) × 1d1 0

0 H̃(2) × 1d2

)
with

H̃(1) =

(
h
(1)
11 h

(1)
12

h
(1)
21 h

(1)
22

)
, c1 = 2 and H̃(2) = h

(2)
11 , c2 = 1

Conclusion:
With a suitable basis (also within the subspaces Σi) the eigenvalue problem for H can be
reduced to n eigenvalue problems of the form∣∣∣H̃(i) − λ(i)1ci

∣∣∣ = 0

n = number of different UIR of symmetry of H occurring in V .

Comments:

� D(g) = cDtrivial(g), c = dimV only trivial representation
⇒ no symmetry ⇒ no simplification

� D(g) = Di(g) is already UIR ⇒ H = λ1, only one eigenvalue, problem solved

� Di appears only once in decomposition, that is, ci = 1, then invariant subspace Σi is
also eigenspace of H ⇒ degeneracy due to symmetry
Same eigenvalue may accidentally occur also in other subspaces
⇒ accidental degeneracy (usually a sign of an additional hidden symmetry)

Summary:

1. Choose suitable symmetry group and its representation in V
Aim is to have ci’s as small as possible ⇒ di as large as possible as dimV =

∑n
i=1 cidi

higher symmetry groups have higher-dim. UIR (Cn ⊂ Dn ⊂ Sn)
⇒ ”higher” simplification

2. Decompose representation into UIRs

3. Choose symmetry adopted basis in subspaces Σ

Know example from QM

H =
P⃗ 2

2m
+ V (|Q⃗|), V = L2(R3) = L2(R+)⊗ L2(S2)

L2(S2) =

∞⊕
l=0

Dl, dl = 2l + 1, cl = 1

D(g) = exp{−iω⃗ · L⃗} with [H,D(g)] = 0 for all g ∈ SO(3) as [H, L⃗] = 0⃗.

⇒ H =

∞∑
l=0

H l
r ⊗ 12l+1 with

H l
r = − ℏ2

2m
∂2
r +

ℏ2l(l + 1)

2m
+ V (r)
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in suitable basis

Ψl(r⃗) =
∞∑
l=0

rRl(r)
m∑

l=−m

Ylm(θ, φ)

Note ⟨θφ|lm⟩ = Ylm(θ, φ) and Dl =
m∑

m=−l

|lm⟩⟨lm|

An explicit example will be worked out in the Tutorial in Exercise 4.

2.7 Orthogonality of Representations and Characters

2.7.1 Orthogonality of UIR

Theorem: Let Di(g) and Dj(g) be matrices of two UIR of dimension di and dj for a group
G, g ∈ G. Then the following orthogonality relation of the matrix elements holds:

1

n

∑
g∈G

Di
µν(g)D

j ∗
ρσ(g) =

1

di
δijδµρδνσ ,

where n = ordG and

δij =

{
0
1

for
i ̸= j inequivalent reps.
i = j equivalent reps.

Proof: Consider
M :=

∑
g∈G

Di(g)XDj(g−1)

with X being an arbitrary di × dj matrix. Then for all g0 ∈ G

Di(g0)M =
∑
g∈G

Di(g0)D
i(g)XDj(g−1)Dj(g−1

0 )Dj(g0)

=
∑
g∈G

Di(g0g)XDj((gg0)
−1)Dj(g0)

= MDj(g0)

and therefore M = λ1δij , see 1. and 2. Schur lemma. On the other hand we have

Mµρ =
∑
g∈G

∑
r,s

Di
µr(g)XrsD

j
sρ(g

−1)

Let us choose Xrs = δrνδsσ then

Mµρ =
∑
g∈G

Di
µν(g)D

j
σρ(g

−1) = λδµρδij

Now we calculated λ for i = j by setting µ = ρ and sum over µ.

λ di =
∑
g

di∑
µ=1

Di
µν(g)D

i
σµ(g

−1) =
∑
g

Di
σν(

=e︷︸︸︷
g−1g)︸ ︷︷ ︸

δσν

= nδσν

Hence, λ = n
di
δσν and we conclude

1

n

∑
g∈G

Di
µν(g)D

j
σρ(g

−1) =
1

di
δijδµρδνσ (I)
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Comments:

� (I) is valid for irreducible reps not necessarily unitary

� For unitary reps follows Dj
σρ(g−1) = Dj ∗

ρσ(g) and proof is completed

� Extension to compact groups obvious

1

n

∑
g

(·) ⇒
∫
G
dg (·)

� With proper interpretation also to non-compact uni-modular groups having di = ∞
for UIR.

Examples

� G = U(1) then Dm(g) = eimφ, dm = 1, m ∈ Z, g = g(φ)∫
U(1)

dg Dm(g)Dn ∗(g) =

∫ 2π

0

dφ

2π
eimφe−inφ = δmn

� G = T 1 then Dk(g) = e−ikx, k ∈ R, g = g(x), x ∈ R (see homework)∫
T 1

dg Dk(g)Dk′ ∗(g) =

∫ +∞

−∞

dx

2π
e−ikxe−k′x = δ(k − k′)

2.7.2 Abstract harmonic analysis

Consider finite group G = {g1, g2, . . . , gn}, n = ordG and a well-defined function

f :
G → C
g 7→ f(g)

Let
f⃗ := (f(g1), f(g2), . . . , f(gn))

be element of vector space V ≃ Cn with scalar product

⟨⃗h, f⃗⟩ := 1

n

∑
n∈G

h∗(g)f(g) ,

then for an arbitrary UIR

e⃗ i
µν :=

√
di
(
Di

µν(g1), D
i
µν(g2), . . . , D

i
µν(gn)

)T
obeys

⟨e⃗ j
ρσ, e⃗

i
µν⟩ =

√
didj

n

∑
g∈G

Dj ∗
ρσ(g)D

i
µν(g) = δijδµρδνρ .

That is, it forms a (complete) orthonormal set in V .

Comment: For a fixed i there exist d2i linearly independent unit vectors ⇒
∑

i d
2
i ≤ n. In

other words, for finite groups there exist only a finite number of UIR.

Theorem of Burnside: ∑
all UIR

d2i = n

Proof: Later

Conclusion: {e⃗ i
µν} forms a complete set in V ≃ Cn

f⃗ =
∑
i, µ, ν

di

〈
1√
di
e⃗ i
µν , f⃗

〉
1√
di
e⃗ i
µν
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with

f̃ i
νµ :=

〈
1√
di
e⃗ i
µν , f⃗

〉
=

1

n

∑
g

Di ∗
µν(g)f(g) =

1

n

∑
g

Di
νµ(g

−1)f(g) .

Or for a fixed component f(g) of f⃗

f(g) =
∑

all UIR i

di

di∑
µ,ν=1

f̃ i
νµD

i
µν(g)

f̃ i
νµ =

1

n

∑
g∈G

f(g)Di
νµ(g

−1)

Above decomposition is called abstract Fourier or harmonic analysis.

Peter-Weyl-Theorem:

f(g) =
∑

all UIR i

diTr
(
f̃ iDi(g)

)
f̃ i =

1

n

∑
g∈G

f(g)Di(g−1)

Comments:

� Parseval equation (without proof)

1

n

∑
g∈G

|f(g)|2 =
∑

all UIR i

di∑
µ,ν=1

di|f̃ i
νµ|2

� Extension to compact groups and with proper interpretation even to uni-modular
groups possible

Examples:

� G = Z2: See Homework Problem 1

� G = U(1): Fourier series

f(φ) =
∑
m∈Z

f̃me−imφ , f̃m =
1

2π

∫ 2π

0
dφf(φ)eimφ

� G = T 1: Fourier analysis

f(x) =

∫
R
dk f̃(k)e−ikx , f̃(k) =

1

2π

∫
R
dx f(x)eikx

*** End of Lecture 2 ***
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