2.3 Representations of an Abstract Group

Let V be a d-dimensional linear vector space (real or complex).
That is for 4, 7€V = d+v7 €V and av € V, a € R or C with

THd=d+7v a(B0) = (af)v
(T+ @) + 0 =0+ (@ + @) 17=7,00=0, 17 = -7
T+0="70 (a+ )T = at + B7
T+ (—0)=0 T+ 1) = a¥ + o

Let D:V — V be a linear invertible transformation (operator) acting on V
D(ail + pv) = aDii + DY
Definition: A d-dimensional linear representation of a group G is a group homomorphism

G = GL(V) := group of linear invertible transformations acting on V'
- 9= D(g)

with group law
D(g9192) = D(91)D(g2)

Remarks:

e Usually for finite-dimensional reps GL(V) = GL(d,C) set of linear complex-valued
d x d matrices

e d = ¢ is allowed, for example V = L?(R3) Hilbert space = GL(V) is set of linear
operators acting on V'

e V is called representation space
o Let {€1,€a,...,€E4} be complete orthonormal basis in V' with scalar product
(€3, €5) = dij
Then
Dij(g) == (€, D(9)€;)

are the matrix elements of the matriz representation D(g).
Often no difference is made between D(g) and D(g)

e Is D(g) linear operator Vg € G < linear representation
Non-linear representations are also called realisations

e Exists a similarity transformation S such that
D(g) :=S"'D(g)S Vge G

is also a representation of G, then D and D are called equivalent representations
(change of basis).

e Notation: D%(g) usually stands for a d-dimensional representation, {D;(g)} or {D¥(g)}
stands for set of reps. enumerated by an index i. Known example for rotation group
isf=0,1,2,3,... with dimension d, = 2/ + 1.

Unitary representation:
D(g) unitary Vg € G & (D(g9)u, D(g)7) = (u,9) Vg € Gand Vu,v €V

= D(g7') = D'(g) = D"\(g)
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Faithful representation: Homomorphism is an isomorphism

g1 # 92 = D(g1) # D(g2)

Trivial representation: unitary but not faithful

Dtrivial(g) —1 Vg eq

Regular representation: G = {g1, g2, ..., g, } finite
n
99; =: Y _ Dij*(9)gi
i=1

Dr®&(g) is an n x n matrix with a single 1 and rest zeros in each row and column
n-dimensional faithful representation (group table)

2.4 Representations of Dy

Recall: D3 = {e,d,d?, s, sd,sd*}, d® =e = s?, sd =d s
e Di(g):=1 1-dimensional symmetric reps. = trivial reps.
e Dl(g) 1-dimensional anti-symmetric reps. with

1 I 1 ge{evd7d2}:E
Dalg) := { ~1 g€ {s,sd,sd*} =D

e D?(g) 2-dimensional reps. explicitly constructed for generators d, s on R?

© = 120°

SN
:

Obviously:

w0} 9)

9, n [ €cos120° —sin120° \
D(d) = ( sin120°  cos120° )

D(s) = < i >

Proof: L ox
D2(d?) = D2(d)D?(d) = ( Z 7 > — [D*(d)]" = D2(d~!) unitary
2 T2

S
| |
rol— w‘%
~_—

D*(d*) = D*(d)D?*(d)D?*(d) = D?(e) =

D?(sd) = D?(s)D2(d) = (



D?*(sd?) = D?*(sd)D?*(d) = (

o |

‘aw\)—l
S5

NI—=

D?*(d2s)
= 2-dim. faithful and unitary reps.

Comment: 3 conjugacy classes = 3 unitary irreducible reps. (see later)

2.5 Properties of Representations for Finite Groups

Maschke’s Theorem:

Each representation of a finite group is equivalent to a unitary representation.
Proof: See Tutorial

Comment: Can be extended to continuous (uni-modular) groups with invariant Haar
measure. In physics we usually deal with unitary irreducible representations UIR.

Reducible Representation:

Let D(g) be a d-dimensional reps. in V, dim V' = d.

If there exists an invariant subspace U C V with dimU < dim V/, that is, with « € U =
D(g)i € U for all g € G, then the representation is called reducible.

The representation matrices are of the form

_( Dilg) | R(y)
Dig) = ( 0 ‘ Ds(g) )

Irreducible Representation:
If there exists NO invariant subspace in V' the representation is called irreducible.

Theorem:
Let D(g) be unitary and reducible with invariant subspace U. Then U+ is also invariant
subspace and V = U @ U+. That is R(g) = 0 for unitary reducible reps.

Proof: Let i € U and w € U+ then for all g € G D(g)ii € U

= 0= (D(g)i, @) = (@, D}(g)i) = (&, D(g~")i#) for all g € G

= (i, D(g)wW) =0 for all g € G

Conclusion: Representation matrices of unitary reducible reps. are (in a proper basis) block-
diagonal

_(Dilg)| O _
D(g) = < 10 50 > or D =Dy® Dy

Fully reducible representations:
Can the representation space of a reducible representation D be decomposed into invariant
irreducible subspaces then D is called fully reducible

D=riDi®roDs® - -PrsDyg

Here r; € N denotes the multiplicity of occurrence of irr. reps. D; in D
The representation matrices are block-diagonal

Di(g)| O
0 D1 (g) 0
D(g) = ) o | Dyt | 0
: 0
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Comments:
Unitary reps. are either irreducible or fully reducible.
All reps. of finite groups are either irreducible or fully reducible.

Example: The natural reps. of S3 = {e,a,b,c,d, f}
Recall:

3
2 Y

o
Il
N
==
N DO
w W
~_
IS
Il
7 N
[N
w N
—_ W
~
o
Il
N
LW =
=N

(123 (12 3 po(123
1 3 2)” “\3 2 1) 21 3 )"
o o S . 3 1 3
Let {é1, €3, €3, } be the natural basis of R® and P := - then
1
3
Dnat Zé’ é’ permutation of base vectors €; = €r,
Explicit
1 00 0 01 0 1
D" (e) = 1 : D™ (@)= 1 0 0 |, D™ () =1 0
0 01 010 10
10 0 01 0
D™ (c)=10 0 1 |, D™ d)y=10 1 0 |, D™ (fy=| 1
0 1 100 0
1-dim. invariant subspace: ¢ := %("1 + & + €3) obvious
2-dim. subspace orthogonal to ¥
Uy = — , =UXU = — obvious
1 G X 2 1 76 X
Change of basis:
0 —-=2 L
U
S = (U1, U2, V) = R E obviously STS =1
1 T 1
V2 V6 VB
Equivalent reps.:
_1 V3]
~ 2 2
D"(a) := STD"™(a)S=| ¥ —Ll]o | =D%d) @ Dld)
0 01
) -1 0|0
Drat(¢) := STD(¢)S = 0 1[0 | =D%(s)®DL(s)
0 01

Remember S35 ~ D3 with a ~¥d and ¢~ s
Hence D" = D? @ D!
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2.6 First and Second Schur Lemma
2.6.1 First Lemma

1. Schur Lemma:
Let D be an irreducible matrix representation of a group G in representation space V and
M be a matrix representing an operator in V' such that

MD(g) =D(g9)M VgeG

then
M=A1, A = const.

That is, if M has G-symmetry then it is proportional to the unit matrix 1 in V.

Proof:
Let £ € V be eigenvector of M, MZ = A%
= &4 := D(g)Z is also eigenvector with same eigenvalue for all g € G as [M,D(g)] =0

= U, C V such that D(g)Uy = U, is invariant subspace for eigenvalue A
But D is irreducible and therefore Uy =V = M = X1 in V

Comments:

e If the only matrix commuting with all D(g) is proportional to the unit matrix then
D is irreducible reps.

e All irreducible reps. of abelian groups are 1-dimensional
D irreducible = D(g;)D(g) = D(g9)D(g;) for all g,g; € G. So let M = D(g;) =
D(g;) = A1 and irreducible = 1-dimensional

e Unitary irreducible representations (UIR) of abelian groups are of the form

D(g) = ',

2
a: G=[0 )W[ with a(g192) = a(g1) + a(g2) mod 27

g alg

2.6.2 Second Lemma

2. Schur Lemma:
Let D! and D? be non-equivalent UIR of dimension d; and dy. Then any rectangular dy x do
matrix M which obeys

MD'(g)=D*(g9)M  Vgedq

is the null matrix

M=0

Proof:

Consider adjoint equation DlJr(g)MT = MTDQT(g) then

DY (g~ YMT = MTD?(g71) = DY (g)M' = MTD?(g) for all g € G
= MD'(g)MT = D?>(g)M Mt = MMt D?(g)

1. Lemma = MMT = \1

Case dy = dy: Let det M # 0, then there exist a M ! such that D!(g) = M~1D?(g)M
= D! and D? are equivalent, which contradicts assumption = det M = 0
=det MMT=N2=0=A=0=> MM =0=M=0

Case dy < dy (without loss of generality): Complete M to dy X dy matrix M := (M|0) with

-~ T ~
additional zero columns = MM = (M|0) < ]\g > =MM'=X=>M=0=M=0.
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Both Schur lemmata in a nut shell:
For UIR

MDY (g)=DIi(g)M = M=\

with 8ij = 0 for Z #* j 1nequ1valent reps.
1 1 = j equivalent reps.

2.6.3 Application to Eigenvalue Problems

Let H be linear operator in V. For example: H = P2/2m + V(|Q]), V = L%(R3).
Let D be unitary reducible reps of G in V. For example G = SO(3), D(g(&)) = exp{—id-L}.

We say H has G-symmetry if

[D(9),H]=0 VgeG &  D(g)H =HD(g)
Problem: Find eigenvalues and eigenvectors of H in V, |H — A1| = 0.
Note: D is completely reducible
D(g) =1 D' (g) + ca D*(g) +... +ca D"(9), n< o0
Di(g) : UIR of dimension d;
¢ : multiplicity of D? in D

Reduction of Problem:
With suitable basis in V' the reps. matrix for D is block diagonal
Example: D(g) =2 D(g) + D?*(g)

Dl(g) 0 0 L
D)= 0o Dig| o |*
0 0 [D*g) ) 2

Conglomerate: ¥ inv. subspace of V containing all the UIR D*.
Write H in that basis

1 1 12
i IEAE
1= H(2211) H(2221) H2(12)

Hyy" Hy, ‘ Hy 2

In general:
H 1(2 = d; x d; matrix, Im element of a submatrix of H in X

| = m submatrix of H in subspace belonging to a fixed D’
I # m overlap of m-th and I-th UIR D%, [ and m € {1,2,...,¢}

H'"D = d; x d; matrix, overlap of I-th UIR D' with m-th UIR D' # DJ

im
Symmetry of H: D(9)H = HD(g) for all g € G

m Ilm ilm

; ij i) i 2. L ij
D (Q)Hz(nz) = Hz(ni)D”(g) = Hz(nz) =0

In our example:
V1, w1, | 0
H=| n{M1g 14| 0
0 0 [ nP1,
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In subspace ¢ operator H consists of ¢; x ¢; blocks of dimension d; being diagonal matrices.
In general with definition (ﬁl(i))l = hl(:?)L = H® is ¢; X ¢; matrix
m

N H:i(m)mdi) V:ém, dimV; = ¢;d;
i=1 =1

In our example:

ADx1, | 0
H = 1
( 0 | H® x 1, >
with 0 0
@ = huy P , €1 =2 and H® = h(Q) , cp=1
nsy sy "
Conclusion:

With a suitable basis (also within the subspaces ¥¢) the eigenvalue problem for H can be
reduced to n eigenvalue problems of the form

‘ A )01, =0

n = number of different UIR of symmetry of H occurring in V.

Comments:

e D(g) = cD"Vial(g) ¢ =dimV only trivial representation
= no symmetry = no simplification

e D(g) = D(g) is already UIR = H = A1, only one eigenvalue, problem solved

e D' appears only once in decomposition, that is, ¢; = 1, then invariant subspace X¢ is
also eigenspace of H = degeneracy due to symmetry
Same eigenvalue may accidentally occur also in other subspaces
= accidental degeneracy (usually a sign of an additional hidden symmetry)

Summary:

1. Choose suitable symmetry group and its representation in V'
Aim is to have ¢;’s as small as possible = d; as large as possible as dimV = Y7 | ¢;d;
higher symmetry groups have higher-dim. UIR (C,, C D,, C Sy,)
= "higher” simplification

2. Decompose representation into UIRs
3. Choose symmetry adopted basis in subspaces ¥
Know example from QM

7= va. v = @) = PED e ()

o
() =@PD d=2+1¢=1
=0
D(g) = exp{—i@ - L} with [H, D(g)] = 0 for all g € SO(3) as [H, L] = 0.

= H=> H ®1ly. with

=0
B2+ 1)
T 2m T 2m + V(T)
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in suitable basis

W) = S rRi() Y Yim(6,9)
=0 l=—m
Note (Bp|lm) = Y, (0, ¢) and D! = Z |lm) (Im|
m=—1

An explicit example will be worked out in the Tutorial in Exercise 4.

2.7 Orthogonality of Representations and Characters
2.7.1 Orthogonality of UIR

Theorem: Let D'(g) and D?(g) be matrices of two UIR of dimension d; and d; for a group
G, g € G. Then the following orthogonality relation of the matrix elements holds:

1
" Z Dy (9)D}5(9) = = 0i30updus |
gEG ¢

where n = ord G and

0 i # j inequivalent reps.
51’]' = for . . .
1 i = j equivalent reps.

Proof: Consider
M:=> Di(9)XDi(g")
geG
with X being an arbitrary d; x d; matrix. Then for all go € G

=Y D'(go)D'(g) X D (g7 ") D (g5 ") DY (g0)
geG

=Y D'(g09) X D’((g90) ") D7 (g0)
geG )
= MD(go)
and therefore M = X 16;;, see 1. and 2. Schur lemma. On the other hand we have
M= "Di(9) Xrs Di,(g7")
geG s
Let us choose X,s = 6,,05, then
M, = Z wa(g) Dgp(gfl) = Adpp0ij
geG

Now we calculated A for ¢ = j by setting 4 = p and sum over pu.

_e

d;
Adi =YY "Di,(9)Di,g ZDW 97'g) = ndoy

=1
g p 601/

Hence, \ = —60,, and we conclude

1 : — 1
E Z D;Zy(g)Dgp(g 1) = dii(sij(s,up(sua (I)

geG
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Comments:
e (I) is valid for irreducible reps not necessarily unitary
e For unitary reps follows Df;p(g_l) = D{;; (g) and proof is completed

e Extension to compact groups obvious
1
=3 ()= [ dg()
n P G

e With proper interpretation also to non-compact uni-modular groups having d; = oo
for UIR.

Examples
o G =U(1) then D™(g) = ™, d,, =1, m € Z, g = g()

27 do .
| agpm@po) = [ et =,
U(1) 0 T

e G =T' then D¥(g) = etk L eR g= g(x), x € R (see homework)

k K’ x oo du —ikz —k'z /
dg D*(g)D" *(g) = e e "t =4(k—K)
T1 —c0 271'

2.7.2 Abstract harmonic analysis
Consider finite group G = {g1,92,...,9n}, n = ord G and a well-defined function

G—C

I g 1)

Let .
= (f(gl)7 f<92)7 s 7f(gn))

be element of vector space V ~ C™ with scalar product

(h, f) = Z h* (g
nGG

then for an arbitrary UIR

&, = \/d; (D (91), Dl (g2)s -, Di(gn))

obeys

— —»z \/ dzd K3 i
(e =) DI (9) D (9) = Gi0uoduy -

€po> /w
geG

That is, it forms a (complete) orthonormal set in V.

Comment: For a fixed i there exist d? linearly independent unit vectors =, df <n.In
other words, for finite groups there exist only a finite number of UIR.

Z d?:n

all UIR

Theorem of Burnside:

Proof: Later

Conclusion: {¢’,} forms a complete set in V ~ C"

I Sl )

LU,V
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with

Fowim (e F) = 2 S DI @) = Y Dluta™ 1)

g g

Or for a fixed component f(g) of f

flop = Y d Z fo Dy (9)

all UIR ¢ p,v=1

L

geqG

Above decomposition is called abstract Fourier or harmonic analysis.

Peter-Weyl-Theorem:

fo) = 3 dmr (f1Di(g))
all UIR ¢

fio= %Zf(g)Di(g‘l)
geG

Comments:
e Parseval equation (without proof)

d;
LSO DI SR

geG all UIR i p,v=1

e Extension to compact groups and with proper interpretation even to uni-modular
groups possible

Examples:
e (G = Zy: See Homework Problem 1
e G =U(1): Fourier series
27

p) =3 fretime fm= L [T ap p(ppeme

2
MEZL 0

e G =T"': Fourier analysis

f@) = [akfe f) = 5 [ de e

*** Tnd of Lecture 2 ***
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