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Dates:
Five Mondays 28.04.25, 05.05.25, 12.05.25, 19.05.25, 26.05.22, 02.06.25
Lecture 9 - 12, Tutorial 14 - 16, Homework Problems
Test TBD
Script and other details are available on StudOn and at
https://www.eso.org/~gjunker/VorlesungSS2025.html

Literature:
Any group theory textbook will cover most of the topics. Some elementary ones are

� W. Lucha and F.F. Schöberl, Gruppentheorie (BI, 1993)

� H.F. Jones, Groups, Representations and Physics 2nd Ed. (Taylor & Francis,1998)

� E. Stiefel and A. Fässler, Gruppentheoretische Methoden und ihre Anwendung (Teuber,
1979)

� ...

Group theory:
Is the mathematical tool to describe symmetries, for example, in physical systems. Thus
group theory and the closely related representation theory have many important applica-
tions in physics, chemistry, and materials science.

Aim of lecture:
Present the basic concepts of group theory enabling us to utilise symmetries of physical
systems to analyse their properties.
Here focus on quantum mechanics and statistical physics.
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1 Basic Terms and Definitions

1.1 Definition of an Abstract Group

Definition: A group G, or better (G, ◦), is a set of elements (finite or infinite in number),

G = {g1, g2, . . .} or G = {g(α)|α ∈ I}, I = index set

with a composition law (group multiplication)

◦ :
G×G → G
(g1, g2) 7→ g1 ◦ g2

satisfying below conditions

1. Associative Law:
g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 = g1 ◦ g2 ◦ g3

2. Unit Element: ∃ e ∈ G such that

e ◦ g = g ◦ e = g ∀ g ∈ G

3. Inverse Element: ∀ g ∈ G ∃ g−1 ∈ G such that

g−1 ◦ g = e = g ◦ g−1

Remarks:

� In general g1 ◦ g2 ̸= g2 ◦ g1, that is, the group multiplication is
not commutative ⇔: non-abelian group

� Abelian group :⇔ g1 ◦ g2 = g2 ◦ g1 ∀ g1, g2 ∈ G

� Order of a group: Number of (inequivalent) elements

g = {g1, g2, . . . , gn} ⇒ ordG = n

� Finite group :⇔ ordG < ∞

� Discrete group: Countable infinite number of elements

� Continuous group uncountable number of elements

g = g(α) , α ∈ I index set

Conclusions from definition:

� g1 ◦ g = g2 ◦ g ⇒ g1 = g2

� g ◦ g1 = g ◦ g2 ⇒ g1 = g2

� e and g−1 are unique

� (g−1)−1 = g (g1 ◦ g2)−1 = g−1
2 ◦ g−1

1

� g1 ◦ g = g2 and g ◦ g1 = g2 have solutions g = g−1
1 ◦ g2 and g = g2 ◦ g−1

1 , respectively.

Notation: From now on

g1 ◦ g2 = g1g2 g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
n−times

=: gn
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Examples:

Abelian Groups

� Trivial group: E = {e}, ordE = 1

� Reflexion group: C2 = {e, σ} with σ2 = e, ordC2 = 2

� Zn = {0, 1, 2, . . . , n− 1}, ◦ = addition mod n, ordZn = n

� (Z,+) and (R+, ·), both are of infinite order

� Rotation in plane by angle φ ∈ I = [0, 2π[

x

y

φ

Non-abelian Groups

� GL(n,K) : Set of invertible n× n matrices over field K, ◦ = matrix multiplication

� Sn : Group of permutations of n objects, ordSn = n!

1.2 Group Structures

1.2.1 Subgroups

Definition: A subset H ⊂ G is called a subgroup of G if the group multiplication of G
restricted on the subset H is closed, i.e. ◦ : H ×H → H

• ({e}, ◦) and (G, ◦) are trivial subgroups
• Non-trivial subgroups ⇔: proper subgroups

1.2.2 Conjugation and Conjugacy Classes

Definition: Two elements g1, g2 ∈ G are conjugate to each other if

∃ g ∈ G such that g1 = g g2 g
−1

Conjugation is transitive:
g1 = g g2 g

−1

g2 = h g3 h
−1 ⇒ g3 = k g1 k

−1

Proof: g3 = h−1 g2 h = h−1g−1 g1 gh = k g1 k
−1 with k = (gh)−1

Definition: The set of all conjugate elements is called conjugacy class or simply class

Remarks:

� A class is uniquely defined by one of its elements say a

{g1ag−1
1 , g2ag

−1
2 , . . . , gnag

−1
n } for ordG = n

� {e} is a class by itself

� Each element g ∈ G belongs exactly to one class ⇒ disjunct partition of G

� For abelian groups each element forms its own class. Why?
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Definition: The order of a group element is the smallest integer m ∈ N such that gm = e.

Remarks:

� All elements within one class have the same order

gm = e ⇒ (gigg
−1
i )m = gig · · · gg−1

i = gig
mg−1

i = e

� Let G be a matrix group ⇒ Tr (gigg
−1
i ) = Tr g ⇒ the trace is constant on a class

� Functions that are constant for members of the same conjugacy class are called class
functions.

1.2.3 Normal Subgroups (Invariant Subgroups, Self-conjugate Subgroups)

Definition: A subgroup N ⊂ G is called normal subgroup (or invariant subgroup or self-
conjugate subgroup) if

∀n ∈ N and ∀ g ∈ G ⇒ gng−1 ∈ N

In short
gNg−1 = N ∀ g ∈ G

Remarks:

� Normal subgroups consist of classes

� Simple group:All its normal subgroups are trivial

� Semi-Simple group: All its normal subgroups are abelian

1.2.4 Cosets

Let H ⊂ G be a subgroup of G and g ∈ G a fixed group element

Left coset: gH := {gh|h ∈ H}, mainly used with terminology coset

Right coset: Hg := {hg|h ∈ H}

Left and Right cosets are disjoint partitions of G

In general Hg ̸= gH

Index of H: Number of left cosets = k = Number of right cosets

Lagrange’s Theorem:

ordH =
1

k
ordG , where k ∈ N is the index of H

Proof: Disjoint partition G = {H, g1H, . . . , gk−1H} and ord (giH) = ordH

Remark: Hg = gH ∀ g ∈ G ⇔ H is normal subgroup

1.2.5 Quotient Group

Let N ⊂ G be normal subgroup of G with index k.

F := {N, g1N, g2N, . . . , gk−1N}

is disjunct partition of G into cosets with respect to N .
Notation: F = G/N is quotient group with ordF = k
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Proof of group properties:

� Group multiplication:

(g1N)(g2N) = g1Ng2N = g1g2g
−1
2 Ng2N = g1g2NN = g3N ∈ F

� Neutral element:

gN ◦N = gN , N ◦ gN = NgN = gg−1NgN = gNN = gN

� Inverse element:

g−1N ◦ gN = NN = N , gN ◦ g−1N = gNg−1N = N

1.3 Group Morphisms

Group homomorphism: Let (G, ◦) and (G′, ⋆) be two groups. Then the mapping

Φ :
G → G′

g 7→ Φ(g)
with Φ(g1) ⋆ Φ(g2) = Φ(g1 ◦ g2)

is a group homomorphism. In general the mapping is not reversible.

Group isomorphism: A homomorphism with bijective mapping Φ, that is,

g1 ̸= g2 ⇒ Φ(g1) ̸= Φ(g2) , reversible ,

∃Φ−1 :
G′ → G
Φ(g) 7→ g

Isomorphic groups:

G1 ≃ G2 :⇔ ∃ Isomorphism Φ : G1 → G2

Isomorphic groups are in essence identical.
Example: SO(2) ≃ U(1), rotation in plane ≃ multiplication of complex number by eiϕ

Automorphism: Isomorphism G → G

Inner Automorphism:

Φh :
G → G
g 7→ Φh(g) := hgh−1 h ∈ G fixed, conjugation

Outer Automorphism: all automorphism being not an inner automorphism
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2 Finite Groups and Representations

2.1 Examples of Finite Groups and Properties

2.1.1 The cylclic group Cn

Symmetry group of rotations of a regular polygon with n directed sides

d

φ = 2π
n

Cn := {e, d, d2, . . . , dn−1} with dn = e

Generator: d := rotation by angle φ = 2π
n

Generating set of a group: Set of group elements (generators) which allows to generate all
group elements via products and inverses. In general this set is not unique.

Cn is abelian and isomorphic to Zn (under addition of integers mod n):

Cn ≃ Zn as drds = dr+s with r + s = (r + s)modn , ordCn = n

2.1.2 The dihedral group Dn (Diedergruppe)

Group of n rotations d and reflection s keeping a regular n-polygon invariant

d

s

Example D8 : rotations (1st line) and reflections (2nd line)

Generating set: {d, s} with d = rotation by φ = 2π
n and s = reflection on fixed axis

Dn := {e, d, d2, . . . , dn−1, s, sd, . . . , sdn−1} with dn = e = s2 , d−ks = sdk , dks =
sd−k

s

s s

d−k

dk

ordDn = 2n

Subgroup Cn ⊂ Dn

Dn is NOT abelian for n > 2 as d−1s = sd ̸= sd−1
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2.1.3 The permutation group Sn

Group of permuations of n objects
ordSn = n!
General element: Object j → πj , where πj ∈ {1, 2, . . . , n} and πj ̸= πk for j ̸= k

P =

(
1 2 · · · n
π1 π2 · · · πn

)
Neutral element:

e =

(
1 2 · · · n
1 2 · · · n

)
Inverse element:

P−1 =

(
π1 π2 · · · πn
1 2 · · · n

)
Group multiplication: successive permutation

Example:

(
1 2 3
1 3 2

)(
1 2 3
3 1 2

)
=

(
1 2 3
2 1 3

)

Proof:
1 → 3 → 2
2 → 1 → 1
3 → 2 → 3

But:

(
1 2 3
3 1 2

)(
1 2 3
1 3 2

)
=

(
1 2 3
3 2 1

)
⇒ Sn is NOT abelian for n ≥ 3

Exercise: Show that S2 ≃ C2

More on permutation group in Tutorial Exercise 1

2.2 Cayley or Group Tables

2.2.1 Definition

G g1 g2 · · · gi · · · gn
g1 g21 g1g2 · · · g1gi · · · g1gn
g2 g2g1 g22 · · · g2gi · · · g2gn
...

. . .

gi gig1 gig2 · · · g2i · · · gign
...

. . .

gn gng1 gng2 · · · g2n

Remarks:

� Useful only for finite groups of low order n

� G abelian ⇔ group table is symmetric as gigj = gjgi

� Isomorphic groups have identical tables

Examples:

C2 e d

e e d
d d e

recall d2 = e
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C3 e d d2

e e d d2

d d d2 e
d2 d2 e d

recall d3 = e

2.2.2 Cayley’s theorem

Theorem: Every finite group G of order n is a subgroup of Sn

Proof: Obvious as each row in group table corresponds to a rearrangement of group elements.

{gg1, gg2, . . . , ggn} =: {gπ1 , gπ2 , . . . , gπn}

⇒ g → P (g) =

(
1 2 · · · n
π1 π2 · · · πn

)
Corollary: Each row in the group table contains each element of G exactly once.

Also known as rearrangement theorem.

Remarks:

� Number of different (non-isomorphic) groups of order n is finite

� There exists only ONE group of order 2, the reflection group S2 ≃ C2 ≃ Z2

� S3 ≃ D3 (obvious as ordS3 = 6 = ordD3) has only ONE subgroup of order 3 isomor-
phic to C3 ⇒ There exists only ONE group of order 3.

� S4 has two subgroups of order 4: {C4, D2}

� Group summation:∑
g∈G

f(g) =
∑
g∈G

f(gh) =
∑
g∈G

f(hg) =
∑
g∈G

f(g−1)

Is valid for all finite groups.
Extension to continuous (unimodular) groups via invariant Haar measure possible.

� Group average: As
∑
g∈G

1 = ordG

⟨·⟩G :=
1

ordG

∑
g∈G

(·)

2.2.3 Klein’s four group (Kleinsche Vierergruppe V = D2)

Recall: D2 = {e, d, s, ds} with d2 = e = s2, d = d−1, s = s−1, ds = sd abelian

D2 e d s sd

e e d s sd
d d e sd s
s s sd e d
sd sd s d e

Remarks:

� E = {e} is trivial subgroup

� e on diagonal ⇔ each element is its inverse

� To each e on diagonal exists a subgroup of order 2.
{e, d}, {e, s} and {e, sd} are normal subgroups isomorphic to C2

� Factor group D2/C2 = C2 or D2 = C2 ⊗ C2 (direct product of groups in Tutorial)

� Other representation: {1, 3, 5, 7} with group law being multiplication modulo 8
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2.2.4 The D3 group

Recall: D2 = {e, d, d2, s, ds, sd2} with d3 = e = s2, ds = sd−1 = sd2, d2s = sd−2 = sd

D3 e d d2 s sd sd2

e e d d2 sd sd sd2

d d d2 e sd2 s sd

d2 d2 e d sd sd2 s

s s sd sd2 e d d2

sd sd sd2 s d2 e d

sd2 sd2 s sd d d2 e

Remarks:

� Subgroups: C3 ⊂ D3, H1 := {e, s}, H2 := {e, sd}, H3 := {e, sd2} with Hi ≃ C2

� Cosets: ordD3 = 6, ordC3 = 3, ordC2 = 2
Lagrange: Index C2 = 6/2 = 3 → 3 cosets for C2 ≃ H1

3 right cosets of H1: H1 = {e, s}, H1d = {d, sd}, H1d
2 = {d2, sd2}

3 left cosets of H1: H1 = {e, s}, dH1 = {d, ds}, d2H1 = {d2, d2s}
Note: dH1 ̸= H1d, it is NOT a normal subgroup

2 right cosets of C3: C3 = {e, d, d2}, C3s = {s, ds, d2s} = {s, sd2, sd}
2 left cosets of C3: C3 = {e, d, d2}, sC3 = {s, sd, sd2}
Note: sC3 = C3s, C3 is normal subgroup, D3/C3 ≃ C2

� Quotient group: C2 := {E,D}, where E := {e, d, d2}, D := {s, sd, sd2}
→ ED = DE, D2 = E

� Conjugacy classes: {e}, {d, d2}, {s, sd, sd2} (see Tutorial)

*** End of Lecture 1 ***
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