

Introduction to ESO and its projects

Technology Development in Chile in the ELT era

Itziar de Gregorio-Monsalvo — ESO Chile Representative

The most productive and more advanced ground-based optical and infrared telescopes on Earth

Design, build and operate advanced ground-based astronomical telescopes

Fostering international collaboration for astronomy

Founded in 1962 by 5 states. Today it consists of 16 member states

Australia is a strategic partner

(Almost) Pristine Sky above Paranal

Telescopes currently operated by ESO at La Silla

In the 1980s, ESO engineer Ray Wilson invented a revolutionary technology for the NTT: it corrects the deformation of the main mirror caused by gravity and wind

Today all telescopes in the world use **Active Optics**.

Active Optics Actuators on the Reverse of the NTT Primary Mirror(3,5 m)

Corrects light distortions introduced by turbulence in the Earth's atmosphere

Based on a sophisticated system of lasers and actuators on the secondary mirror.

First image of an exoplantet

First image of a black hole

Accelerated expansion of the Universe

Pushing the limits of technology enables transformational Science that changes scientific paradigms

3 Nobel Prizes

Cherenkov Telescope Array – South (CTAO-S)

CTAO will be the first ultra-energetic gamma-ray observatory, with one part (CTAO-N) in La Palma and another (CTAO-S) in Paranal-Armazones.

The construction phase of CTAO will start this year.

ESO's Extremely Large Telescope (ELT), a complex and challenging machine

ELT

Dome and Main Structure

- Main structure 4600 tons. High precisión movemente 2 deg/s
- Dome: 80 m height, 6100 tons.
- Main Structure Fundation: 60 m diámeter, 9000 m³ concrete.
- Last Generation anti-seismic system.

ELT Dome and Main Structure

ELT Optics System

Adaptative Optics:

8 laser guides

M4: Deformable mirror

- 2 mm thicknes
- 5000 actuators changing form 1000 times/s
- Magnetic levitation

M5: Image stabilizer

Ajusts its position 10 times/s

Scientific Instruments

High precision and sensitive instruments.

- First generation:
- HARMONI, MICADO, METIS, MORFEO

- Second generation:
- ANDES, MOSAIC

Integrated Operations Programme (IOP)

The Future of Paranal observatory

Paranal will operate in the future a set of world-leading telescopes: the Very Large Telescope,
the Extremely Large Telescope, and possibly the CTAO-South.

- The Operations model (logistics, science operations, commuting, technical maintenance,...) is not scalable to the ELT
- A new operational concept needed, based on digitisation and making use of Industry 4.0 tools.

The Integrated Operations Programme (IOP)

Digital Transformation of all relevant processes in Operations.

- ESO-wide programme led by the Paranal Observatory aiming at a sustainable operations paradigm.
- Sustainable → financially, environmentally and socially

Programme Objective

- Integrated science and technical operations of the ELT (on Cerro Armazones) and the VLT (on Cerro Paranal), maintaining the VLT at the forefront of ground-based astronomy
- Deliver high-performance science data through sustainable operational processes

The Integrated Operations Programme (IOP)

Programme Pillars: Lean, Remote, and High-Performance Operations

- Lean Principles use available resources efficiently
 - Optimize and automate processes (operations, maintenance, logistics)
 - Provide infrastructure for efficient multi-site operations
- Remote Operations control/monitor systems from remote locations
 - Minimize on-site activities (inspections, corrective maintenance)
 - Predictive maintenance and remote control assets
- High Performance enhance/maintain performance & availability
 - Strengthen data & system analysis
 - Maximize the scientific output

- Top Level Requirements released in 2021
- Phase A (feasibility) review done in 2023
- Phase B (consolidation) review scheduled for 2026

Milestones

- Readiness to start executing the technical maintenance of the ELT mid-2027
- Readiness for the ELT early operations in 2030
- Full integration with "modernized" VLT operations around 2032

