
The CaNaPy RTC: towards pre-
correction of the LGS beacon

RTC4AO 2023
CaNaPy RTC status Report / 06.11.2023

David Jenkins

CaNaPy RTC developer ESO

RTC4AO – 2023.11.07 david.jenkins@eso.org 2

• Demonstrate and Optimize LGS uplink pre-compensation, for the smallest LGS size (implies
pulsed/chopped laser)

• Close the LGS-AO loop with Pyramid WFS, in monostatic configuration
• Optimize for operation in the visible, demonstrate performance
• Have an experimental facility for advanced LGS-AO R&D experiments (agreement with ESA

done)

• So far foreseen CaNaPy experiments within the collaboration with ESA:
§ Demonstrate operation and control also in non-favourable seeing conditions (including daytime)
§ Test the time delay method (Ragazzoni, 1999) for the measurements of tip-tilt from the LGS
§ Test the candle-light method to have and use the sodium profile and its centroid during operations
§ Evaluate the advantages of the uplink pre-compensation in monostatic mode, vs more standard

bistatic LGS-AO configurations

What is CaNaPy?

RTC4AO – 2023.11.07 david.jenkins@eso.org 3

CaNaPy Concept

RTC4AO – 2023.11.07 david.jenkins@eso.org 4

• LGS AO system with one high order ALPAO 97 DM and one LGS uplink jitter mirror
• A monostatic launch, laser is launched from the main telescope
• The laser is chopped (pulsed) synchronously with the WFSs shutters to avoid blinding the

cameras during the propagation
• LGS Pyramid WFS with 40x40 pixels per pupil (4x4 oversampling) for High Order control

§ Using the OCAM 2S at 2kHz

CaNaPy AO System

RTC4AO – 2023.11.07 david.jenkins@eso.org 5

• NGS Shack-Hartmann with 12x12 sub-apertures for Low Order tip, tilt and focus
§ Using the OCAM 2K also at up to 2kHz

• ALPAO 97-15 DM, provides high order modal correction with up to ~90 modes
• Downlink TT mirror in front of the NGS SH-WFS only
• Uplink LGS Jitter Loop mirror to keep LGS pointing
• Each WFS has a “scoring” camera to look at the PSFs

§ LGS-WFS uses an EVT HB-1800-S, NGS-WFS uses a Hamamatsu ORCA

CaNaPy AO System

RTC4AO – 2023.11.07 david.jenkins@eso.org 6

• Converts CaNaPy into an optical feeder link experiment for Satellite communications
• Introduces an IR Tx and Rx path

§ The Rx path includes an IR Py-WFS using a CRED 2-lite, otherwise a clone of the LGS Py-WFS

• Upgrades the AO hardware interfaces to the RTC
§ Microgate hardware streams pixels directly into CPU memory
§ Actuator command are read directly from CPU memory and sent to the hardware
§ Reduces the load on the CPU to concentrate on AO reconstruction

• The IR WFS uses the satellite downlink as a guide star

ALASCA upgrade with Microgate

RTC4AO – 2023.11.07 david.jenkins@eso.org 7

CaNaPy RTC

• The RTC processing is done on a COTS Dell server running CentOS 7.5 (legacy due to kernel
requirements for PCIe ALPAO interface)

• CaNaPy is a small-scale experimental AO system
• CaNaPy RTC sub-system developer, operator and maintainer: David Jenkins (ESO) with

support from Microgate for hardware interfaces

RTC4AO – 2023.11.07 david.jenkins@eso.org 8

CaNaPy RTC Status

RTC4AO – 2023.11.07 david.jenkins@eso.org 9

CaNaPy RTC Flow Chart

RTC4AO – 2023.11.07 david.jenkins@eso.org 10

• HRTC uses DARC c code
§ DARC is multithreaded C with shared memory parameter buffer and circular buffers for telemetry
§ ”Horizontal” multi-threading, each thread processes a portion of pixels through to the partial actuators
§ For CaNaPy only a single thread is needed, small problem size
§ New camera and mirror libraries to interface with the Microgate hardware

• HRTC control and SRTC uses Lark, pure Python and Python C-Extensions
§ Python code can apply parameters to the HRTC through the shared memory parameter buffer
§ It can read telemetry from the circular buffers
§ Custom Python C-extensions use the DARC shared libraries directly
§ Only implements the required functionality

• Systemd services are used to launch the DARC core (with root privileges) and to launch Python
RPyC services for control and SRTC (with user privileges)

§ All process are run in the background, Python services spawn new processes
§ Uses RPyC, zeromq, and shared memory for communication

Software Architecture

RTC4AO – 2023.11.07 david.jenkins@eso.org 11

Lark Concept

RTC4AO – 2023.11.07 david.jenkins@eso.org 12

• Each telemetry buffer has a reader
thread implemented in the Python C
extension

• The reader transfer telemetry as
needed

• Saving to disk has been implemented
in a novel way

§ Empty .cfits or .npy files are created
on disk by Python code

§ Files are queued up to ensure
continuous operation

§ Memory regions are mmap’d by the C
extension with the correct offsets

§ Data is copied directly to the file region
§ The .cfits extension is used to

distinguish files with little endiannes

Lark Telemetry System

RTC4AO – 2023.11.07 david.jenkins@eso.org 13

• Background processes for
calibration and optimisation
functions and loops

• Each function or loop is
implemented as a Plugin

• Plugins are registered to a
SRTC Service

• Uses runtime introspection
to display functionality in a
GUI

SRTC Services and Plugins

RTC4AO – 2023.11.07 david.jenkins@eso.org 14

The Background Tasks for CaNaPy - SRTC

RTC4AO – 2023.11.07 david.jenkins@eso.org 15

• It finds modes in the config
directory and loads the
information

• Each mode has 3 basic
commands, start, open and stop

• Open is used to open a mode
specific display

• The running DARCS are
displayed, and the basic Lark Plot
GUI can be opened for each

• The options menu allows
selecting a config directory and to
reset the Lark Daemon to kill all
running processes and start fresh

Lark Launcher

RTC4AO – 2023.11.07 david.jenkins@eso.org 16

Lark Custom Displays

RTC4AO – 2023.11.07 david.jenkins@eso.org 17

Lark Custom Displays

RTC4AO – 2023.11.07 david.jenkins@eso.org 18

Lark Custom Displays

RTC4AO – 2023.11.07 david.jenkins@eso.org 19

Lark Custom Displays

RTC4AO – 2023.11.07 david.jenkins@eso.org 20

Displaying Multiple Plots

RTC4AO – 2023.11.07 david.jenkins@eso.org 21

• Assembled and tested in laboratory conditions in engineering mode
§ Closed loop operation achieved with the Pyramid WFS and the ALPAO DM using a telescope

simulator installed in the lab

• Currently being installed at the OGS on Tenerife
• September/October commissioning run delayed (Tenerife forest fires)
• Phase A commissioning planned for November 18-26, 2023
• Initial plan is to commission the NGS SH-WFS and the Laser uplink
• LGS Py-WFS closed loop planned for Spring 2024
• RTC development and testing will continue alongside the commissioning of CaNaPy/ALASCA

Current Status of CaNaPy

Questions?
• CaNaPy is a test facility also for future further experiments with the community and with ESA
• CaNaPy is coordinated by ESO and carried out jointly with AO expert groups from three ESO

member states: Durham University (UK), INAF (OAA and OAR - Italy), IAC (ES); and in
synergy with ESA, within the frame of the ESO-ESA collaboration and implementation
agreements.

