
HEART (Herzberg

Extensible Adaptive optics

Real-time Toolkit)

Build and Test

Infrastructure

Ed Chapin

NRC Herzberg Astronomy and Astrophysics

Nov 8, 2023

Introduction
We need you to use CentOS 7!

Continuous integration + extensive automated

tests are essential for QA, and so we can refactor

and extend our code “fearlessly”.

The Soft Realtime processes must
NOT run on the same server!

The Soft Realtime processes
must run on the same server as
the Hard Realtime!

We need you to use AlmaLinux 9!

A special PCIe card that only
runs with Linux Kernel x.y.z
must be installed in the RTC
server!

The complexity of the Hard
Realtime processes requires
multiple servers!

We need a release every
month with test and coverage
reports!

Overview

• Managing dependencies and revision
control for multiple systems/clients

• Languages (C / Python) and tooling

• Types of automated testing:
• Low-level unit tests

• Application-level component tests

• System tests

• (near) future updates:
• Container-based test runners for different

architectures

• Automated Performance tests (currently manual)

Dependencies

• Facility instrument requirements typically
conservative (need to run for many years),
and vary by observatory (e.g., target OS)

• Result: HEART predominantly written in C and
Python, with minimal external dependencies:
• Doxygen for documentation

• GNU Make

• C: cfitsio, libwebsockets, CMocka, lcov

• Python: numpy, astropy, matplotlib, PyTest

• Optional: support for different hardware based
on availability of vendor SDKs and build flags

Dependencies (cont’d)

HEART

DAOINSW

cfitsio

libwebsockets

Delivered

RTC

Delivered

RTC

Python

venv

Standard

HW drivers

(e.g.,

ALPAO DM)

configurationconfiguration

custom processing

/ cmds

custom processing

/ cmds

custom HW

drivers

custom HW

drivers

Revision Control

• Separate git repos for daoinsw (base lib also
used for non-RTC instrument projects), heart,
heart-testdata, external dependencies, and
delivered RTCs

• Releases to clients require specific versions of
dependencies. Manage using submodules
embedded in the delivered RTC repo

+--gpi2.0-rtc # root of the repo

|--doc # Top level documentation

|--source # GPI2.0 source code

+--external # Location of submodules

|--cfitsio

|--daoinsw

|--heart

|--heart-testdata

+--libwebsockets

Submodules encode both the

location of the external dependency

and the particular version (commit)

in its history

Tooling

• Makefiles: build all of the C source code (gcc),
execute tests (C/Python), and produce
documentation (Doxygen)

• Python: venv + requirements.txt

• Git: develop in branches labeled by Jira tickets

• Jenkins: merges trigger automated builds

• Slack: #ci sends annoying messages if
someone caused a build to fail

• Documentation: built documentation includes
test report

Automated Builds
Merge of branch to master triggers

builds (with dependencies)

Result sent to slack

Submodule

update needed

Built Documentation

Unit Tests

• CMocka (https://cmocka.org/):
• lightweight / capable framework for C + XML test

report

• Used for a mixture of “true” unit tests (single
functions), but also some more complex (including
multi-threaded) tests.

• Use linker option “--wrap” to incorporate mocked
functions when needed

• lcov to measure code coverage

• PyTest
• unit tests of our Python code

• Measure code coverage + XML test reports

https://cmocka.org/

Unit Tests: CMocka

We use CMocka for both low-level tests (individual) functions),

and higher-level tests that may involve complex interactions

between multiple threads.

Since everything is running in the same process, our test code

is able to make assertions about internal variables, as well

as inputs and outputs.

Each test suite is a stand-alone executable with XML output

that can be included in a test report.

Unit Tests: CMocka (cont’d)

int main(DAO_ERR_COMP_UNUSED int argc, DAO_ERR_COMP_UNUSED char *argv[])

{

const struct CMUnitTest hrtMvmTests[] = {

cmocka_unit_test(test_hrtMvm_subMvm_invalid),

cmocka_unit_test(test_hrtMvm_subMvm_column_matrix),

cmocka_unit_test(test_hrtMvm_subMvm_full_matrix),

cmocka_unit_test(test_hrtMvm_subMvm_row_matrix),

cmocka_unit_test(test_hrtMvm_mvm_invalid),

cmocka_unit_test(test_hrtMvm_mvm_full_matrix),

cmocka_unit_test(test_hrtMvm_partitioned_mvm),

cmocka_unit_test(test_hrtMvm_parallel_mvm_row_partitions),

cmocka_unit_test(test_hrtMvm_parallel_mvm_col_partitions),

cmocka_unit_test(test_hrtMvm_parallel_mvm_4x8_partitions),

cmocka_unit_test(test_hrtMvm_scratch_memory),

cmocka_unit_test(test_hrtMvm_parallel_invalid),

};

cmocka_set_message_output(CM_OUTPUT_XML);

return cmocka_run_group_tests(hrtMvmTests, NULL, NULL);

}

Test suite

“cmocka_hrtMvm.c”

for low-level MVM

module

/*!

* \test \ref test_hrtMvm_subMvm_column_matrix

*

* \brief Test hrtMvm_subMvm function when matrix is a small column vector.

*

* The matrix M is set to a known column vector and X is set to a

* known scalar. The vector length iterates through lengths 1 ... 32.

*/

static void test_hrtMvm_subMvm_column_matrix(DAO_ERR_COMP_UNUSED void **state)

{

// ... Setup omitted ...

for (vLen = 1; vLen <= maxLen; ++vLen)

{

rv = hrtMvm_subMvm(V, &mat.full, X);

assert_int_equal(rv.status, DAO_ERR_NONE);

// Compute error vector as V - expected.

rv = hrtVec_acc_ax_by(vLen, error, 1.0f, V, -1.0f, expected);

assert_int_equal(rv.status, DAO_ERR_NONE);

rv = hrtVec_norm(vLen, error, hrtVec_norm_L1, &errNorm, 0);

assert_int_equal(rv.status, DAO_ERR_NONE);

assert_float_equal(errNorm, 0.0, 0.0);

// ... etc ...

Unit Tests: CMocka (cont’d)

Doxygen-friendly

comments for test

report

Failed assertions will appear in

test report with line number

Unit Tests: CMocka (cont’d)

More complex tests using setup & teardown

functions. Example for wavefront input sensor block:

cmocka_unit_test_setup_teardown(test_hrtWfsInputBlock_normal, setup, teardown)

setup:

• Configure and start the block (multi-threaded) with

simulator for feeding pixels

teardown:

• Shutdown block, free resources

test code:

• Triggers reading of pixels (command), checks results

CMocka test reports
Our test reports appear in the doxygen-generated pages as a hierarchy,

ranging from an overview, to modules (like “HEART math” in this example),

and individual test functions

CMocka code coverage (lcov)

PyTest: native code

• Python used in HEART for:
• a number of soft real-time tasks, e.g., generating

reconstructor matrices using statistics provided by
hard real-time (C) code

• data analysis and plotting

• general utilities

• PyTest used to test native Python code. Test
reports and coverage incorporated into
documentation similar to CMocka

PyTest: native code (cont’d)

def test_telemetryStream_basic():

"""

\test \ref test_telemetryStream_basic

\addtogroup hrtTelemetryUnitTests

@{

\copybrief test_telemetryStream_basic

@}

\brief Basic test of streaming from a sender to a receiver

- sender is started and not yet connected

- receiver is started and after brief pause both report connected

- verify that receive queue is initially empty

- bucket is sent from sender to receiver

- verify that receive queue has the (single) bucket

"""

debug = True

with TelemetryStream(TEST_ADDRESS, TEST_PORT, specs=TEST_SPECS, debug=debug) as sender:

assert sender._streamThreadState == TelemetryStream.ThreadState.CONNECTING

... etc ...

doxypypy allows us to

include Doxygen

commands in Python

docstrings

PyTest: native code (cont’d)

PyTest: native code (cont’d)

Component & System Tests

• Component and System tests are “black box”.
• Component test: single application

• System test: multiple (interacting) applications

• Use external interfaces to provide inputs, and
observe outputs (results)

• Many goals for these tests:
• Verify external interfaces (commands, files,

telemetry)

• Correctness (RTC produces expected DM
commands from WFS data?)

• Performance (e.g., timing requirements)

Component & System Tests
(cont’d)

Also use PyTest to orchestrate these tests:
• Makes sense to re-use existing tool

• Execute applications using subprocess module

• Elegant way to start and monitor multiple
applications using fixtures (setup/teardown with
dependencies)

• Provide inputs (commands, telemetry, input files)

• Perform assertions on outputs

• Create test reports

Example: SCAO RTC Validation

scaoTemplate dmSimulatorwfsSimulator

telemetry

commands

pixel data

cube

pixel data

cube

reconstructor

matrix

reconstructor

matrix

reference

slopes vector

reference

slopes vector

expected

reconstructed

vector

expected

reconstructed

vector

expected

integrated DM

error vector

expected

integrated DM

error vector

expected

command

vector

expected

command

vector

Inputs and expected

outputs produced

with OOMAO in

advance

(heart-testdata)

PSDsPSDs

pixels

Example: SCAO RTC Validation

def test_scaoTemplateValidateTests_pipeline(hoPsdStreamReader, dmSimulator):

"""

\test \ref test_scaoTemplateValidateTests_pipeline

\addtogroup scaoTemplateValidateTests

@{

\copybrief test_scaoTemplateValidateTests_pipeline

@}

\brief Feed pipeline known WFS inputs and check correctness of results

“””

The main test depends on fixtures, which may themselves depend on

other fixtures. Used to start up applications/processes in a particular order.

Example: SCAO RTC Validation

test_scaoTemplateValidateTests_pipeline

hoPsdStreamReader

cmdHandler
(main RTC application)

dmSimulator

cleanup_gms cleanup_telFiles

cleanup_dmFiles

Example: SCAO RTC Validation

@pytest.fixture

def cmdHandler(cleanup_gms, cleanup_telFiles, dmSimulator):

"""

Startup and shutdown of \ref scaoTemplate

"""

=== Setup ===

proc = None

configPathFile = DEFAULT_CONFIG_PATH + "/" + DEFAULT_CONFIG_FILE_NAME

cmdLine = [compPrg, "-config", configPathFile,

"-host", "compTestScaoTemplate"] #, "-d", "4"]

proc = ServiceProc(cmdLine, expect_str="About to create listening address")

=== Teardown ===

yield cmdHandler

if proc is not None:

print("Shutting down cmdHandler")

proc.stopProc()

This fixture starts the main RTC

process and returns once it is

ready to accept commands.

It also shuts it down after the

test.

Example: SCAO RTC Validation
... Further down in the main test function ...

Send simulated pixels to RTC and return when done

wfsDataPath = TEST_DATA_PATH+"/"+TIPTILT_DATA_PATH+WFS_DATA_FILE

wfsProc = run_WfsSimulator(wfsDataPath)

assert wfsProc.returncode == 0

... Command RTC to dump circular buffers to disk and also

load in expected values from OOMAO, then compare ...

for frame in range(nTestFrames):

np.testing.assert_allclose(dmCmds[frame, :, 0],

dmExpected[frame, :],

atol=dmtol,

err_msg='DM commands from '+dmFile)

NumPy has some great testing routines for comparing arrays with

tolerances

Component & System Test
Reports

The Future

• Currently updating test servers infrastructure:
• Install range of operating systems to get more

experience with tuning (e.g., Ubuntu vs. RedHat-
style systems), identify toolchain issues

• Use docker containers to test different operating
systems within different host operating systems

• Performance tests currently manual. Want
standard set of automated performance
tests to check for regressions (mean latency,
tail, dropped frames)

• Migrate from Jenkins -> GitLab (locally
hosted) to manage test execution

29

QUESTIONS?

30 30

Thank you

Ed Chapin

Ed.Chapin@nrc-cnrc.gc.ca

	Slide 1
	Slide 2: Introduction
	Slide 3: Overview
	Slide 4: Dependencies
	Slide 5: Dependencies (cont’d)
	Slide 6: Revision Control
	Slide 7: Tooling
	Slide 8: Automated Builds
	Slide 9: Unit Tests
	Slide 10: Unit Tests: CMocka
	Slide 11: Unit Tests: CMocka (cont’d)
	Slide 12: Unit Tests: CMocka (cont’d)
	Slide 13: Unit Tests: CMocka (cont’d)
	Slide 14: CMocka test reports
	Slide 15: CMocka code coverage (lcov)
	Slide 16: PyTest: native code
	Slide 17: PyTest: native code (cont’d)
	Slide 18: PyTest: native code (cont’d)
	Slide 19: PyTest: native code (cont’d)
	Slide 20: Component & System Tests
	Slide 21: Component & System Tests (cont’d)
	Slide 22: Example: SCAO RTC Validation
	Slide 23: Example: SCAO RTC Validation
	Slide 24: Example: SCAO RTC Validation
	Slide 25: Example: SCAO RTC Validation
	Slide 26: Example: SCAO RTC Validation
	Slide 27: Component & System Test Reports
	Slide 28: The Future
	Slide 29
	Slide 30

