Image: Giant proplyds in Cygnus OB2? HST/ACS -Wright+ 2012, Levay & Frattare STScl

External photoevaporation in different environments Andrew Winter — ITA, Heidelberg University

Threats From The Surroundings – 11/11/2020

~ 22 000 au

Alexander von Humboldt

Contents

- 1. 'Proplyds' in the Orion Nebula cluster
- 2. Observational diagnostics
- 3. Beyond the ONC
- 4. Questions: open & closed(?)

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

'Classical proplyds' of the Orion Nebula Cluster

- 'Proplyd': PROtoPLanetarY Disc... Now usually mean an ionised 'cocoon' around a PPD
- First images of PPDs with HST silhouettes on the ionised background
- The original proplyds experience FUV fluxes of >~ 5x10^4 G_{0} , within ~0.3 pc of $\theta^1 C$

3

Silhouette disc — McCaughrean+98

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Theory **Drivers of thermal winds**

- Can be driven by EUV (ionising), or FUV (photodissociating) photons
- optically thick to EUV
- EUV driven thin PDR, ionised winds launched close to the disc surface \bullet

FUV driven - supersonic wind driven inside the photodissociation region (PDR),

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Theory

Geometry

- Wind driven mass-loss from the outer disc – photodissociation region 'shielding' from EUV
- Ionisation front radius, $r_{\rm IF}$, connected to EUV flux and massloss by ionisation/recombination balance arguments:

$$r_{\rm IF} \approx 1200 \left(\frac{\dot{M}_{\rm wind}}{10^{-8} M_{\odot} \,{\rm yr}^{-1}}\right)^{2/3} \left(\frac{\Phi}{10^{45} \,{\rm s}^{-1}}\right)^{-1/3} \left(\frac{d}{1 \,{\rm pc}}\right)^{2/3} {\rm at}$$

$$\langle S(H\alpha) \rangle \approx 7 \times 10^{11} \frac{\alpha_{H\alpha}^{\text{eff}}}{\alpha_B} \frac{\Phi}{10^{49} \,\text{s}^{-1}} \left(\frac{d}{0.1 \,\text{pc}}\right)^{-2} \,\text{s}^{-1} \,\text{cm}^{-2} \,\text{s}^{-1}$$

Theory Mass-loss rates in EUV driven winds (Johnstone+98)

- Subsonic flow through the PDR with ~constant density $n_{\rm I}$, sound speed $a_{\rm I}$ use mass and momentum conservation across IF
- For PDR of thickness xr_d , disc radius r_d , m

$$\dot{M} = 4\pi (1 + x)^2 r_d^2 n_{\rm I} m_{\rm I} \left(\frac{a_{\rm I}^2}{2a_{\rm II}}\right).$$
 $n_{\rm I} = \frac{N_D}{xr_d}.$

- In the limit of the thin PDR, mass-loss diverges. but x is set by ionisation balance: $\frac{f_r \Phi_i}{4\pi d^2} = \int_{-\infty}^{\infty} \alpha_r n_{\mathrm{II}}^2(r) dr \longrightarrow \frac{x}{(1+x)^{1/2}}$
- For extended discs or strong EUV flux, sm

 $\dot{M} = 9.5 \times 10^{-9} f_r^{1/2} \Phi_{49}^{1/2} d_{17}^{-1} r_{d14}^{3/2}$

Which is the solution for a photoevaporating

$$\implies \text{ is } (\epsilon \sim 1): \\ \vec{M} = 2.0 \times 10^{-9} \, \frac{(1+x)^2}{x} \, \epsilon r_{d14} \, M_{\odot} \, \text{yr}^{-1}$$

$$= 0.21 \left(\frac{\epsilon^2}{f_r \Phi_{49}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2}$$

$$= 0.21 \left(\frac{\epsilon^2}{f_r \Phi_{49}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2}$$

$$= 0.21 \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2}$$

$$= 0.21 \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{17}^2}{r_{d14}}\right)^{1/2} \left(\frac{d_{$$

Theory **Mass-loss rates in FUV driven winds**

 Analytic estimate for FUV mass-loss rates - assume launching velocity $v_0 \approx a_{\rm I} \approx 3 \, {\rm km \, s^{-1}}$, impose optical depth of dust in the PDR $\tau_{\rm FUV} \sim 1$ for column density $N_{\rm D} \sim 10^{21} \, {\rm cm}^{-2}$, dominated by base of flow:

- Ignores changes in the thermal structure of the PDR, e.g. with UV flux and r_{d}
- Recently, PDR codes have been coupled with wind solutions to obtain massloss rates (Adams+04, Facchini+16, Haworth+18 - 'FRIED grid' is publicly available)
- flux limit

$$\dot{M} = 1.3 \times 10^{-8} \epsilon r_{d14} M_{\odot} / \text{yr}$$
 $\epsilon = \left(\frac{N_D}{10^{21} \text{ cm}^{-2}}\right) \left(\frac{v_0}{3 \text{ km s}^{-1}}\right)$

Weaker dependence on flux and disc radius for FUV driven flows in strong UV

Proplyds and winds

- \bullet Richling & Yorke 00
- ionisation front
- with extinction/background correction

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Observational diagnostics Proplyds and winds

- Haworth & Owen 19 showed how externally driven winds manifest in position-velocity space for CI
- Promising diagnostic for weaker FUV environments

45° viewing angle, CI emission computed from a PDR model

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Observational diagnostics Proplyds and winds: Advantages and disadvantages

Advantages:

- Direct evidence of thermal winds driven by neighbouring star
- Can measure/estimate instantaneous mass-loss rates
- Proplyds appear to exist in most (young) regions with OB stars
- Nice pictures...

Disadvantages:

- Bright proplyds may be a short lived phase in life of the PPD
- Can only be easily detected for discs exposed to strong EUV fields (bright ionisation front)
- Can only be easily resolved when mass-loss rate is high/distant from ionising source

Observational diagnostics Inner disc depletion

- Detection of NIR excess + census of YSOs to obtain inner disc fraction
- Either compared across different regions, or search for spatial gradients within a single region
- No obvious depletion in the ONC high disc fraction in the core (Hillenbrand+ 98 - see also Lada+00)
- External photoevaporation does not alter disc lifetime...? Also Richert+15 - similar results in multiple star forming regions

Hillenbrand+ 98

The ONC: A proplyd lifetime problem?

- Age gradient (Hillenbrand+97, Getman+18) and possibly multiple stellar populations (Beccari+17) in the ONC - youngest stars in the centre
- Would expect more OB stars strange IMF? Dynamical ejection of massive stars (Poveda+05, Kroupa+18)?
- Extended epoch of star formation can help to explain disc survival and mass distribution (Eisner+18) in the core of ONC (Winter+19)
- Need to look at other regions

Observational diagnostics Inner disc depletion: Advantages and disadvantages

Advantages:

- Probe what the long term influence of photoevaporation is on PPD
- 'Simple' metric for comparison with disc evolution models

Disadvantages:

- Inner disc least strongly influenced by photoevaporation
- Requires YSO census, e.g. from X-ray
- Ambiguous: dynamical mixing, age gradients and uncertainties, other dispersal mechanisms

Observational diagnostics Dust depletion

- Is solid material efficiently photoevaporated? Stokes number? Sublimation?
- Miotello+12: Evidence for dust entrained in the flow for proplyd 114-426 in the ONC
- Gradient in dust grain sizes: decrease with increasing distance in the northern flow region
- Using (sub-)mm fluxes can probe dust depletion near OB stars...

Observational diagnostics Dust depletion

- Need to understand evolution of dust with respect to gas (e.g. Sellek+ 20)
- Depletion of dust in outer disc + radial drift lead to rapid depletion?

Sellek+ 20

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Observational diagnostics Dust depletion: Advantages and disadvantages

Advantages:

- Probe the outer disc material most strongly influenced by winds
- Can estimate both PPD mass and outer radius in many cases
- Measure differences in the solid mass budget for planets due to photoevaporation

Disadvantages:

- Dependent on dust grain growth, entrainment in wind and opacity models
- Possible contamination by free-free emission around high mass star forming regions
- Ambiguous: dynamical mixing & other mechanisms

Looking beyond the ONC...

Region	Proplyds/ Winds	Inner disc dispersal	Dust depletion	Log M (Msol)	Log Rho0 (Msol/pc³)	Age (Myr)	E.g. Refs.
NGC 2024	Y	_	Y	2.1	~3	~1	Van Terwisga+20, Haworth+ sub.
NGC 1977	Y	-	-	~2	~1.6	~1	J.S. Kim+16
σ Orionis	Y	_	Y	2.2	2.7	3-5	Rigliaco+09, Maucó+16, Ansdell+17
ONC	Y	_	Y	3.6	4.3	1-3	O'dell & Wen 93, Henney & O'Dell 90, Vicente 8 Alves 05, Mann+15, Eisner+18, Van Terwisga+19
Cygnus OB2	Y(?)	Y	_	4.2	~1.3	3-5	Wright+12, Guarcello+16
Pismis 24	Y(?)	Y	_	~4	-	~1	Fang+12
Arches	_	Y	-	4.3	5.1	2-3	Stolte+10,15
NGC 3603	Y	Y	-	4.1	5.0	~1	Brandner+00, Stolte+04

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Local star forming regions **Disc lifetimes**

- Inner disc life-times appear shorter at the highest FUV fluxes ('starburst clusters')
- So far no strong evidence for inner disc depletion rate gradient across lower mass regions... age uncertainties?
- Disc fraction gradients also only found in highest mass regions... c.f. Nicholson+19
- Threshold UV flux to disperse inner disc?

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Local star forming regions **FUV** flux

19

NGC 3603

- Proplyds in NGC 3603 found by Brandner+00
- Large scale (~10 000 au): $\dot{M}_{wind} \sim 10^{-5} M_{\odot} \text{ yr}^{-1}$
- Gradient in disc fraction from 20% to 40% with distance from centre (Stolte+04)

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Pismis 24 **Disc fraction & proplyd candidates**

- Fang+12 found declining disc fraction with separation from Pis24-1 and evidence of proplyds
- Evidence of quicker dispersal for higher mass stellar hosts..?

Cygnus OB2 **Disc fraction**

 Cygnus OB2 is one of the closest massive OB associations $d \sim 1400 \,\mathrm{pc}$: mass $\sim 1.6 \times 10^4 \,M_{\odot}$, age ~ 3-5 Myr, low density $\sim 20 \,\mathrm{stars} \,\mathrm{pc}^{-3}$

 Guarcello+16 used a Chandra X-ray survey of Cygnus OB2 coupled with optical and IR photometry (Guarcello+13, 14)

Obtained clear correlation between disc fraction and (projected) FUV flux — see also Mario's poster!

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Cygnus OB2

- disc photoevaporating?

σ Orionis **Dust depletion**

- Ansdell+17: Lower dust masses close to the massive star σ Ori (see also Maucó+16 & Karina's poster)
- Also evidence for photoevaporative winds (e.g. Rigliaco+09)
- In a viscous disc model, outwards mass-flux eventually balances mass-loss in the photoevaporative wind ..?
- Not viscous (e.g. MHD driven accretion) does mass-loss become inefficient for older regions?

What do we think we know? **External photoevaporation**

- Speeds up inner-disc dispersal... In the most massive star-forming regions
- Depletes dust content in PPDs
- Can act on PPDs in relatively low UV environments (much lower than 'classical' ONC proplyds)
- Common process affecting at least ~50% of discs in the solar neighbourhood (Fatuzzo & Adams 08, Winter+ 20)
- Bright/large proplyds seem to be a short-lived state

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

Open problems

How does external photoevaporation influence planet formation?

- 1. Down to what radius are PPDs efficiently photoevaporated at given UV flux?
- 2. How much dust is entrained in thermal winds? Dust-to-gas ratio? Size?
- 3. Balance between externally driven wind/internal angular momentum transport?
- 4. Fraction PPDs/planetary systems that underwent significant photoevaporation?
- 5. How does external photoevaporation interact with internal processes/depletion?
- 6. Depletion rate variation with stellar mass?
- 7. Are the 'giant proplyds' the early phases of a photoevaporating disc?

Additional slides...

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

σ Orionis Winds

 $H\alpha$, NII and SII emission lines detected around the ~0.2 M_{\odot} , ~1 Myr star S0587 — Rigliaco+09

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments

 Rigliaco+09 found evidence of wind around T Tauri star with mass-loss rate $\dot{M}_{wind} \sim 10^{-9} M_{\odot} \,\mathrm{yr}^{-1}$

6590

IM Lup Low UV winds

- IM Lup hosts a massive ($\sim 0.17\,M_{\odot}$) disc, detected out to ~970 au in 12 CO, ~ 300 au in dust
- Gas and dust properties using the TORUS code: low FUV (~4 G_0), allows gas phase CO at large separations
- Coupled with 1D hydro solution by Haworth+ 17: significant mass loss at the outer edge - halo?

Threats from the Surroundings Workshop — External Photoevaporation in Different Environments