SEPARATING EARLY-TYPE (SA/S0/E) GALAXIES IN LARGE SURVEYS

Marina Vika (Carnegie Mellon University, Qatar)
mvika@cmu.edu

Steven Bamford (University of Nottingham)
Boris Häußler (University of Oxford)

Early-type (SO/E) galaxies

Early-type (S0/E) galaxies

Early-type (S0/E) galaxies

Cappellari et al 2011

Early-type galaxies in large surveys

Early-type galaxies in large surveys

MULTI-WAVELENGTH MEASUREMENT OF GALAXY STRUCTURE:

SINGLE SÉRSIC PROFILE FITS (GALFITM)

Multi-Wavelength Sample

164 Galaxies u,g,r,i,z bands (SDSS)

- Mixed morphology
- Have been perviously studied in detail
- Not a complete sample

Artificially redshifted Sample

NGC 4274

We artificially redshift images using FERENGI

Friday, 22 November 13

Multi-Wavelength (MM) vs Single- Wavelength (SM) Fitting

Multi-band fitting process by simultaneously using multiple images of the same galaxy to constrain a wavelength-dependent model.

Vika et al 2013

- S₀
- Sa/SBa
- Sab/Sb/SBb
- Sbc/Sc/SBc
- Scd/Sd
- Irr/Sm

- S0
- Sa/SBa
- Sab/Sb/SBb
- Sbc/Sc/SBc
- Scd/Sd
- Irr/Sm

S0

Sa/SBa

Scd/Sd

Irr/Sm

Sab/Sb/SBb

Sbc/Sc/SBc

S0

Sa/SBa

Scd/Sd

Irr/Sm

Structural parameters as classifiers (redshifted)

Structural parameters as classifiers (redshifted)

Structural parameters as classifiers (redshifted)

Friday, 22 November 13

E

S0

Sa/SBa

Scd/Sd

Irr/Sm

MULTI-WAVELENGTH MEASUREMENT OF GALAXY STRUCTURE:

BULGE-DISK DECOMPOSITION OF GALAXIES (GALFITM)

NGC 4255

Bulge-Disk colour difference (Original images)

Average: $(g-i)_b - (g-i)_d = 0.31 \pm 0.07$ in agreement with Cameron et al 2009

Vika et al in prep.

Bulge-Disk colour difference (Original images)

Bulge-Disk colour difference (Original & Ferengi images)

Bulge-to-total flux ratio (Original images)

Bulge-to-total flux ratio (Original & Ferengi images)

Bulge Sérsic index (Original images)

Bulge Sérsic index (Original & Ferengi images)

Model Selection Techniques

$$BIC = x^2 + k*In(n)$$

Axis ratio vs Bulge Sérsic index (Original images)

NGC4564

NGC4660

Axis ratio vs Bulge Sérsic index (Original images)

Axis ratio vs Bulge Sérsic index (Redshifted images)

Axis ratio vs single Sérsic index (Original images)

Summary

- Using single-Sérsic fits photometric structural parameters (Sérsic index, Sérsic index ratio (n_i/n_g) and colour) we can separate early type galaxies (E/S0/Sa) from late-type (Sb,Sc,Irr) galaxies.
- Using bulge-disk decomposition we find that early type (E/S0/Sa) galaxies have "components" with the same colour.
- Using bulge-disk decomposition results we showed that Sb-Sc and Sd-Irr galaxies have the same bulge-disk colour difference: $d(g-i) = 0.31 \pm 0.07$ and 0.34 ± 0.09 .
- Fitting all galaxies with a Sérsic plus exponential function we find that the axial ratio of the exponential function distinguishes between visually classified E and SO.
- Multi-band fitting improves over single-band fitting for the extraction of structural parameters and reduces the scatter.

Thank you