

Examining the morphological properties of GAMA galaxies using MegaMorph

Boris Häußler (also 'Haeussler')

University of Oxford University of Hertfordshire

& Steven Bamford (Nottingham) , Benedetta Vulcani (IMPU), Marina Vika, Alex Rojas (CMU, Qatar), and many others (e.g. the entire GAMA team!)

ESO workshop, Santiago, Nov 22th 2013

Overview

- Todays profile fitting
- Todays data
- Brief introduction to MegaMorph
 - Idea
 - Some test Results
- Sérsic fits and changing parameters with wavelength
- some B/D decomposition results

Today's fitting codes

single-band data profile fitting, 1D or 2D

GALFIT, GIM2D, GalMorph, BUDDA, ...

smooth, parametric models – one component 'easy'* two components more difficult bulge-disk → ~25% fits 'fail' *but see Häußler et al. 2007, Kelvin et al. 2012

Today's data + today's fitting codes

inconsistent fits between bands

The value of colour information

degraded monochromatic observations

The value of colour information

degraded colour observations

MegaMorph – What do we do?

Address the issues with current software, but:

- Implement multi-band fitting (also see poster by S. Bamford)
- Incorporate non-parametric components (see talk S. Bamford)
- Implement bulge-disk decomposition (also see talk by M. Vika)
- use different minimization algorithms (see poster by S. Bamford)
- Accurate model selection (single Sérsic or B/D,...) (in progress)
- Ensure it's fast enough to process large surveys
 - (e.g. adapting to supercomputer)

MegaMorph so far...

GALFIT by C.Y.Peng, et al.

GALAPAGOS by M. Barden, B. Häußler, et al.

(also poster by A. Hiemer)

by E.Bertin

MultiNest by F. Feroz & M. Hobson

MegaMorph data I

simulated data

> real data

In same manner as Häußler et al. 2007

MegaMorph data II

- ~165 NGC galaxies
- SDSS *ugriz* imaging
- Artificially redshifted using:

<u>F</u>ull and <u>E</u>fficient <u>R</u>edshifting of <u>E</u>nsembles of <u>N</u>earby <u>G</u>alaxy <u>I</u>mages

Barden, Jahnke & Häußler, 2008, ApJS, 175, 105 z = 0.01

z = 0.03

z = 0.05

z = 0.07

z = 0.09

data	model	residual
		G
•		(5)
•		•

MegaMorph data III

GAMA:

- Redshift survey & multiwavelength database
- Registered mosaics
 - 150 sq. deg
 - SDSS ugriz
 - + UKIDSS *YJHK*
 - \rightarrow VST KIDS
 - + VISTA VIKING

GALFIT adaptations

• Each standard GALFIT parameter replaced by a polynomial function of wavelength

$$f(\lambda) = \sum_{i=0}^{m} c_i T_i(\lambda)$$

$$I(r) = I_e exp(-b_n [(r/r_e)^{1/n} - 1])$$

$$I(r) = I_e(\lambda) \qquad r_e(\lambda) \qquad n(\lambda)$$

- very similar input file
- (nearly) backwards compatible
- smarter output

Idea: It helps with noisy bands

Friday, November 22, 2013

Helps with noisy bands

also allows easy read-off of restframe values (not when using many degrees of freedom)

reduces measurement uncertainties

Friday, November 22, 2013

higher redshifts

00

GAMA sample split by colour

Friday, November 22, 2013

Sérsic index changes with wavelength

Sérsic index changes with wavelength

GAMA sample split by sérsic index

sérsic index by colour and nr

$\mathcal{M}=n_H/n_g$ for individual galaxies

Friday, November 22, 2013

77 depends on n and colour

radius re with wavelength

Friday, November 22, 2013

radius re with wavelength

radius re by colour and nr

- n>2.5 shows steeper decrease
- red n>2.5: constant n, but re decreases

$\mathcal{R} = r_e ratio$

• n<2.5 indistiguishable

\mathcal{N} vs. \mathcal{R}

- low-n galaxies show
 constant *R*, varying *N*
- high-n galaxies show
 constant 况, varying 𝒫
- -> classification
 without using n or
 colour itself

But not good by itself

Friday, November 22, 2013

What do *n* and *r* mean?

What do 7 and 2 mean?

mag-size-relation for components

Summary

- MegaMorph multi-band fitting:
 - enables <u>more accurate</u> measurements of morphological parameters at <u>fainter</u> magnitudes and <u>higher redshifts</u>.
 - allows the measurement of **galaxy internal colour gradients**.
 - can more successfully separate **individual galaxy components**.
- *N* and *R* reveal the internal structure, and hence formation history, of different types of galaxies (all conclusions for bright galaxies)
 - high-n systems: largely on component systems; supports <u>2-stage formation</u> <u>scenario</u> for early-type galaxies
 - mostly red centers -> picture of old, large component and small blue, inner disk largely ruled out, at least at low z
 - low-n systems: 2-component systems with red and blue components
 - allows identification of interesting objects (e.g. Ellipticals with blue cores, passive disks)
- Work presented in Vulcani 2013, (nearly) submitted
- code published soon (ask us if interested)
- it's spelled 'Haeussler'