# Morphology on large surveys with SExtractor + PSFEx

#### Aldée Charbonnier

B. Moraes, M. Elidaiana, M. Makler, E. Bertin, and the CS82 collaboration Valongo Observatory Rio de Janeiro

ESO, Chile, November 22th, 2013

Observatóri do Valongo



#### Outline

SExtractor + PSFEx CS82 survey COSMOS field

#### **General procedure**



SExtractor: PSFEx: http://www.astromatic.net/software/sextractor http://www.astromatic.net/software/psfex

#### SExtractor v.1



#### apertures

segmentation

#### **PSFEx ID card**

- Solving in direct space (≠ Fourier)
- Automatically selects the point like sources
- PSF modeled as a linear combination of basis functions
- Weighted  $\chi^2$  minimization
- PSF variations may be decomposed on a polynomial basis
- Homogenization is available



### **PSF** modelling



Automatic selection of point like sources



PSF modeled over the field of view

#### **PSFEx checkplots**



+ others (chi2, ellipticity..)

### SExtractor v.i

#### SExtractor v.1:

Automated detection of objects

Bertin & Arnouts 1996

#### **SExtractor v.2:**

2D Model-fitting of stars and galaxies

Bertin (in prep.)

- Point sources modeled as local PSF + amplitude
- Galaxies: size and orientations convolved with the PSF
- Background
- PSF modeled using PSFEx
- Pixel grid size depends on sampling and on the object
- Models: background, point source, **de Vaucouleurs, Sérsic, exponential**
- Levenberg-Marquardt minimization algorithm
- Initial parameter guesses based on SEx-v.1 measurements
- Residuals are non linear ——> chi2 modified for improved robustness towards outliers

#### SExtractor v.3:

Multi galaxy fit/deblending

Bertin (in prep.)

#### SExtractor v.2

#### sex -dp

| #VECTOR_ASSOC    | ASSOCiated parameter vector                    |               |
|------------------|------------------------------------------------|---------------|
| #NUMBER_ASSOC    | Number of ASSOCiated IDs                       |               |
| #THRESHOLDMAX    | Maximum threshold possible for detection       | [count]       |
| #FLUX_GROWTH     | Cumulated growth-curve                         | [count]       |
| #FLUX_GROWTHSTEP | Step for growth-curves                         | [pixel]       |
| #MAG_GROWTH      | Cumulated magnitude growth-curve               | [mag]         |
| #MAG_GROWTHSTEP  | Step for growth-curves                         | [pixel]       |
| #FLUX_RADIUS     | Fraction-of-light radii                        | [pixel]       |
| #FWHMPSF_IMAGE   | FWHM of the local PSF model                    | [pixel]       |
| #FWHMPSF_WORLD   | FWHM of the local PSF model (world units)      | [deg]         |
| #XPSF_IMAGE      | X coordinate from PSF-fitting                  | [pixel]       |
| #YPSF_IMAGE      | Y coordinate from PSF-fitting                  | [pixel]       |
| #XPSF_WORLD      | PSF position along world x axis                | [deg]         |
| #YPSF_WORLD      | PSF position along world y axis                | [deg]         |
| #ALPHAPSF_SKY    | Right ascension of the fitted PSF (native)     | [deg]         |
| #DELTAPSF_SKY    | Declination of the fitted PSF (native)         | [deg]         |
| #ALPHAPSF_J2000  | Right ascension of the fitted PSF (J2000)      | [deg]         |
| #DELTAPSF_J2000  | Declination of the fitted PSF (J2000)          | [deg]         |
| #ALPHAPSF_B1950  | Right ascension of the fitted PSF (B1950)      | [deg]         |
| #DELTAPSF_B1950  | Declination of the fitted PSF (B1950)          | [deg]         |
| #FLUX_PSF        | Flux from PSF-fitting                          | [count]       |
| #FLUXERR_PSF     | RMS flux error for PSF-fitting                 | [count]       |
| #MAG_PSF         | Magnitude from PSF-fitting                     | [mag]         |
| #MAGERR_PSF      | RMS magnitude error from PSF-fitting           | [mag]         |
| #NITER_PSF       | Number of iterations for PSF-fitting           |               |
| #CHI2_PSF        | Reduced chi2 from PSF-fitting                  |               |
| #ERRX2PSF_IMAGE  | Variance of PSF position along x               | [pixel**2]    |
| #ERRY2PSF_IMAGE  | Variance of PSF position along y               | [pixel**2]    |
| #ERRXYPSF_IMAGE  | Covariance of PSF position between x and y     | [pixel**2]    |
| #ERRX2PSF_WORLD  | Variance of PSF position along X-WORLD (alpha) | [deg**2]      |
| #ERRY2PSF_WORLD  | Variance of PSF position along Y-WORLD (delta) | [deg**2]      |
| #ERRXYPSF_WORLD  | Covariance of PSF position X-WORLD/Y-WORLD     | [deg**2]      |
| #ERRCXXPSF_IMAGE | Cxx PSF error ellipse parameter                | [pixel**(-2)] |
| #ERRCYYPSF_IMAGE | Cyy PSF error ellipse parameter                | [pixel**(-2)] |
| #ERRCXYPSF_IMAGE | Cxy PSF error ellipse parameter                | [pixel**(-2)] |
| #ERRCXXPSF_WORLD | Cxx PSF error ellipse parameter (WORLD units)  | [deg**(-2)]   |

#### SExtractor v.2

**Residuals** Exponential profile CFHT/MegaCam

# Output structural parameters:

- MAG\_MODEL
- REFF
- ELLIPTICITY
- errors
- chi2 of fitting
- PSF properties
- star/galaxy discriminators



#### **Star/Galaxy classifier**

**CLASS\_STAR** 

10<sup>4</sup> 10<sup>4</sup> 10<sup>3</sup> 10<sup>3</sup> 10<sup>2</sup> 10<sup>2</sup>  $10^{1}$ 10 10<sup>0</sup> 10<sup>0</sup>  $10^{-1}$ 0.06 10-1 CLASS STAR<0.95 SPREAD MODEL < 0.003 CLASS STAR>0.95 |SPREAD MODEL|>0.003 CLASS STAR>0.95 and |SPREAD MODEL|<0.003 |SPREAD\_MODEL|>0.003 and |CLASS\_STAR|>0.95 0.05 1.0 0.04 0.8 0.03 SPREAD\_MODEL CLASS\_STAR 0.6 0.02 0.01 0.4 0.00 0.2 -0.010.0 -0.02└ 17  $10^{1}$  $10^{2}$ 10<sup>-1</sup> 17 18 19 20 21 22 23 24  $10^{\circ}$ 18 19 20 21 22 23 ō 1000  $10^3$  $10^4$ 500 1500 2000 105 MAG AUTO MAG AUTO

11

SPREAD\_MODEL

#### **Pros-cons**



- Fast
- SExtractor and PSFEx compatible
- Robust PSF modeling
- developed for large area
- tested on simulations (DES ...)
- tested on true data (BCS, CS82 ...)



- background treatment

   (e.g. GALAPAGOS
   Barden et al. 2012)
- brightness profiles available

# CFHT – 'Stripe 82' data



# CS82 survey in a nutshell

- France-Canada-Brazil project
- CFHT, MegaCam
- 173 science quality pointings with slight overlaps
- 'Stripe 82'
- goal: weak and strong **lensing** survey
- i-band
- service mode insuring good seeing condition <0.8"

Proposal accepted spring 2010 Observations August 2010 – January 2011 Data reduction completed Survey paper: Erben et al. in prep (2013)

#### CFHT – Stripe 82



# **CS82 observing conditions**

- CS82 mean seeing = 0.6"
- Depth: ~24.1 in 2-arcsec circular apertures
- Source number density: ~17.25 per arcmin<sup>2</sup> (standard cuts)





## **CS82** first results

#### The CFHT-Stripe 82 survey: Imaging Data and Catalogues

Thomas Erben<sup>1</sup>, Jean-Paul Kneib<sup>2,3</sup>, Alexie Leauthaud<sup>4,5</sup>, Martin Makler<sup>67</sup>, Ludovic van Waerbeke<sup>8</sup>, and the CS82 collaboration. <sup>1</sup>Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany. <sup>2</sup>Laboratoire d'Astrophysique de Marseille - LAM, Université d'Aix-Marseille & CNRS, UMR7326, 38 rue F. Jolico, 713388 Marseille Cedex 13, France. <sup>3</sup>EPFL <sup>4</sup>Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 27, 704, Japan. <sup>5</sup>Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720. <sup>6</sup>Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ 22290, S. Brazil <sup>1</sup>Laboratório Interinstitucional de e-Astronomia, Rua Gen. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil <sup>8</sup>Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, V6T 121, BC, Canada.

#### Weak lensing mass map and peak statistics in CFHT/Stripe82 survey

Huan Yuan Shan<sup>1\*</sup>, Jean-Paul Kneib<sup>1,2</sup>, Johan Comparat<sup>2</sup>, Eric Jullo<sup>2</sup>, Alex, Charbonnier<sup>4,5</sup>, Thomas Erben<sup>6</sup>, Martin Makler<sup>5</sup>, Bruno Moraes<sup>5</sup>, Ludovic Van Wastbace, , Frédéric Courbin<sup>1</sup>, Georges Meylan<sup>1</sup>, Charling Tao<sup>8,9</sup>, James I., La Jon<sup>10</sup> <sup>1</sup>Laboratoire d'astrophysique (LASTRO), Ecole Polytechnique Fédérale de Lausanne (EPFL), Observative et Jourers, CH-1290 Versoix, Switzerland <sup>2</sup>Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, 13288, Marseille, France <sup>3</sup>Centre de Physique des Particules de Marseille, CNRS/NZP3-Luminy and Université de la Ventor de, Casse 907, F-13288 Marseille Cedex 9, France <sup>4</sup>Observatiori o do Valongo, Universitade Federal do Río de Janeiro, R. Jean, Germany <sup>5</sup>Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Jameiro, R. 20 90-180, Brazil <sup>6</sup>Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, 522 Gram, Germany <sup>7</sup>Department of Physics and Astronomy, University of Bonn, Auf dem Hügel 71, 522 Gram, Germany <sup>8</sup>Department of Physics and Astronomy, University of Wei Kor 260 University, Beijing, 100084, China <sup>8</sup>Department of Physics and Astronomy, University of Wei Kor 260 University, Reijing, 100084, China <sup>10</sup>Department of Physics and Astronomy, University of Wei Kor 260 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

#### Stochastic bias of colour-selected BAO tracers by joint clustering-weak lensing analysis

Johan Comparat<sup>1</sup>, Eric Jullo<sup>1</sup>, Jean-Paul Kneib<sup>1,2</sup>, Carlo Schimd,<sup>1</sup> HuanYuan Shan,<sup>2,3</sup> Thomas Erben,<sup>4</sup> Olivier Ilbert<sup>1</sup> Joel Brownstein,<sup>5</sup> Anne Ealet,<sup>6</sup> Stéphanie Escoffier,<sup>6</sup> Bruno Moraes,<sup>7,8</sup> Nick Mostek,<sup>9</sup> Jeffrey A. Newman,<sup>10</sup> M. E. S. Pereira,<sup>7,8</sup> Francisco Prada,<sup>11,12,13</sup> David J. Schlegel,<sup>9</sup> Donald P. Schneider,<sup>14,15</sup> Carlos H. Brandt<sup>7,16</sup>

#### Cross-correlation of cosmic microwave background lensing and galaxy lensing

The ACT and CS82 collaborations (Dated: October 21, 2013)

We measure the cross-correlation of cosmic microwave background lensing convergence has derived from Atacama Cosmology Telescope data with galaxy lensing convergence massive measured by the CFHT Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is detected for the first time with a significance of  $3.2\sigma$ , which corresponds to a 16% constraint on the amplitude of structure at redshifts ~ 0.7. With upcoming improved lensing data, this lovel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.



# **Morphology catalog production**

~ 16,700,000 objects (~ 150,000/tile)

#### Moraes et al. in prep

- Deeper than SDSS
- Choice of configuration
  - deblending deepness computation time size of catalogs
- 4 profiles: de Vaucouleurs, exponential, Sérsic, deV+exp
- 177 tiles x 4 profiles x ~ 12h/profile/tile
- Masking
- Cuts: S/N, flagged objects, star/galaxy





### **SEx-PSFEx configurations**



estimation of the internal statistical errors due to the choice of the configurations



# **SPREAD\_MODEL** as a sanity check



- coadds: different seeings, bad estimation of the PSF
  - Point like sources selection crucial



## Lensfit: ellipticity comparison





### **Comparison with SDSS: exp**

Galaxies – S/N > 5 – SDSS DR9: fracDeV\_i < 0.02 (matching) Area of 14 sq. degrees





Good agreement for MAG < 21



## **Comparison with SDSS: deV**

Galaxies – S/N > 5 – SDSS DR9: fracDeV\_i > 0.98 (matching) Area of 14 sq. degrees



Good agreement for MAG < 21



## **BOSS/CS82** galaxies



#### **COSMOS** field

### The COSMOS field



#### **CFHT-D2: catalog production**

# objects after masking and S/N > 5:

- point-like: ~ **38,700**
- extended: ~ **174,200**

SExtractor run: ~ 30.5 h Same diagnostics as CS82



#### SPREAD MODEL

24

26

2000 4000 6000 8000 12000

### **Catalogs comparison**

COSMOS catalog: produced with GIM2D
CFHT D2 catalog: our pipeline
Objects selection: elimination of stars, good quality fit
cat A = (COSMOS Zurich) vs cat B = (CFHT D2)



### **Catalogs comparison**

#### Ellipticity

#### **Effective radius**



- Ellipticity and effective radius similar
- The PSF is correctly reconstructed

### **Conclusions: 2 points**

#### **SExtractor + PSFEx:**

- Estimation of the PSF, variation over the field of view
- The model-fitting is working well
- Very competitive in term of computation time
- Extensive tests to assess its quality

#### CFHT – Stripe 82 data:

- Data of very good quality (mean seeing 0.6") deep (mag limit ~ 24)
- Originally a lensing survey
- Morpholgy catalogs produced (deV, exp, Sersic, deV+exp)
- Redshift z=[0.2;0.7]
- Galaxy evolution/morphology studies to come...

# kecélebackup

### The 'Stripe 82'



CFHT Stripe-82 survey (170 deg<sup>2</sup>, i<23.5, seeing<0.8") UKIDDS LAS, K<sub>vega</sub>=18.4 UKIDSS: DXS Field 4 CFHTLS W4

WISER (this proposal), K<sub>AB</sub>=22

BOSS (220 deg<sup>2</sup>, 40,000 redshifts DEEP2 and PRIMUS VVDS Wiggle-z Radio : VLA

### **Strategy of observation**

- -40° < RA < +45° and -1° < Dec < +1°</li>
- avoiding massive stars



#### **CS82** magnitudes

#### MAG\_AUTO - MAG\_PSF

#### MAG\_MODEL – MAG\_PSF



Calibration of the data done with MAG\_AUTO MAG\_AUTO is missing flux at the wings (Annunziatella et al. 2012) offset MAG\_AUTO – MAG\_PSF observed

### CS82/SDSS



Point like sources + exp/ deV profiles: offset due to the calibration with MAG\_AUTO

**deV profile:** additional offset due to the truncation of the profile by the SDSS pipeline (info. By Claire Lackner)

#### **Ellipticity: Lensfit vs Sextractor**

**Comparison on CS82** 1 tile (p28m)



**SExtractor** 

0.8

#### exponential

