HI Morphologies and Kinematics a concise perspective

- An overview of HI in galaxies
- Rotation curves and the TFR
- Mass distributions in galaxies

Kapteyn

Astronomical Institute

• Forthcoming HI surveys

university of

groningen

Marc Verheijen Kapteyn Institute

APERTIF

DETAILED

Deconstructing Galaxies, Santiago, 18-22 Nov 2013

ALAXIES

21cm spectral-line aperture synthesis imaging

Pro's

- Atomic Hydrogen is kinematically cold (5-15 km/s dispersion)
- HI disks reach far into the Dark Matter Halo
- Extended HI disks are fragile and responsive
- Observations at high spectral resolution (few km/s)

Cons

- Elaborate data acquisition/reduction/analysis process
- Observations at relatively low angular resolution (>5")
- Restricted to nearby Universe (z<0.25)
- No large-area surveys exist to date

HI disks reach far into the Dark Matter halos

NGC 2403

NGC 6946

Messier 31

Boomsma (2007)

Battaglia et al (2005)

Braun et al

HI imaging : wide-field 'IFU' spectroscopy

data from THINGS survey visualization: Davide Punzo, Kapteyn Institute

DDO 81

HI data products (Ursa Major - WSRT)

Verheijen & Sancisi (2001)

HI data products (THINGS -VLA / BCD)

HI data products (WHISP - WSRT)

Noordermeer et al (2005)

Perturbed HI velocity fields

Lopsidedness

Morphological lopsidedness

Kamphuis 1993

Kinematical lopsidedness

Heald & Oosterloo 2008

Warps and stellar streams

No gas associated with the streams.

NGC 5055

NGC 4013

NGC 5907

Deconstructing Galaxies, Santiago, 18-22 Nov 2013

R. Jay GaBany

lay GaBany

Fueling the Blue Cloud

sustaining star formation building up stellar mass Evidence for cold accretion or Galactic Fountain / Fallback?

Jumping across the Green Valley

Gas in early-type galaxies

Atlas^{3D} : HI imaging of 166 early-types (1/3 detected)

Lower density regions: extended & regular HI disks

Higher density regions: clumpy & unstructured

Rotation curves are not flat.

Deconstructing Galaxies, Santiago, 18-22 Nov 2013

outer slopes of extended rotation curves

S>0 : rising

S=0 : flat

K-band Tully-Fisher relations

What is the relevant kinematic measure?

consistent with volume depth & measurement error \rightarrow no intrinsic scatter?

K-band Tully-Fisher relations

What is the relevant kinematic measure?

consistent with volume depth & measurement error \rightarrow no intrinsic scatter?

Rotation curve decompositions

disk-halo degeneracy

no constraints on DM halo density profile without knowledge of baryonic mass or M/L

→ maximum-disk <u>hypothesis</u>

supported by kinematic features in rotation curves and velocity fields

Breaking the disk-halo degeneracy

With known M/L, calculate rotation curves of all baryonic components.

$$V_{halo} = \sqrt{V_{obs}^2 - V_{bary}^2}$$

Baryonic contribution to rotation curves

Baryonic RCs are sub-maximal and nearly flat...

Dark Matter halo rotation curves

pseudo-isothermal

 $\rho_{DM}(r)$ from max-disk decompositions inconsistent with NFW.

NFW

The promise of Apertif

APERTIF

The promise of Apertif

APERTIF

A blind HI imaging survey of Ursa Major

A blind HI imaging survey of Ursa Major

detecting & characterizing 3D structures

The push to higher redshifts

Cube size : $9.5 \times 9.5 \times 325$ Mpc³ Beam size : 65×80 kpc² x 80 km/s Large-scale structure revealed by blind HI imaging.

- HI disks are excellent probes of galaxy structure & kinematics spiral arms, warps, rotation curves, streaming motions, triaxiality, ...
- HI reveals physical processes not/hardly seen otherwise tidal interactions, accretion/inflows, tidal/ram-pressure stripping, Galactic fountain, ...
- BTFR may have zero intrinsic scatter when using V_{flat}
- Galaxy disks are sub-maximal with $0.4 < F_{bar} < 0.7$
- Forthcoming blind, large-area HI imaging surveys
 Junbiased view of the role of the environment