Black Holes and their Host Galaxies -Is the Mo-L_{bulge} relation really fundamental ?

Ronald Läsker, Laura Ferrarese, Glenn van de Ven & Francesco Shankar

Läsker et al.

ESO Deconstructing Galaxies 2013

 understand BH-galaxy connection

understand
 BH-galaxy
 connection

 e.g.AGN feedback, accretion ↔ merging

understand
 BH-galaxy
 connection

e.g. AGN feedback, accretion ↔ merging
BHMF

 calibrate secondary / indirect M.
 measurement methods

Why another M. - L_{bul} calibration?

Why another M. - L_{bul} calibration?

Why NIR (K-band) ?

- better tracer of stellar Mass (M $_{\star}/L$) than visual λ
- little dust extinction

NIR (K-band) !

Pending issues:

huge + variable background \rightarrow subtraction?

NIR (K-band) !

example: background oversubtraction in 2MASS

NIR (K-band) !

Pending issues:

huge + variable background \rightarrow subtraction?

depth resolution decomposition

Disparate Results

Solution: CFHT WIRCam (and some careful reduction) • seeing FWHM 0.8" (cf. 2MASS: 2" - 3") → nuclei, inner disks

Solution: CFHT WIRCam (and some careful reduction) • seeing FWHM 0.8" (cf. 2MASS: 2" - 3") → nuclei, inner disks

 WIRCam limit: μ_{K,AB} > 26 mag/arcsec² ↔ μ_{V,AB} ≈ 28 mag/arcsec²

 → outer disks, Ellipticals' "wings"

Solution: CFHT WIRCam (and some careful reduction) • seeing FWHM 0.8" (cf. 2MASS: 2" - 3") → nuclei, inner disks

- WIRCam limit: μ_{K,AB} > 26 mag/arcsec²
 ↔ μ_{V,AB} ≈ 28 mag/arcsec²
 - → outer disks, Ellipticals' "wings"
- Wide Field (20' x 20')
- Improved Dithering & Sky Modeling !!

Efforts pay off: 2MASS versus ...

... didicated WIRCam data and reduction.

(note: outer disk extends much farther than shown area)

first "standard model":
 Sérsic Bulge (+ exponential Disk)

 \rightarrow L_{b,std} & L_{t,std}

then "improved model":
Ellipticals: mask core
other: Nucleus, Bar, Inner Disk, Spiral Arms, Envelope

example: NGC1300

displayed area: approx. 7' x 4' (39 x 22 kpc)

subtracted: disk

remaining: spiral, bar, bulge, inner disk and nucleus

subtracted: disk and spiral

remaining: bar, bulge, inner disk and nucleus

subtracted: disk, spiral and bar

remaining: bulge, inner disk and nucleus

subtracted: disk, spiral, bar and bulge

remaining: inner disk and nucleus

subtracted: disk, spiral, bar, bulge and inner disk

remaining: nucleus

... and all components added back in.

Bar Nucleus Spiral inner disk Image: State of the s

"Standard" (Bulge + Disk) vs extra component(s) included

"Envelopes": necessary but ambiguous

Data

- single Sersic - (Bulge + Disk)

- (B+D + Envelope)

first "standard model":
 Sérsic Bulge (+ exponential Disk)

 \rightarrow L_{b,std} & L_{t,std}

then "improved model":
Ellipticals: mask core
other: Nucleus, Bar, Inner Disk, Spiral Arms, Envelope

 \rightarrow L_{b,min}, L_{b,max}, L_{sph} & L_{t,imp}

first "standard model":
 Sérsic Bulge (+ exponential Disk)

 \rightarrow L_{b,std} & L_{t,std}

then "improved model":

Ellipticals: mask core
other: Nucleus, Bar, Inner Disk, Spiral Arms,

Envelope

total - disk (- spiral)

→ Lb,min, Lb,max, Lsph & Lt,imp ← total : sum of all components

only bulge
"spheroid": bulge (+ envelope)

first "standard model":
 Sérsic Bulge (+ exponential Disk)

 \rightarrow L_{b,std} & L_{t,std}

Results: improved bulge parameters

Bulge Size - Lum relation using simple bulge(+disk) model

... and using improved models (detailed decomp.).

However, Size - Lum of the total light distribution is even tighter.

Results: BH Scaling Relations

Results: BH Scaling Relations

Results

 The log-slope of the M•-Mbul(Lbul) relation is significantly smaller than unity (0.7±0.1)
 and it depends on modeling detail.

Results

 The log-slope of the M•-Mbul(Lbul) relation is significantly smaller than unity (0.7±0.1)
 and it depends on modeling detail.

3. The M_•-L_{tot} relation is robustly characterized

4. and its intrinsic scatter is consistent with Mo-L_{bul}.

 I. Correlation does NOT improve when bulge parameters are more reliably determined !
 → M_• - L_{bul} not "fundamental"

 Correlation does NOT improve when bulge parameters are more reliably determined !

 → M• - L_{bul} not "fundamental"

 M• - L_{tot} ought to be considered, theoretically and as M• indicator

- I. Correlation does NOT improve when bulge parameters are more reliably determined !
 - \rightarrow M_• L_{bul} not "fundamental"
- 2. Mo Ltot ought to be considered, theoretically and as Mo indicator
- 3. Log-slope << I for M_● M_{bul}
 → consequences for models (AGN feedback, gas accretion mode, mergers)

3. Log-slope << I for M. - M_{bul}
 → consequences for models (AGN feedback, gas accretion mode, mergers)

Summary

shallow M. - M_{bul} (log-slope << 1)
 bulge properties difficult to determine
 use NIR M. - L_{tot} instead of M. - L_{bul}

