Secular evolution in the green valley

Thiago S. Gonçalves Karín Menéndez-Delmestre João Paulo Nogueira-Cavalcante Kartik Sheth Chris Martin

Bimodality in colors

Willmer+06

The mass flux density

 $\Phi(M_r, NUV - r) = \Phi_B(M_r) \langle \tau(M_r, NUV - r; \xi) \rangle$

- Stellar mass
- Number density
- Transition timescales

Spectroscopic indices to determine star formation history of galaxies

Kauffmann+03

Martin+07

The universe was forming stars more at a faster rate in the past

Hopkins+06

Downsizing!!

The CM diagram and the Luminosity function at z~0.8

Luminosity functions are systematically shifted conça towards brighter magnitudes at higher redshift

D_n(4000) vs H_{d,A}

Deepest spectra ever taken of green valley galaxies (8-9hr Keck)

Galaxies move across the green valley more rapidly at z~0.8

Gonçalves+12

Mass flux density happens in fainter, less massive galaxies in recent times

The mass flux density evolution agrees with the growth of the red sequence (Faber et al. 2007)

"Top-down" scenario for the evolution of the red sequence:

- Massive red galaxies form earlier from quenching of star formation in massive spirals
- This process moves to low-mass galaxies in the local universe
 - Downsizing!

Evolution of the CM diagram

Physical processes?

Peng+10

Bars and secular evolution

Nogueira-Cavalcante+, in prep

EGS, HST/ACS, z~0.8 Lotz+08

Ellipticity determination (Menéndez-Delmestre+07)

Summary

- Through deep spectroscopy, we can estimate the star formation history of galaxies at z~0.8
- The evolution of the mass flux density: at earlier times, faster transtion happening in more massive galaxies
- "Top-down" scenario: more massive galaxies in the red sequence were formed earlier, and less massive objects fill in at later times
 - Bars appear to indicate slow quenching. More secular evolution at low-z?

Correcting for extinction

Contamination:

Up to 70% of the green valley galaxies are dusty starbursts detected in MIPS 24um

Extinction-corrected CM diagram

Star formation acceleration (SFA)

GALAXY PHYSICAL PARAMETERS (GPP) ACROSS THE UVOCMD.

Martin, Gonçalves et al. 2013

Example spectra

Spectral features are distinguishable down to r~24

Gonçalves+12

Bars come AFTER quenching? Increased bar fraction in the red sequence

Masters+12

No evolution in central density or velocity dispersion after quenching

We will be able to correlate quenching timescales with bar properties - at low AND high redshift

Fang+13