Galaxy formation modes and their relation to structure

Andreas Burkert

CAST, University of Munich

Galaxy formation modes and their relation to structure Andreas Burkert CAST, University of Munich ORDINARY SPIRALS GALAXIES LIPTICAL. Sa **S**0 **E(d)**4 SB0 E(b)4 SBa Disky Boxy BARRED SPIRALS З -2.44 (0.12) 2 1 0 -1 -2 **Bigiel et al** -3 typical uncertainty -4 0 2 3 5

 $\log (\Sigma_{mol gas} (M_{sun} pc^{-2}))$

The Larson models

(Larson 69, 74, 75, 76)

Gas infall forms disk galaxies

Major mergers form ellipticals

Toomre & Toomre 1972, Hernquist 1989-2011, Springel, Hopkins et al. 2003-2011, Robertson & Bullock 2008, Naab et al. 2003-2011 Dekel & Birnboim 2003,2006,2009, Keres et al. 2005, 2009, Davé 2007, Dekel et al. 2009, Agertz et al. 2009, Ceverino et al. 2010, Genel et al. 2010

Dobbs, Burkert & Pringle 11a,b, 12a,b

Feedback puffs up disk

Filamentary interarm features (spurs)

Agertz

Dobbs, Burkert & Pringle 11a,b, 12a,b

Feedback puffs up disk

Filamentary interarm features (spurs)

Agertz

The closed box model of self-regulated disk galaxy formation

(Wada+04; Dobbs+11a,b,12a,b; Bonnell+13; Brunner+13)

 $SFR(t) \downarrow$ and $M_* \uparrow$

The galaxy main sequence

Galaxy main sequence (Noeske et al. 07; Daddi et al. 07, Peng et al. 10, Bouche et al. 10, Wuyts et al. 11):

$$SFR \approx 6 \left(\frac{M_*}{10^{11} M_{\odot}} \right) (1+z)^{2.5} \frac{M_{\odot}}{yr}$$

Cosmic baryonic accretion rate (Neistein & Dekel 08

$$\left(\frac{dM_g}{dt}\right)_{acc} \approx 7 \cdot \varepsilon_g \left(\frac{M_{DM}}{10^{12} M_{\odot}}\right)^{1.1} (1+z)^{2.2} \frac{M_{\odot}}{yr}$$

(Birnboim & Dekel 03; Dekel & Birnboim 06; Ceverino et al. 10, 12)

The universal gas depletion timescale

$$SFR = \frac{M_{H_2}}{\tau_{sf}}$$
 with $\tau_{sf} \approx 1 - 2 \cdot 10^9 \, yrs$

- Central limit theorem
- τ_{sf} is almost independent of redshift
- Gas depletion timescale 50 times greater than local free-fall timescale.

$$au_{ff} \ll au_{sf} < au_{Hubble}$$

continuous replenishment

(Bouché et al. 07, McKee & Ostriker 08, Genzel et al. 10,11, Daddi et al. 10, Dave 11,12, Krumholz+ 12, Lilly et al. 13, Forbes et al. 13)

 $\longrightarrow SFR = \dot{M}_{acc,eff}$

• au_{sf} does not determine SFR

What's about metallicity?

(Everett+ 8,10, Brook+ 11, Hopkins+ 12, Dalla Vecchia+ 12, Bolatto+ 13, Hirschmann+13, von Glasow+ 13, Hanasz+ 13, Agertz+ 13)

What's about the (molecular) gas mass?

$$M_g = \dot{M}_{acc,eff} \cdot \tau_{sf}$$

 $M_g = SFR \cdot \tau_{sf} \sim M_* \cdot \tau_{sf} \longrightarrow$

$$\tau_{sf} \sim \frac{M_g}{M_*}$$
$$M_g = SFR \cdot \tau_{sf} \sim M_* \cdot \tau_{sf} \longrightarrow$$

$$\tau_{sf} \approx 3Gyr(1+z)^{-1} \left(\frac{M_{vir}}{10^{12}M_{\odot}}\right)^{-0.5}$$

$$\longrightarrow$$

$$\alpha_{wind} = \left(\frac{M_{vir}}{10^{12} M_{\odot}}\right)^{-2/3}$$

(Forbes+, astro-ph/1311.1509; Burkert+14)

This is consistent with recent models of **cosmic-ray driven** galactic winds (Wadepuhl&Springel 11; Salem&Bryan 13, Booth+13)

Evolution off the galaxy main sequence and the formation of red and dead galaxies

Major mergers clearly happen

(e.g. Hopkins+ 03-11; Naab+ 03-11, Johansson+09-11; Remus+12, see poster by Schauer+13)

Major mergers clearly happen

(e.g. Hopkins+ 03-11; Naab+ 03-11, Johansson+09-11; Remus+12, see poster by Schauer+13)

Disks can sometimes be quite robust

Teyssier 08

Disks can sometimes be quite robust

z=15.54		
Copyright R. Teyssler (200	98)	

Teyssier 08

Cappellari+11,13

Cappellari+11,13

Cappellari+11,13

- High-z compact ellipticals are flattened and disky (Bezanson+09, van der Wel+11, 13; Chang+ 13)
- They might have formed from extended high-z massive gas disks, going through violent disk instability (Dekel & Burkert, astro-ph/1310.1074)

- High-z compact ellipticals are flattened and disky (Bezanson+09, van der Wel+11, 13; Chang+ 13)
- They might have formed from extended high-z massive gas disks, going through violent disk instability (Dekel & Burkert, astro-ph/1310.1074)

Surface Density: log10(Sigma / (1Msun/pc^2))							
0.	95				5.4418		
- 10							
- מ							
- 0 0							
۔ ہ ^ا							
- 10				111111111			
-	10	-5	0 [kpc]	5	10		
Time: 0	00 Myr			0.00 Ork	oits(10kpc)		

$$M_{g} = \dot{M}_{acc} \cdot \tau_{sf}$$
High $\dot{M}_{acc} \sim (1+z)^{2.2} \xrightarrow{j}$ High $\delta_{g} = \frac{M_{g}}{M_{*}}$

$$Q = 1 \rightarrow \sigma = \delta_{g} \cdot v_{rot}$$

- High-z compact ellipticals are flattened and disky (Bezanson+09, van der Wel+11, 13; Chang+ 13)
- They might have formed from extended high-z massive gas disks, going through violent disk instability (Dekel & Burkert, astro-ph/1310.1074)

Surface Density: log10(Sigma / (1Msun/pc^2))							
	0.95				5.4418		
10	_						
വ							
0 0							
¥.							
ŝ							
10	-						
Ì	-10	-5	0	5	10		
			[kpc]	5	10		
Time:	0.00 My	/r		0.00 Orbi	its(10kpc)		

$$\begin{split} M_g &= \dot{M}_{acc} \cdot \tau_{sf} \\ \text{High } \dot{M}_{acc} \sim (1+z)^{2.2} \xrightarrow{/} \text{High } \delta_g = \frac{M_g}{M_*} \\ Q &= 1 \implies \sigma = \delta_g \cdot v_{rot} \\ \hline v_{radial} \approx \sigma \cdot \frac{\sigma}{v_{rot}} = \delta_g^2 \cdot v_{rot} \end{split}$$

- High-z compact ellipticals are flattened and disky (Bezanson+09, van der Wel+11, 13; Chang+ 13)
- They might have formed from extended high-z massive gas disks, going through violent disk instability (Dekel & Burkert, astro-ph/1310.1074)

$$\begin{split} M_g &= \dot{M}_{acc} \cdot \tau_{sf} \\ \text{High } \dot{M}_{acc} \sim (1+z)^{2.2} \xrightarrow{\checkmark} \text{High } \delta_g = \frac{M_g}{M_*} \\ Q &= 1 \rightarrow \sigma = \delta_g \cdot v_{rot} \\ \hline v_{radial} \approx \sigma \cdot \frac{\sigma}{v_{rot}} = \delta_g^2 \cdot v_{rot} \end{split}$$

VDI: (Dekel&Burkert 13)

$$\tau_{sf} < \tau_{inflow} \rightarrow \lambda_{disk} \le 0.05$$

Oser 10,12

Oser 10,12

The evolution of massive ellipticals

(de Lucia+06; Oser+10,12; Johansson+09,12; Hirschmann+12; Hilz+12.13; Naab+07, 09,13; see however e.g. Gallego+12; Posti+13)

• High-z disks that did not experience VDI form fast rotating Es.

• High-z disks that did not experience VDI form fast rotating Es.

Galaxy formation is a boundary condition problem

