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COBE Observations of the Cosmic
Microwave Background Radiation (1990s)

The starting points for cosmological studies

nowadays are the observations of the Cosmic
Microwave Background Radiation by the COBE
satellite in the early 1990s.
e The spectrum is very precisely that of a
T =228 K

perfect black-body at a radiation

' temperature of 2.726 K.

e A perfect dipole component is detected,
corresponding to the motion of the Earth
through the frame in which the radiation
would be perfectly isotropic.

e Away from the Galactic plane, the radiation
is isotropic to better than one part in 10°. At
this level, significant temperature
fluctuations AT /T ~ 10~> were detected
on scales 8 > 10°.

AT = 3.353 mK




Cosmic time in units of present age of Universe
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Hubble's Law

A modern version of Hubble’s
law for the brightest galaxies in
rich clusters of galaxies,

v = Hgr. All classes of galaxy
seem to follow the same
Hubbles law. H is Hubbles
constant.



Newtonian Cosmological Models

In 1934, Milne and McCrea showed that the structure
of the Friedman equations can be derived using
non-relativistic Newtonian dynamics. Consider a
galaxy at distance z from the Earth and determine its
deceleration due to the gravitational attraction of the
matter inside the sphere of radius x centred on the
Earth. By Gauss’s theorem, because of the spherical
symmetry of the distribution of matter within x, we can
replace that mass, M = (47 /3)oz3, by a point mass
at the centre of the sphere and so the deceleration of
the galaxy is
. GMm Admtxom
m = ——- = ——"5 - (1)
x 3

The mass of the galaxy m cancels out on either side of
the equation, showing that the deceleration refers to
the sphere of matter as a whole rather than to any

particular galaxy.




We now introduce comoving coordinates. We are dealing with isotropic Universes
which expand uniformly. We therefore introduce the concept of comoving distance. If
the distance between two points expanding with the Universe is R and R is their
separation at the present epoch, we can write x = (R/Rg)r and so take out the
expansion of the Universe. | will normally set the scale factor equal to unity at the
present epoch, Rg = 1 for simplicity. R is the scale factor.

We can also express the density in terms of its value at the present epoch, o = oo R 3.
Therefore,

. e . A4tGoR
R = |ﬁ.|@© or R = |ﬁu ANV
3R2 3
Multiplying (3) by R and integrating, we find
. 8nG . 8nGoR?
R? = M|mmo + constant| or |R?= 4 wm -+ constant. (3)

This Newtonian calculation shows that we can identify the left-hand side of (3) with the
Kinetic energy of expansion of the fluid and the first term on the right-hand side with its
gravitational potential energy.



Einstein’s Field Equations

In the full GR analysis, Einstein’s field equations reduce to the following pair of
iIndependent equations.

— N_.ﬁ.Q wﬁ 1 ]

k=-"""R ? + MV + [AAR] ; (4)
o R mﬁ.QQ 2 OM 1 2

R2=="CR? - T>m g . (5)

In these equations, R is the scale factor, p is the total inertial mass density of the matter
and radiation content of the Universe and p the associated total pressure. R is the
radius of curvature of the geometry of the world model at the present epoch and so the
term I%\%m IS simply a constant of integration. The cosmological constant A, which
has been included in the terms in square brackets in (4) and (5), has had a chequered
history since it was introduced by Einstein in 1917.



The Meaning of the Term o + w

Let us look more closely at the meanings of the various terms. Equation (5) is referred
to as Friedman’s equation and has the form of an energy equation. The First Law of
Thermodynamics in its relativistic form needs to be built into this equation. We can
write it in the usual form

dU = —pdV . (6)

We need to formulate the first law in such a way that it is applicable for relativistic and
non-relativistic fluids and so we write the internal energy U as the sum of all the terms
which can contribute to the total energy of the fluid in the relativistic sense. Thus, the
total internal energy consists of the fluid’s rest mass energy, its kinetic energy, its
thermal energy and so on. If we write the sum of these energies as it = >, €5, the
iInternal energy Is ¢tV and so, differentiating (6) with respect to R, it follows that

dV

Q
%Amﬁot\v = P35 (7)



Now, V « R3 and so, differentiating, we find

detot |, ,(etot + p)
3 =0. 8
ir T I (8)
This result can be expressed in terms of the inertial mass density associated with the

total energy 1ot = oc? and so (8) can also be written

p
do ? i MV
— 43 =0. 9
=t m (9)
This is the type of density ¢ which should be included in (4) and (5).

In the case of a gas of ultrarelativistic particles, or a gas of photons, we can write

p= Wmﬁoﬁ. Therefore,

detot , 4etot _
o_|%+ mo =0 andso etor x R4 (10)

In the case of a gas of photons, .54 = . Nhv and, since N o« R~3, we find v o« R~ 1.
This is just the formula for redshift.



Let us now return to the analysis of (5). Differentiating

”@mwlm
3 R2

with respect to time and dividing through by R, we find

R? 3AR?

. 4nGR?dp 8mGoR?
R = IAR
3 dR T 3 T T g

Now, substituting the expression for do/d R from (9), we find

e i+ )+ .

that is, we recover (4).

Thus, equation (13) has the form of a force equation, but, as we have shown, it also
Incorporates the relativistic form of the First Law of Thermodynamics as well. This

(11)

(12)

(13)

pressure term can be considered a ‘relativistic correction’ to the inertial mass density,
but it is unlike normal pressure forces which depend upon the gradient of the pressure
and, for example, hold up the stars. The term o + Aw@\omV can be thought of as playing

the role of an active gravitational mass density.



The Cosmological Constant A

In 1917, Einstein introduced the A-term in order to incorporate Mach’s principle into
General Relativity - namely that the local inertial frame of reference should be defined
relative to the distant stars. In the process, he derived the first fully self-consistent
cosmological model - the static Einstein model of the Universe.

Equation (4) is
An G

F=-""R(o+ v +[LAR] . (14)

Einstein’s model is static and so R = 0 and the model is a ‘dust model’ in which the
pressure is taken to be zero. Therefore,

4G
%m@ =IAR or [A=4rGol. (15)

Einstein’s perspective was that this formula shows that there would be no solutions of
his field equations unless the cosmological constant was finite. If A were zero, the
Universe would be empty.




The Cosmological Constant A

Let us consider the first of the field equations with finite A.

:||| @ w
h=-—— m?+%v+w>m. ﬁ@

Even in an empty universe, with o = 0, p = 0, there is a net force acting on a test
particle. There is no obvious interpretation of this term in term of classical physics.
There is, however, a natural interpretation in the context of quantum field theory.

A key development has been the introduction of Higgs fields into the theory of weak
Interactions. These were introduced in order to eliminate singularities in the theory and
to endow the W= and Z° bosons with masses. Precise measurement of the masses of
these particles at CERN has confirmed the theory very precisely. The Higgs fields are
scalar fields, unlike the vector fields of electromagnetism or the tensor fields of General
Relativity. The scalar fields have negative pressure equations of state p = —oc?.



The Cosmological Constant A

In the modern picture of the vacuum, there are zero-point fluctuations associated with
the zero point energies of all quantum fields. The stress—energy tensor of a vacuum has
a negative pressure equation of state, p = —oc?. This pressure may be thought of as a
‘tension’ rather than a pressure. When such a vacuum expands, the change in energy
is dU = —pdV in expanding from V to V 4 dV which is just 4+oc? dV so that, during
the expansion, the mass-energy density of the negative energy field remains constant.

We can find the same result from (9).

p
do A@ + |wv
— 43 €/, =0.
dR + R
It can be seen that, if the vacuum energy density is to remain constant, it follows that

p = Imow.

We can now relate gy to the value of A. We can now set A = 0 and instead include the
energy and pressure of the vacuum fields into equation (16).



The Cosmological Constant A

. A7GR 3
R=—— 3 Am3+@<+ ?v (17)
where, in place of the A-term, we have included the density of ordinary mass om and
the mass density ov and pressure py of the vacuum fields. Since pyv = —pvc?, it follows
that
. #ﬁ@mw
R = 3 ——(om — 20v) . (18)

As the Universe expands, om = 0o/ R3 and oy = constant. Therefore,

AnGog , 8nGovR

e : 19
32 T3 (19)

Equation (19) has precisely the same dependence upon R as of the ‘cosmological

term’ and so we can formally identify the cosmological constant with the vacuum mass

density.

R=—




Density Parameters in the Matter and Vacuum Fields

Therefore, at the present epoch, R = 1, the first field equation becomes

. A 8rG
R(tg) = —— 20 4 =&Y (21)
3 3
It is convenient to express densities in terms of the critical density oc defined by
oc = (3H5/87G) = 1.88 x 107 2°h2 kg m~3. (22)

This is the density of the critical Einstein-de Sitter world model. Then, the actual density
of the model og at the present epoch can be referred to this value through a density
parameter 20 = pg/oc.

Qg = mﬁ@mo |

3H§

The subscript 0 has been attached to 2 because the critical density oc changes with
cosmic epoch, as does 2. It is convenient to refer any cosmic density to oc. For
example, we will often refer to the density parameter of baryons, <2g, or of visible
matter, <2,,is, or of dark matter, {245k, and so on — these are convenient ways of
describing the relative importance of different contributions to 2.

(23)



Density Parameter in the Vacuum Fields

A density parameter associated with o, can now be introduced, in exactly the same
way as the density parameter {2 was defined.

mﬁ.Q©< 2
QA= ———F-- andso A =3H52 . 24
N wmmwv 0-=¢A A v
The dynamical equations (4) and (5) can now be written
) QoHE 5
R=-"204 QA HER: 25
Sz T SnHG (25)
: Qomw 2
RE="20_ QAHER? . 26
= n2 T S2AHG (26)

A traditional way of rewriting these relations is in terms of a deceleration parameter qq
defined by ¢ = —R/R? at the present epoch. Then, in terms of Qg and 2, we find,

—— LN O 27
q0 5 A (27)




Density Parameters in Matter and Vacuum Fields

We can now substitute the values of R and R at the present epoch, R = 1 and
R = Hy, into (26) to find the relation between the curvature of space, 2 and Q.

o2

o = HEl(Q0 +922) 1], s@

or

_ 1 _ [0+ 25) —1]
R2 Amw\m%v .

A common practice is to introduce a density parameter associated with the curvature of

space at the present epoch €2« such that

(29)

K

o2

Qe — ——— 30
K m%@ww A v

Then, equation (29) becomes

Qo+ QN +02x=1. (31)



Density Parameters in Matter and Vacuum Fields

Thus, the condition that the spatial sections are flat Euclidean space becomes

(Qo+Qp)=1. (32)

The radius of curvature Rc of the spatial sections of these models change with scale
factor as Rc = R¥® and so, if the space curvature is zero now, it must have been zero

at all times in the past. This is one of the great attractions of the simplest inflationary
picture of the early Universe.



Estimating the Value of €25

In their review of the problem of the cosmological constant, Carroll, Press and Turner
described how a theoretical value of 25 could be estimated using simple concepts
from quantum field theory. They found the mass density of the repulsive field to be

ov = 10°° kg m—3, about 10120 times greater than permissable values at the present
epoch which correspond to py < 10727 kg m—3.

Heisenberg’s Uncertainty Principle states that a virtual pair of particles of mass m can
exist for atime t ~ 5\3%. corresponding to a maximum separation x ~ h/mec.
Hence, the typical density of the vacuum fields is p ~ m/z3 ~ nw\S#\mw.

The mass density in the vacuum fields is unchanging with cosmic epoch and so,
adopting the Planck mass for mp; = (he/G)1/2 = 5.4 x 1878 = 3 x 1019 GeV, for
the mass associated with the quantum fluctuations in the gravitational field, the mass
density corresponds to about 1097 kg m—3. This is quite a problem. We have to
explain why pv decreased by a factor of about 10129 at the end of the inflationary era.
In this context, 10~ 120 looks remarkably close to zero.



Key Results from the R-W Metric

e All the physics of the expansion of the Universe is built into the function R(t), the
scale factor. R(t) is normalised to the value 1 at the present epoch t = .

e The curvature of space ¥ changes with scale factor as R®(¢) = RR.

e By redshift, we mean the shift of spectral lines to longer wavelength because of
their recession velocities from our Galaxy. If e Is the wavelength of the line as
emitted and )\ the observed wavelength, the redshift z is defined to be

A0 — A
;=20 _7¢ (33)
Ae
e It follows directly from the R-W metric that the redshift is directly related to the
scale-factor R through the relation
Rt = — (34)
1 + 2z

This is the real meaning of redshift in cosmology.



The Concordance Model

This set of parameters is consistent with all observations listed above:

e Hubble’s constant Hy = 72 km s—1 Mpc—1

e Baryonic density parameter (2g = 0.047

e Cold Dark Matter density parameter 2 = 0.233

e Total Matter density parameter (25 = Q2g + 2p = 0.28

e Density Parameter in Vacuum Fields €2, = 0.72

e Optical Depth for Thomson Scattering on Reheating - = 0.17

e Curvature of Space Q25 + 290 = 1;, kK = 0.

For illustrative purposes, | will use these values in the calculations which follow.



The Properties of the Concordance Model

It therefore is sensible to regard this as the framework model for cosmological studies.

The Friedman equation is:

o QoH5 ¢ 2 50
R? = mo|$w+b>mom . (35)
Using the relation R = 1/(1 + z), we find
d
= —Ho(1+2)[(1+2)%(Q02+ 1) - Qp2(z + 2]/, (36)

Cosmic time ¢t measured from the Big Bang follows immediately by integration

dz

w”\qu” 1 \N . AWNV
0 Ho Joo (14 2)[(1 + 2)2(Q02z + 1) — Qpz(z 4 2)]1/2




The Properties of the Concordance Model

The evidence suggests that we live in a Universe with zero spatial curvature, R — oo,

and so 2p + Q25 = 1. This result simplifies the time-redshift relation:

12 1 z dz
0 Ho Joo (1 4 2)[Q0(1 + 2)3 4+ QA]Y/?
The cosmic time—redshift relation becomes

2 1+ coséd
w“ H\M_DA .
“wmob> m_D%

1/2
v where tané A@v (14 2)3/2.

QA
The present age of the Universe follows by setting z = 0

to = ; In 1 \H/\ -
_ |
“wmobw/\ AH_. mN>VH\

If we take (2, = 0.72 and 2o = 0.28, the age of the world model is

To = 0.983H; ! = 1.32 x 1010 years.

(38)

(39)

(40)

(41)



Radiation Dominated Universes

The variations of p and o with R can now be substituted into Einstein’s field equations:

=" 04+ 5) + [30R]

. mﬁ Q@ Q

Therefore, setting the cosmological constant A = 0O, we find

. 8mGeg 1 .~ 8mGeqg 1 2
R = Re = - —. 42
3¢? R3 3¢c2 R2?2 R2 (42)
At early epochs we can neglect the constant term ¢2 / 52 and integrating
327Geg\ /4 3c2
R = A T mov t1/2 or = momlh — (== _ )2, (43)
3c2 327G

The dynamics of the radiation-dominated models, R ~ t1/2, depend only upon the total
Inertial mass density in relativistic and massless forms. The force of gravity acting upon
all the massless and relativistic components determines the rate of deceleration of the
early Universe.



The Wave Equation for the Growth
of Small Density Perturbations (1)

The standard equations of gas dynamics for a fluid in a gravitational field consist of
three partial differential equations which describe (i) the conservation of mass, or the
equation of continuity, (ii) the equation of motion for an element of the fluid, Euler’s
equation, and (iii) the equation for the gravitational potential, Poisson’s equation.

Equation of Continuity w +V.-(ov) =0; (44)
. . 0 1
Equation of Motion ®|N + (v-V)v=—-Vp—-—Vo¢; (45)
o
Gravitational Potential : VZ2¢ = 47Go . (46)

These equations describe the dynamics of a fluid of density ¢ and pressure p in which
the velocity distribution is v. The gravitational potential ¢ at any point is given by
Poisson’s equation in terms of the density distribution o.

The partial derivatives describe the variations of these quantities at a fixed point in
space. This coordinate system is often referred to as Eulerian coordinates.



Then, we perturb the system about the uniform expansion vg = Hg7:

v=wvg+0ov, 90=p909+do, p=po+p, ¢»=¢g+ . (47)
After a bit of algebra, we find the following equation for adiabatic density perturbations
A = 6o/ 00:
d?A R\dA ¢z

T T 4o 2 = V250 4+ 4nGéo . 48
a2z T2\ R) ar T gora Yoo T AmGoe (48)

where the adiabatic sound speed nm IS given by 0p/0o = nm. We now seek wave
solutions for A of the form A « expi(kc - r — wt) and hence derive a wave equation
for A.

d2A R\ dA

where k. is the wavevector in comoving coordinates and the proper wavevector k is
related to k. by k. = Rk. This is a key equation we have been seeking.



The Jeans’ Instability (1)

The differential equation for gravitational instability in a static medium is obtained by
setting R = O . Then, for waves of the form A = Ag expi(k - r — wt), the dispersion

relation,
w? = om\aw — 47Goo , (50)

IS obtained.

o If om\% > 417G op, the right-hand side is positive and the perturbations are
oscillatory, that is, they are sound waves in which the pressure gradient is sufficient
to provide support for the region. Writing the inequality in terms of wavelength,
stable oscillations are found for wavelengths less than the critical Jeans’

wavelength A

1/2
2
vﬁ_“|ﬁ.”Om T

- 51
v Gy (51)



The Jeans’ Instability (2)

o If nmwm < 471G oo, the right-hand side of the dispersion relation is negative,
corresponding to unstable modes. The solutions can be written

A= ADgexp(lt+ik-r), (52)
where
v,M 1/2
M=+ |47Goo | 1 — >|m . (53)

The positive solution corresponds to exponentially growing modes. For
wavelengths much greater than the Jeans’ wavelength, A > )\, the growth rate
becomes AfﬁQmoVH\w. In this case, the characteristic growth time for the instability
IS

r=T"1 = (47Go0) 1?2 ~ (Gog) /2. (54)

This is the famous Jeans’ Instability and the time scale 7 is the typical collapse
time for a region of density og.



The Jeans’ Instability in an Expanding Medium

We return first to the full version of the differential equation for A.

d2A R\ dA

The second term 2(R/R)(dA /dt) modifies the classical Jeans’ analysis in crucial
ways. It is apparent from the right-hand side of (55) that the Jeans’ instability criterion
applies in this case also but the growth rate is significantly modified. Let us work out the
growth rate of the instability in the long wavelength limit A > X j, in which case we can
neglect the pressure term nmwm. We therefore have to solve the equation

d?A R\ dA

— 4+ 2| — || — = 4nGon A . 56
Q%._l =) a wGog (56)

Before considering the general solution, let us first consider the special cases {20 = 1
and 2o = 0 for which the scale factor-cosmic time relations are R = @ﬁo&m\w and
R = Hgt respectively.



The Jeans’ Instability in an Expanding Medium

The Einstein—de Sitter Critical Model €2p = 1. In this case,

2 R 2
ArGo = —5 and -

—— 57
3t2 R 3t (57)

Therefore,

anL.pab m
dt2 3t dt 3t
By inspection, it can be seen that there must exist power-law solutions of (58) and so

we seek solutions of the form A = at™. Hence

A=0. (58)

SASIC;'Mﬁlw”Ou (59)

which has solutions n = 2/3 and n = —1. The latter solution corresponds to a
decaying mode. The n = 2/3 solution corresponds to the growing mode we are
seeking, A o t2/3 o« R = (1 4+ 2)~ 1. This is the key result

)
A=2c(1+2)"1 (60)

o
In contrast to the exponential growth found in the static case, the growth of the

perturbation in the case of the critical Einstein—de Sitter universe is algebraic.




The Jeans’ Instability in an Expanding Medium

The Empty, Milne Model £2p = O In this case,

R 1
=0 and — = —, 61
0 R (61)
and hence
d2A  2dA
—— 4+ —=0. 62
de? t dt (62)
Again, seeking power-law solutions of the form A = at™, we findn = 0and n = —1,

that is, there is a decaying mode and one of constant amplitude A = constant.

These simple results describe the evolution of small amplitude perturbations,

A = dp/o < 1. Inthe early stages of the matter-dominated phase, the dynamics of
the world models approximate to those of the Einstein—de Sitter model, R t2/3, and
so the amplitude of the density contrast grows linearly with R. In the late stages at
redshifts 25z < 1, when the Universe may approximate to the €2 = 0 model, the
amplitudes of the perturbations grow very slowly and, in the limit 2o = O, do not grow
at all.



The General Solutions

A general solution for the growth of the density contrast with scale-factor for all
pressure-free Friedman world models can be rewritten in terms of the density
parameter <2 as follows:

d?A R\ dA  3QuHZ
4o ()= =200 R3A (63)
dt2 R) dt 2
where, in general,
. 1 5 1/2
R = Hj To Am — Hv + QAR —1) + L (64)

The solution for the growing mode can be written as follows:

A(R) = %% Aw@v \m ar
2 \Rdt/Jo [dR!
dt
where the constants have been chosen so that the density contrast for the standard
critical world model with €29 = 1 and €25 = 0 has unit amplitude at the present epoch,
R = 1. With this scaling, the density contrasts for all the examples we will consider

correspond to A = 10— 3 at R = 10 3. Itis simplest to carry out the calculations
numerically for a representative sample of world models.

. (65)



log(A(R))

Models with 2o = 0

Q,=
0Q,=03
0,=0.1

Q,=0.01

25 2 iyis K 05 0

log(scale factor, R)

The development of density fluctuations
from a scale factor R = 1/1000 to

R = 1 are shown for a range of world
models with €25, = 0. These results are
consistent with the calculations carried
out above, in which it was argued that
the amplitudes of the density
perturbations vary as A o« R so long as
20z > 1, but the growth essentially
stops at smaller redshifts.



log(A(R))

Models with finite €2

-1.4 -1.2 -1 0.8 0.6 0.4 0.2 o
log(scale factor, R)

Q=1,0,=0
Q=03,Q,=0.7
Q,=0.1,Q,=09

The models of greatest interest are the
flat models for which (29 4+ Q) = 1,
in all cases, the fluctuations having
amplitude A = 103 at R = 103,
The growth of the density contrast is
somewhat greater in the cases €2p = 0.1
and 0.3 as compared with the
corresponding cases with €2y = 0. The
fluctuations continue to grow to greater
values of the scale-factor R,
corresponding to smaller redshifts, as
compared with the models with

Qp = 0.



The Relativistic Case

In the radiation-dominated phase of the Big Bang, the primordial perturbations are in a
Sn__mgo:-qoq:_:mﬁma_u_mmBm__no<<<:_o:5mqm_mﬁ_smﬁ_ompcmﬁ_o:odﬂmﬂmﬂmﬁﬂ Wm _m

appropriate.

The equation of energy conservation becomes

% = |4.A@+er“ (66)
WA ._|Wmv = WIAQ._.WVAQ.S. (67)

Substituting p = w?m Into (66) and (67), the relativistic continuity equation is obtained:

% = 49V V). (68)

Euler's equation for the acceleration of an element of the fluid in the gravitational
potential ¢ becomes

(0+ 2) [P 4 (v 90| = ~vp— (04 5) s, (69)



The Relativistic Case

If we neglect the pressure gradient term, (69) reduces to the familiar equation
dv

5 ="V (70)

Finally, the differential equation for the gravitational potential ¢ becomes
3
V26 = 4G Am + |WV | (71)
C
For a fully relativistic gas, p = w%m and so

V24 = 8rGo . (72)

The net result is that the equations for the evolution of the perturbations in a relativistic
gas are of similar mathematical form to the non-relativistic case. The same type of
analysis which was carried out above leads to the following equation

d2A 2\ dA 2
R A|w mGe \%mmv (73)

&m._. R/ dt 3




Summary of the Thermal History of the Universe
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This diagram summarises the key
epochs in the thermal history of the
Universe. The key epochs are

e The epoch of recombination.
e The epoch of equality of matter
and radiation.



The Radiation Dominated Era

At redshifts z > 4 x 10%Qgh?, the Universe was radiation-dominated. If we take into
account the contribution of the neutrinos as well, the expression becomes

£ = H.mm@%mwo_ and so massless particles dominate the dynamics of the Universe at
redshifts

z > 2.4 x 10*Qph? = 3,500

for the concordance values of the parameters.

If the matter and radiation were not thermally coupled, they would cool independently,
the hot gas having ratio of specific heats v = 5/3 and the radiation v = 4 /3. These
result in adiabatic cooling which depends upon the scale factor R as Tg « R~ 2 and

Tr < R~1 for the diffuse baryonic matter and radiation respectively. This is not the
case, however, during the pre-recombination and immediate post-recombination eras
because the matter and radiation are strongly coupled by Compton scattering. The
optical depth of the pre-recombination plasma for Thomson scattering is very large, so
large that we can no longer ignore the small energy transfers which take place between
the photons and the electrons in Compton collisions.



The Sound Speed as a Function of Cosmic Epoch

All sound speeds are proportional to the square root of the ratio of the pressure which
provides the restoring force to the inertial mass density of the medium. The speed of
sound cs is given by

2= (%
do/ o
where the subscript S means ‘at constant entropy’, that is, we consider adiabatic sound
waves. From the epoch when the energy densities of matter and radiation were equal
to beyond the epoch of recombination, the dominant contributors to p and p change
dramatically as the Universe changes from being radiation- to matter-dominated. The
sound speed can then be written

nw — (Op/0T)r |
(00/0T)r + (00/0T)m
where the partial derivatives are taken at constant entropy. It is straightforward to show
that this reduces to the following expression:

: (74)

(75)
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The Damping of Sound Waves

Although the matter and radiation are closely coupled throughout the pre-recombination
era, the coupling is not perfect and radiation can diffuse out of the density
perturbations. Since the radiation provides the restoring force for support for the
perturbation, the perturbation is damped out if the radiation has time to diffuse out of it.
This process is often referred to as Silk damping.

At any epoch, the mean free path for scattering of photons by electrons is
A = (NeoT) 1, where o1 = 6.665 x 10722 m? is the Thomson cross-section. The
distance which the photons can diffuse is

VH\M

rp &~ (D)2 = ($Act v (77)

where ¢ is cosmic time. The baryonic mass within this radius, Mp = Afﬁ\wvanm_ can
now be evaluated for the pre-recombination era.



Horizons and the Horizon Problem

One of the key concepts is that of particle horizons. At any epoch t, the particle horizon
Is defined to be the distance a light signal could have travelled from the origin of the Big
Bang at t = O by the epoch ¢. Its value is

ru(t) = R(t) oﬁ mmw = - LHn - \OMG + 2)edt . (78)

At early times, all the Friedman models tend toward the dynamics of the critical model

m\w
R=Q> AEV v
2

and so the particle horizon becomes ry(t) = 3ct.

A similar calculation can be carried out for the radiation-dominated era shows that
ry(t) = 2ct.



The Horizon Problem

We can now use these results to illustrate the origin of the horizon problem for the
standard Friedman models with 2o = 0. The particle horizon on the last scattering
surface subtends an angle 6y according to an observer at the present epoch. At a
redshift z = 1000, we can safely use the standard matter-dominated solutions of
Friedman’s equation in the limit 20z > 1, D = 2¢/Hp$2p and so

A+ 9

D (A4 )2
This result means that, according to the standard Friedman picture, regions of the
Universe separated by an angle of more than

= H.mbw\w degrees . (79)

OH

H.mbw\m degrees

on the sky could not have been in causal contact on the last scattering surface. Why
then is the Cosmic Microwave Background Radiation so uniform over the whole sky to a
precision of about one part in 10°?



The Inflationary Solution

This horizon problem is circumvented in the inflationary model of the very early
Universe because of the exponential expansion of the scale factor which ensures that
opposite directions on the sky were in causal contact. To illustrate this, consider the de
Sitter model. Normalising R(t) to the value unity at the present epoch, we find

R(t) = exp[Qy2Ho(t — to)],

1/2
. exp Ab>\ Hpt) — 1

Ho Q

rH (%) (80)

1/2
A

. : . 1/2 . L
In the inflationary picture, the value of D>\ IS enormous and so causal communication

can extend far beyond the scale ct when D\H/\mmoﬂ > 1.
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The Simple Baryonic Picture
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We can put together all these ideas to
develop the simplest picture of galaxy
formation. This is the simplest baryonic
picture. It includes many of the features
which will reappear in the ACDM
picture. The diagram shows how the
horizon mass My, the Jeans mass M |
and the Silk Mass M change with
scale factor R.
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The Simple Baryonic Picture

This diagrams, from Coles and
Lucchin (1995) shows
schematially how structure
develops in a purely baryonic
Universe. The problem is that
the temperature fluctuations on
the last scattering surface as
expected to be at least

AT/T ~ 1073, far in excess of
the observed limits.

The solution to this problem
came with the realisation that
the dark matter is the dominant
contribution to 2.



Dark Matter

There is no question but that the Universe is dominated gravitationally on small scales
by Dark Matter.

These reconstructions of the total mass distribution from gravitational lensing show that
the dark matter is dynamically dominant in clusters of galaxies.



Instabilities In the Presence of Dark Matter

Neglecting the internal pressure of the fluctuations, the expressions for the density
contrasts in the baryons and the dark matter, Ag and A respectively, can be written
as a pair of coupled equations

. R\ .
Ap + 2 - Ap = AogAg + AopAp, (81)

y R\ .
Ap +2 - Ap = AegAg + AepAp - (82)

Let us find the solution for the case in which the dark matter has 2o = 1 and the
baryon density is negligible compared with that of the dark matter. Then (82) reduces to
the equation for which we have already found the solution Ap = BR where B is a
constant. Therefore, the equation for the evolution of the baryon perturbations becomes
g R\ .
D_w |_| 2 m D_w — m_.ﬁ.QQUmmw . Amwv



Instabilities In the Presence of Dark Matter

Since the background model is the critical model for which R = Awmoﬁ\mvm\w and
3HZ = 8nGop, equation (83) simplifies to

D D
mw\wb mlp\ma| |_| MQ| Hmm. Amhv
dR dR drR °

The solution, A = B(R — R(), satisfies (84). This result has the following
significance. Suppose that, at some redshift zg, the amplitude of the baryon
fluctuations is very small, that is, very much less than that of the perturbations in the
dark matter. The above result shows how the amplitude of the baryon perturbation
develops subsequently under the influence of the dark matter perturbations. In terms of
redshift we can write

DW — D_U 1— M . Ammv

20

Thus, the amplitude of the perturbations in the baryons grows rapidly to the same
amplitude as that of the dark matter perturbations. To put it crudely, the baryons fall into
the dark matter perturbations and, within a factor of two in redshift, have amplitudes

half that of the dark matter perturbations.



The Cold Dark Matter Picture

This diagrams, also from Coles and
Lucchin (1995) shows schematially how
structure develops in a cold dark matter
dominated Universe. Notice how the
amplitudes of the baryonic perturbations
were very much smaller than those in
the cold dark matter.
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1970).
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The Input Parameters for the Models

e Selection of a cosmological model with values of €2, 25 and Hy.

e The ordinary baryonic matter has density parameter {25, which is only about
5-10% of the dark matter.

e The power-spectrum of the initial perturbations is assumed to be of
Harrison-Zeldovich form p(k) = Ak™ with random phases. The value of n can be
varied to find the best fit to the observations.

Many other components can be included.

Show simulations.



Perturbations on the Last Scattering Layer

Increasing redshift

Fully ionised plasma

z=1130
z=1070
z=1010

6 arcmin

Neutral hydrogen

The diagram shows the range of
redshifts between which half of the
photons of the CMB were last scattered.

The diagram shows schematically the
size of various small perturbations
compared with the thickness of the last
scattering layer. On very large scales,
the perturbations are very much larger
than the thickness of the layer. On
scales less than clusters of galaxies,
many perturbations overlap, reducing
the amplitude of the perturbations.



Large Angular Scales - the Sachs-Wolfe Effect

On the very largest scales, the dominant source of intensity fluctuations results from the
fact that the photons we observe have to climb out of the gravitational potential wells
associated with perturbations which are very much greater in size than the thickness of
the last scattering layer.

On the scales of interest, the fluctuations at the epoch of recombination far exceed the
horizon scale and so the perturbations would represent a change of the gravitational
potential of everything within the horizon. More properly, we should describe these
perturbations as metric perturbations. These ‘super-horizon’ perturbations raise the
thorny guestion of the choice of gauge to be used in relativistic perturbation theory. A
general relativistic treatment, first performed by Sachs and Wolfe (1967), is needed.
The resultis AT /T = (1/3)A¢/c?, recalling that A¢ is a negative quantity.



The Sachs-Wolfe Effect
The Coles-Lucchin Argument

Coles and Lucchin (1995) rationalised how the Sachs—Wolfe answer can be found. In
addition to the Newtonian gravitational redshift, because of the perturbation of the
metric, the cosmic time, and hence the scale factor R, at which the fluctuations are
observed, are shifted to slightly earlier cosmic times. Temperature and scale factor
change as AT /T = —AR/R. For all the standard models in the matter-dominated
phase R « t2/3 and so the increment of cosmic time changes as

AR/R = (2/3)At/t.

But Av/v = —At/t is just the Newtonian gravitational redshift, with net result that
there is a positive contribution to AT /T of —(2/3)A¢/c?. The net temperature
fluctuation is AT/T = 1 A¢/c?

It is then a straightforward calculation to show that, for the 29 = 1 model, the
temperature fluctuations depend upon angular scale as

AT 189 ,(1-n)/2

86
T wmw (86)



Intermediate Angular Scales

The first acoustic peak is associated with perturbations on the scale of the sound
horizon at the epoch of recombination. The amplitudes of the acoustic waves at the last
scattering layer depend upon the phase difference from the time they came through the
horizon to last scattering layer, that is, they depend upon

\Q%H\an. (87)

Let us label the wavenumber of the first acoustic peak k1. Oscillations which are nw out
of phase with the first acoustic peak also correspond to maxima in the temperature
power spectrum at the epoch of recombination. There is, however, an important
difference between the even and odd harmonics of k1. The odd harmonics correspond
to the maximum compression of the waves and so to increases in the temperature,
whereas the even harmonics correspond to rarefactions of the acoustic waves and so
to temperature minima. The perturbations with phase differences ©(n + wv relative to
that of the first acoustic peak have zero amplitude at the last scattering layer and
correspond to the minima in the power spectra.



Intermediate Angular Scales

To find the acoustic peaks, we need to find the wavelengths corresponding to
frequencies

wtrec = N7 . Ammv

Adopting the short wavelength dispersion relation ,
w? = nw\ﬂw — 4rGog = meAm - \AWV ~ mmwm : (89)

the condition becomes
n
Qm\ﬂiw_\mn — N7 \Ai — v/|ﬁ. — BLNAH . AGOV
S
Thus, the acoustic peaks are expected to be roughly evenly spaced in wavenumber.
The separation between the acoustic peaks thus provides us with further information

about various combinations of cosmological parameters.



Intermediate Angular Scales

The next task is to determine the amplitudes of the acoustic peaks in the power
spectrum. The complication is that the acoustic oscillations take place in the presence
of growing density perturbations in the dark matter, which have greater amplitude than
those in the acoustic oscillations. Therefore, in dark matter scenarios, the acoustic
waves are driven by the larger density perturbations in the dark matter with the same
wavelength, that is, the perturbations are forced oscillations. In a simple approximation,
growth rate of the oscillation is driven by the growing amplitude of the dark matter
perturbations:

d2Ag

dt?

The sound speed is given by

= Ap4nGpp — Agk?c? . (91)

1/2

C 40rad C
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(92)




Intermediate Angular Scales

In the limit R — O, the monopole and dipole temperature fluctuations are of the same
amplitude. However, when the inertia of the baryons can no longer be neglected, the
monopole contribution becomes significantly greater than the dipole term.

At maximum compression, kAs = m, the amplitude of the observed temperature
fluctuation is (1 4+ 6R) times that of the Sachs—Wolfe effect. Furthermore, the
amplitudes of the oscillations are asymmetric if R # 0, the temperature excursions
varying between — (W /c2)(1 4+ 6R) for khAs = (2n+ 1)7 and (W /c?) for khs = 2n.

These results can account for the some of the prominent features of the temperature
fluctuation spectrum. The temperature perturbations associated with the acoustic
peaks are much larger than the Sachs—Wolfe fluctuations. The asymmetry between the
even and odd peaks in the fluctuation spectrum is associated with the extra
compression at the bottom of the gravitational potential wells when account is taken of
the inertia of the perturbations associated with the baryonic matter.



Small Angular Scales

e Silk Damping scale results in the suppression of high wave number modes on
scales less than about 8 Mpc at the present epoch.

e The superposition of perturbations damps out the perturbations within the last
scattering layer.

e The Sunyaev-Zeldovich effect associated with hot intergalactic gas in clusters of
galaxies creates additional small scale perturbations.
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Many of the features of the above
analysis can be observed in the WMAP
power spectrum.

e The location of the maximum of the
first peak in the power spectrum.

e The asymmetry between the first,
second and third peaks.

e The flatness of the spectrum at low
values of [.

e The polarisation and the large
signal at very small values of [.



Parameter Estimation using WMAP and SDSS
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Parameter Estimation using WMAP and SDSS

Parameter | Status WMAP alone WMAP + SDSS
: 0.0050 0.0013
wg = 2gh? | Not optional o.oﬁwww 0015 o.omwm“mwwm%
wp = Qph? | Not optional o.Em.w_.moH..mB o.Hmww.m&.mmmm
QA Not optional | 0.75 " 5715 0.699 ' 3945
w
: +0.24 +0.083
T Not optional | 0.21 ' 5774 0.124 75 5c7
Qr*
: 0.56 0.15
As Not optional obm%wmw 0.81 .w.ﬂ.%ww@
ns 1.02 1556 0.977 “5025
(87
r
nt
b Not optional | No constraint H.oo©.wm.mmw
fv = pv/pPD




Concordance Values of the
Cosmological Parameters

Parameter Definition Value
Hj Hubble’s constant 72 kms—1 Mpc—1
€2, Space curvature 0
QA dark energy density parameter 0.72
Qo = Qg + 2p | total matter density parameter 0.28
Qg baryon density parameter 0.047
p dark matter density parameter 0.233
ns scalar spectral index 1
As amplitude of scalar power-spectrum | 0.89
T reionisation optical depth 0.17

These values agree with independent estimates of these parameters by totally different
procedures.



Independent Estimates of Cosmological Parameters

e Hubble Space Telescope estimate of Hubble’s constant h = 72 + 7 km s—1

Mpc—1.
e Estimates of 25 from TypelA supernovae, 25 ~ 0.7.

e Average Mass Density in the Universe from Infall into Superclusters: Q2m = 0.3 if
h = 0.7.

e Synthesis of the light elements: wy = 0.022 + 0.002.

e Nucleocosmochronology: The best estimate of the age of the Galaxy is
Tgal = 12 = 2 billion years.

e Ages of Globular Clusters 1" ~ 13 bhillion years.



