Press Release

Secrets of a Dark Cloud

Unique Infrared SOFI Images of Barnard 68 Probe the Very First Stages of Star Formation

2 July 1999

Astronomers at ESO have recently been "Seeing the Light Through the Dark!" Some months ago, the ESO Very Large Telescope (VLT) observed a classical dark globule, Barnard 68 (B68) , in front of a dense star field in the Milky Way band. CCD images were obtained in various visual wavebands with the FORS1 multi-mode instrument at the 8.2-m VLT ANTU (UT1). They were combined into a colour photo.

This dark cloud is situated at a distance of about 500 light-years (160 pc) towards the southern constellation Ophiuchus (The Serpent-holder). The VLT photo shows it as a compact, opaque and rather sharply defined object, the central parts of which are so dense that they completely block out the light from the stars behind.

It is known that clouds like B68 at some moment begin to contract and subsequently transform themselves into normal, hydrogen-burning stars. But how exactly does this happen? And what is going on just now inside B68 ? Is it currently at the beginning of the contraction phase or have stars already been formed? How dense and heavy is it really?

Answers to some of these basic questions are now being provided by new and unique observations in the infrared part of the spectrum with the SOFI multi-mode instrument at the ESO 3.5-m New Technology Telescope (NTT) at La Silla. For the first time, it has been possible to look right through even the most opaque regions of such an object and learn what is inside in unsurpassed detail.

The SOFI observations

The new near-infrared imaging observations were taken with the SOFI multi-mode instrument at the NTT on La Silla during a spell of excellent observing conditions in March 1999. The measured seeing was about 0.6 arcsec during several hours while these exposures were being made.

SOFI (Son OF ISAAC) is a scaled-down copy of ISAAC, the major VLT instrument that has already produced spectacular observations. SOFI is a unique instrument for the study of extended objects like B68 because of its very sensitive infrared detector and unrivalled large field-of-view.

About 200 exposures (each lasting about 10 sec) were made in each of the H- and Ks-bands to reach as faint objects as possible; less time was spent in the shorter wavelength J-band. They were then added to produce three frames that form the basis for the subsequent study and which were used to produce the images shown here.

Looking into the centre of a dark cloud

Dark clouds are dark because they contain myriads of submicron-sized solid particles - the interstellar dust grains . They also harbour many different species of molecules. They are responsible for the obscuration of light at visible wavelengths. The images and video provide a very direct illustration of the dependence of this obscuration on the wavelength (astronomers speak about "dust extinction"): it is higher at shorter wavelengths than at longer ones.

The new data are unique in the sense that it allows astronomers, for the first time , to see through the very centre of a dense molecular cloud, into the cold regions where stars like our Sun will form. We know this because a large number of background stars, not related to the cloud, are seen through the central, most dense regions of B68 in the Ks-image at 2.16 µm.

About molecular clouds

Dark clouds are the coolest objects in the known Universe with temperatures around -263 °C, just ten degrees above the absolute zero. They are the nurseries of stars and planets. To understand them is to understand the processes that took place when the Solar System was formed about 4,500 million years ago.

Unfortunately, because they are mostly composed of molecular hydrogen (H 2) and also because they are so cold, 99% of a molecular cloud's mass is virtually undetectable by means of direct observations.

A traditional way to study such clouds is by means of observations with radiotelescopes of rare molecules (such as CO, CS and NH 3) that "trace" the molecular hydrogen. However, the analysis of such data is rarely straightforward and a clear and unambiguous interpretation is frequently impossible.

Thanks to the recent advent of improved infrared technology, incorporated into SOFI, it will now become possible to study molecular clouds in a more direct way, as illustrated here. By means of careful measurements of the change of colour of background stars seen through a molecular cloud (cf. the "reddening" of the stars near the center of the first image), astronomers can chart the distribution of matter inside these clouds.

The new SOFI observations of B68 allow such measurements to be done for the first time through the central, densest regions of a molecular cloud. These unique data provide astronomers with important clues on how a dark cloud transforms itself into stars.

Structure and current state of B68

The new SOFI images of B68 are now being studied by ESO astronomer João Alves and his collaborators, in particular Charles Lada (Harvard-Smithsonian Center for Astrophysics, Mass., USA) and Elizabeth Lada (University of Florida, USA). Several interesting conclusions can be drawn already.

Through careful measurements of the colour of the background stars that are seen through the cloud, it is now possible to determine the total amount of obscuration at the center of the cloud. It turns out to be no less than 35 magnitudes in the V-band at wavelength 0.55 µm. This number corresponds to a dimming of the starlight of a factor of no less than 10 14 !

If, in a thought experiment, a sheet of dust with this high degree of obscuration were placed in front of the Sun, there would be eternal darkness on the Earth. Our central star would then shine with magnitude 9 only, i.e. it would be about 15 times too faint to be observable with the naked eye!

An analysis of the map of obscuration shows the detailed distribution of dust within the cloud. The densest part is somewhat to the west (right) of the geometrical center of B68 . It looks as if two smaller areas (to the lower left, i.e. southeast of the center) are detaching themselves from the rest of the cloud.

The small-scale structure of B68 seems to be very smooth and homogeneous. The SOFI observations rule out the presence of "clumpy" structures inside the cloud, on nearly all scales.

The new data clearly show that B68 is now in the very early phase of collapse, on its way towards star formation . The duration of such a stage is relatively short, of the order of 100,000 years, and to catch a cloud in this phase is likely to be a rare occurrence. If the collapse had been going on for a little longer, it would not have been possible to see through this cloud today, since the obscuration would then have been much higher, of the order of hundreds of magnitudes.

Moreover, the observed distribution of matter inside B68 provides us a first glimpse of how nature begins to form stars. These outstanding observations will now be used to test current theories of protostellar collapse.

The total mass of the dust in B68 can be determined quite accurately from the obscuration map by adding over the entire area of the cloud. It comes to about 0.03 solar mass. If the gas-to-dust ratio in B68 is what is normally assumed, about 100, then the total mass of this cloud is about 3 solar masses. Accordingly, only a few stars will eventually form in this cloud.

Future work

After this first, impressive demonstration of what is now possible in this exciting research field with top-class astronomical instruments, other clouds will be studied in the near future, with SOFI and ISAAC. With more data from more clouds, it will soon be possible to comprehend their elusive nature in much greater detail and to characterize the fundamental mechanisms that trigger star formation.

More information

eso9934a : False-colour, infrared composite photo of the dark cloud Barnard 68, obtained on March 8-9, 1999, with the SOFI instrument at the ESO 3.5-m New Technology Telescope (NTT) at La Silla. Three exposures were made through J- (wavelength 1.25 µm - 3 min; here colour-coded as "blue"), H- (1.65 µm - 30 min; "green") and Ks-filters (2.16 µm - 30 min; "red"), respectively. The "reddening" of the background stars that are seen through the cloud is very obvious. It is due to the larger obscuration in shorter wavebands. The sky field measures about 4.9 x 4.9 arcmin 2 (1024x1024 pixels). A slight mismatch between the individual frames is present in the upper corners; this is caused by atmospheric effects. The pixel size is 0.29/arcsec. North is up and East is left.

Connect with ESO on social media

About the Release

Release No.:eso9934
Legacy ID:Photo 29a-c/99
Name:B 68, Barnard 68
Type:Milky Way : Nebula : Appearance : Dark : Molecular Cloud
Milky Way : Nebula : Appearance : Dark : Bok Globule
Facility:New Technology Telescope, Very Large Telescope
Instruments:FORS1, SOFI

Images

Looking through the Dark Cloud B68
Looking through the Dark Cloud B68
The dark cloud B68 at different wavelengths
The dark cloud B68 at different wavelengths
Map of the obscuration in the dark cloud B68
Map of the obscuration in the dark cloud B68

Videos

Secrets of a dark cloud
Secrets of a dark cloud

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.