Pressemitteilung
Erster Nachweis von reflektiertem sichtbaren Licht eines Exoplaneten
Neue Technik für vielversprechende Zukunft
22. April 2015
Astronomen ist es mit dem Exoplanetenjäger HARPS am La Silla-Observatorium der ESO in Chile erstmals gelungen, spektroskopisch sichtbares Licht nachzuweisen, das von einem Exoplaneten reflektiert wurde. Diese Beobachtungen brachten auch neue Eigenschaften des untersuchten Exoplaneten zum Vorschein - 51 Pegasi b, der erste Exoplanet, der um einen normalen Stern entdeckt wurde. Die Ergebnisse sind wegweisend für die Zukunft dieser Technik, insbesondere in Hinblick auf die Einführung von Instrumenten der nächsten Generation am VLT, wie beispielsweise ESPRESSO, und zukünftigen Teleskopen wie dem E-ELT.
Der Exoplanet 51 Pegasi b [1] befindet sich etwa 50 Lichtjahre von der Erde entfernt im Sternbild Pegasus. Entdeckt wurde er 1995 und wird für immer als der erste Exoplanet um einen gewöhnlichen Stern in Erinnerung bleiben, dessen Entdeckung auch bestätigt werden konnte [2]. Er wird auch als archetypischer Heißer Jupiter betrachtet – eine Art von Planeten, von denen man weiß, dass sie relativ häufig auftreten. Sie gleichen Jupiter in Größe und Masse, ihre Umlaufbahnen liegen allerdings viel näher an ihrem Mutterstern.
Seit dieser bedeutenden Entdeckung konnten mehr als 1900 Exoplaneten in 1200 Planetensystem nachgewiesen werden, aber exakt 20 Jahre nach seiner Entdeckung kehrt 51 Pegasi b einmal mehr ins Rampenlicht zurück und liefert einen weiteren Schritt nach vorne in der Untersuchung von Exoplaneten.
Das Team, dem die Entdeckung gelungen ist, wurde von Jorge Martins vom Instituto de Astrofísica e Ciências do Espaço (IA) und der Universidade do Porto in Portugal geleitet, der zurzeit als Doktorand bei der ESO in Chile ist. Sie nutzten das HARPS-Instrument am 3,6-Meter-Teleskop der ESO am La Silla-Observatorium in Chile.
Die derzeit am weitesten verbreitete Methode, die Atmosphäre eines Exoplaneten zu untersuchen, beruht auf der Beobachtung des Spektrums des Muttersterns während des Vorübergangs des Planeten vor dem Stern. Dabei durchläuft ein kleiner Teil des Sternlichts die Atmosphäre des Planeten und wird dabei gefiltert – eine Technik, die man als Absorptionsspektroskopie bezeichnet. Eine alternative Vorgehensweise stellt die Beobachtung des Systems während der Bedeckung des Planeten durch den Stern dar, was in erster Linie Informationen über die Temperatur des Exoplaneten liefert.
Die neue Technik hängt nicht davon ab, ob es von der Erde aus gesehen zu einem Transit kommt, so dass man deutlich mehr Exoplaneten damit untersuchen könnte. Sie ermöglicht die Untersuchung des Spektrums des Planeten direkt im sichtbaren Licht, was bedeutet, dass daraus verschiedene Eigenschaften des Planeten abgeleitet werden können, die mit anderen Methoden nicht nachweisbar sind.
Dabei wird das Sternspektrum als Vorlage für die Suche nach einer abgeschwächten Version desselben Signals verwendet, das von Sternlicht stammt, das vom Planeten reflektiert wird. Aufgrund der Bewegung des Planeten auf seiner Umlaufbahn ändern sich die Signaturen des reflektierten Lichts. Die Messung dieses Effekts ist eine eine äußerst anspruchsvolle Aufgabe, da die Planeten im Vergleich zum gleißend hellen Mutterstern sehr lichtschwach sind.
Das Signal vom Planeten wird außerdem leicht durch andere winzig kleine Effekte und Rauschquellen überlagert [3]. Angesichts derartiger Hürden ist die erfolgreiche Beobachtung dieses Effekts in den HARPS-Daten von 51 Pegasi b ein hervorragender Nachweis dafür, dass die Methode funktioniert.
Jorge Martins erklärt: „Diese Art des Nachweises ist von großer wissenschaftlicher Bedeutung, da sie es möglich macht, die reale Masse des Planeten und die Neigung seiner Umlaufbahn zu bestimmen, was für das tiefere Verständnis des Systems unerlässlich ist. Es ermöglicht uns auch den Reflektionsgrad, die sogenannte Albedo, des Planeten abzuschätzen, woraus man wiederum die Zusammensetzung sowohl der Planetenoberfläche als auch der Atmosphäre ableiten kann.“
Wie sich herausstellte, hat 51 Pegasi b eine Masse von etwa der Hälfte der des Jupiter und eine Bahnneigung von etwa neun Grad in Richtung der Erde [4]. Außerdem scheint der Planet im Durchmesser größer als Jupiter und stark reflektierend zu sein. Dies sind typische Eigenschaften für einen Heißen Jupiter, der sich sehr nah an seinem Mutterstern befindet und viel Sternlicht ausgesetzt ist.
HARPS war für die Arbeit des Teams unentbehrlich, aber die Tatsache, dass dieses Ergebnis mit dem 3,6-Meter-Teleskop der ESO gewonnen wurde, das bei dieser Technik nur einen beschränkten Anwendungsbereich hat, stellt für Astronomen eine aufregende Neuigkeit dar, die die zur Zeit existierenden Instrumentenkonfigurationen werden in Kürze von deutlich leistungsfähigeren Instrumenten an größeren Teleskopen, wie dem Very Large Telescope der ESO und dem zukünftigen European Extremely Large Telescope, übertroffen werden [5].
„Wir erwarten jetzt sehnlichst erstes Licht des ESPRESSO-Spektrografen am VLT, so dass wir genauere Untersuchungen von diesem und anderen Planetensystemen anstellen können“, fasst Nuno Santos vom IA und der Universidade do Porto, einer der Koautoren der neuen Arbeit, abschließend zusammen [6].
Endnoten
[1] Sowohl 51 Pegasi b, als auch sein Mutterstern 51 Pegasi befinden sich unter den Objekten, die im NameExoWorlds-Wettbewerb der IAU für eine Namensfindung durch die Öffentlichkeit ausgeschrieben sind.
[2] Vorher wurden zwei planetare Objekte entdeckt, deren Umlaufbahnen die in der extremen Umgebung eines Pulsars liegen.
[3] Die Herausforderung ist damit vergleichbar, zu versuchen, das schwache Schimmern zu untersuchen, das von einem winzig kleinen Insekt reflektiert wird, das um ein entferntes helles Licht fliegt.
[4] Die Planetenbahn liegt von der Erde aus gesehen also fast auf der Seite, es finden aber ganz knapp keine gegenseitigen Bedeckungen statt.
[5] ESPRESSO am VLT und später noch leistungsfähigere Instrumente an deutlich größeren Teleskopen wie dem E-ELT werden mit deutlich mehr Präzision bei gesteigerter Lichtsammelleistung sowohl die Entdeckung kleinerer Exoplaneten vereinfachen als auch mehr Details über Planeten wie 51 Pegasi b liefern.
[6] Der Titel dieser Pressemitteilung wurde geändert, um deutlich zu machen, dass es sich um den ersten Nachweis von reflektiertem sichtbaren Licht eines Exoplaneten handelt, das zwar spektroskopisch bestimmt wurde, aber keine Messung der Abstrahlung des Exoplaneten als Funktion der Wellenlänge darstellt.
Weitere Informationen
Die hier vorgestellten Ergebnisse von J. Martins et al. erscheinen am 22. April 2015 unter dem Titel „Evidence for a spectroscopic direct detection of reflected light from 51 Peg b ” in der Zeitschrift Astronomy & Astrophysics.
Die beteiligten Wissenschaftler sind J. H. C. Martins (IA und Universidade do Porto, Portugal; ESO, Santiago de Chile), N. C. Santos (IA und Universidade do Porto), P. Figueira (IA und Universidade do Porto), J. P. Faria (IA und Universidade do Porto), M. Montalto (IA und Universidade do Porto), I. Boisse (Aix Marseille Université, Marseille, Frankreich), D. Ehrenreich (Observatoire de Genève, Genf, Schweiz), C. Lovis (Observatoire de Genève), M. Mayor (Observatoire de Genève), C. Melo (ESO, Santiago de Chile), F. Pepe (Observatoire de Genève), S. G. Sousa (IA und Universidade do Porto), S. Udry (Observatoire de Genève) und D. Cunha (IA und Universidade do Porto).
Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.
Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.
Links
Kontaktinformationen
Jorge Martins
Instituto de Astrofísica e Ciências do Espaço/Universidade do Porto
Porto, Portugal
Tel: +56 2 2463 3087
E-Mail: Jorge.Martins@iastro.pt
Nuno Santos
Instituto de Astrofísica e Ciências do Espaço/Universidade do Porto
Porto, Portugal
Tel: +351 226 089 893
E-Mail: Nuno.Santos@iastro.pt
Stéphane Udry
Observatoire de l’Université de Genève
Geneva, Switzerland
Tel: +41 22 379 24 67
E-Mail: stephane.udry@unige.ch
Isabelle Boisse
Aix Marseille Université
Marseille, France
E-Mail: Isabelle.Boisse@lam.fr
Richard Hook
ESO Public Information Officer
Garching, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org
Joerg Gasser (Pressekontakt Schweiz)
ESO Science Outreach Network
E-Mail: eson-switzerland@eso.org
Über die Pressemitteilung
Pressemitteilung Nr.: | eso1517de-ch |
Name: | 51 Pegasi b |
Typ: | Milky Way : Star : Circumstellar Material : Planetary System |
Facility: | ESO 3.6-metre telescope |
Instruments: | HARPS |
Science data: | 2015A&A...576A.134M |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.