Communiqué de presse

ALMA et le VLT détectent un excès d’étoiles massives dans les galaxies à sursauts d’étoiles, proches et lointaines

4 juin 2018

Grâce à ALMA et au VLT, des astronomes ont découvert que les galaxies à sursauts d’étoiles de l’Univers jeune ainsi qu’une zone de formation d’étoiles au sein d’une galaxie proche contenaient une proportion d’étoiles massives nettement supérieure à celle caractérisant les galaxies plus calmes. Ces résultats questionnent les modèles actuels d’évolution des galaxies et modifient notre compréhension de l’histoire de la formation des étoiles ainsi que de la création des éléments chimiques.

Afin de sonder l’Univers lointain et de déterminer la proportion d’étoiles massives contenues au sein de quatre galaxies à formation d’étoiles riches en gaz [1], une équipe de scientifiques pilotée par Zhi-Yu-Zhang, astronome à l’Université d’Edimbourg, a utilisé le Vaste Réseau (Sub-)Millimétrique de l’Atacama (ALMA). Ces galaxies ont été observées alors que l’Univers était beaucoup plus jeune. Il est donc peu probable que ces jeunes galaxies aient déjà connu de nombreux épisodes de formation stellaire, susceptibles de fausser les résultats obtenus.

Zhang et son équipe ont élaboré une nouvelle technique – semblable à la datation au carbone 14 – pour mesurer les abondances des différents types de monoxyde de carbone au sein de quatre galaxies lointaines à formation d’étoiles, emplies de poussière [2]. Ils ont notamment déterminé le rapport de deux types de monoxyde de carbone contenant des isotopes différents [3].

“Les isotopes de carbone et d’oxygène sont d’origines distinctes” précise Zhang. En effet, “les étoiles massives créent davantage d’18O, tandis que les étoiles de faible masse ou de masse intermédiaire produisent davantage de 13C“. L’adoption de cette nouvelle technique a permis à l’équipe de sonder la poussière galactique et d’évaluer, pour la toute première fois, la masse des étoiles contenues dans ces galaxies.

La masse d’une étoile est le facteur déterminant son évolution future. Les étoiles massives brillent intensément et s’éteignent rapidement, tandis que les étoiles de faible masse tel le Soleil émettent un rayonnement plus modeste des milliards d’années durant. Connaissant les proportions d’étoiles de masses différentes qui naissent dans les galaxies, les astronomes peuvent affiner leur compréhension de la formation et de l’évolution des galaxies au fil de l’histoire de l’Univers. S’ensuit l’acquisition de données relatives aux éléments chimiques entrant dans la composition de nouvelles étoiles ainsi que de leurs cortèges de planètes et, finalement, le nombre de trous noirs susceptibles de fusionner et donc de former les trous noirs supermassifs qui occupent les centres de nombreuses galaxies.

Donatella Romano, astronome à l’INAF – Astrophysics and Space Observatory de Bologne et co-auteur de la découverte, explique les résultats obtenus : “Le rapport 18O / 13C caractérisant les galaxies à formation d’étoiles de l’Univers jeune est dix fois supérieur à celui caractérisant les galaxies semblables à la Voie Lactée. Cela implique que les galaxies à sursauts d’étoiles contiennent une proportion nettement plus élevée d’étoiles massives.

La découverte d’ALMA est cohérente avec une autre découverte, relative à l’Univers local. Une équipe emmenée par Fabian Schneider de l’Université d’Oxford au Royaume-Uni a effectué, au moyen du Very Large Telescope de l’ESO, des relevés spectroscopiques de 800 étoiles de la région de formation stellaire 30 Doradus dans le Grand Nuage de Magellan afin de cartographier la distribution des âges et des masses stellaires [4].

Schneider explique les résultats obtenus : “Nous avons détecté des étoiles dont la masse excède les 30 masses solaires dans des proportions supérieures de 30% à la norme. Les étoiles dont la masse excède les 60 masses solaires étaient quant à elles supérieures en nombre de 70% à la proportion attendue. Nos résultats questionnent l’existence supposée du seuil de 150 masses solaires qu’une étoile nouvellement formée ne pourrait dépasser. Ils suggèrent même que ce seuil pourrait être porté à 300 masses solaires !

Rob Ivison, co-auteur du nouvel article, conclut ainsi : “Nos découvertes invitent à questionner notre compréhension de l’histoire cosmique. Les astronomes qui conçoivent les modèles d’Univers doivent désormais reconsidérer leur outil de travail, et lui apporter les modifications nécessaires.”

Notes

[1] Les galaxies à sursauts d’étoiles sont des galaxies traversant une phase d’intense formation stellaire. Le rythme auquel elles créent de nouvelles étoiles peut être plus de 100 fois supérieur au taux de formation stellaire caractéristique de notre galaxie, la Voie Lactée. Les étoiles massives de ces galaxies émettent un rayonnement ionisant, des vents stellaires, et achèvent leurs existences en explosions de supernovae, ce qui influence de manière significative l’évolution dynamique et chimique  du milieu environnant. L’étude de la distribution en masse des étoiles dans ces galaxies permet de mieux comprendre leur propre évolution, et plus généralement, l’évolution de l’Univers.

[2] La méthode de datation au carbone 14 est utilisée pour déterminer l’âge d’un objet composé de matière organique. En mesurant la quantité de 14C, un isotope radioactif dont l’abondance décroît continuellement, il est possible de déterminer la date de fin de vie d’un animal ou d’une plante. Les isotopes utilisés dans le cadre de l’étude d’ALMA, 13C et 18O, sont stables et leurs abondances augmentent tout au long de la durée de vie d’une galaxie, leur synthèse résultant des réactions de fusion nucléaire se produisant à l’intérieur des étoiles.

[3] Ces différentes formes de la molécule sont appelées isotopologues. Elles diffèrent entre elles au travers de leur nombre de neutrons. Les molécules de monoxyde de carbone utilisées dans le cadre de cette étude constituent un exemple de ces espèces moléculaires : le noyau d’un isotope stable de carbone peut renfermer 12 ou 13 nucléons ; le noyau d’un isotope stable d’oxygène peut contenir 16, 17 ou 18 nucléons.

[4] Schneider et al. ont effectué des observations spectroscopiques d’étoiles individuelles au sein de 30 Doradus, une région de formation d’étoiles située dans le Grand Nuage de Magellan tout proche, au moyen du spectrographe FLAMES ( Fibre Large Array Multi Element Spectrograph) installé sur le Very Large Telescope (VLT). Cette étude fut l’une des premières à produire des résultats suffisamment détaillés pour montrer que l’Univers est capable de produire des zones de formation d’étoiles caractérisées par des distributions de masses différentes de celle de la Voie Lactée.

Plus d'informations

Les résultats obtenus avec ALMA sont publiés dans un article intitulé “Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time” de la revue Nature du 4 juin 2018. Les résultats obtenus avec le VLT sont publiés dans un article intitulé “An excess of massive stars in the local 30 Doradus starburst”, qui a été publié dans Science le 5 janvier 2018.

L’équipe d’ALMA est composée de Z. Zhang (Institut d’Astronomie, Université d’Edimbourg, Edimbourg, Royaume-Uni; Observatoire Européen Austral, Garching bei München, Allemagne), D. Romano (INAF, Observatoire Astronomique de Bologne, Bologne, Italie), R. J. Ivison (Observatoire Européen Austral, Garching bei München, Allemagne; Institut d’Astronomie, Université d’Edimbourg, Edimbourg, Royaume-Uni), P .P. Papadopoulos (Centre de Recherche en Astronomie, Académie d’Athènes, Athènes, Grèce; Département de Physique, Université Aristote de Thessalonique, Thessalonique, Grèce) et F. Matteucci (INAF, Observatoire Astronomique de Trieste, Trieste, Italie; INFN, SectionTrieste, Trieste, Italie)

L’équipe du VLT est composée de F. R. N. Schneider (Département de Physique, Université d’Oxford, Royaume-Uni), H. Sana (Institut d’Astrophysique, KU Leuven, Belgique), C. J. Evans (Centre d’Astronomie et de Technologie du Royaume-Uni, Observatoire Royal d’Edimbourg, Edimbourg, Royaume-Uni), J. M. Bestenlehner (Institut Max-Planck dédié à l’Astronomie, Heidelberg, Allemagne; Département de Physique et d’Astronomie, Université de Sheffield, Royaume-Uni), N. Castro (Département d’Astronomie, Université du Michigan, Etats-Unis), L. Fossati (Académie Autrichienne des Sciences, Institut de Recherche Spatiale, Graz, Autriche), G. Gräfener (Institut Argelander d’Astronomie de l’Université de Bonn, Allemagne), N. Langer (Institut Argelander d’Astronomie de l’Université de Bonn, Allemagne), O. H. Ramírez-Agudelo (Centre d’Astronomie et de Technologie du Royaume-Uni, Observatoire Royal d’Edimbourg, Edimbourg, Royaume-Uni), C. Sabín-Sanjulián (Département de Physique et d’Astronomíe, Université de La Serena, Chili), S. Simón-Díaz (Institut d’Astrophysique des Canaries, Tenerife, Espagne; Département d’Astrophysique, Université de La Laguna, Tenerife, Espagne),  F. Tramper (Centre Européen d’Astronomie Spatiale, Madrid, Espagne), P. A. Crowther (Département de Physique et d’Astronomie, Université de Sheffield, Royaume-Uni), A. de Koter (Institut Astronomique Anton Pannekoek, Université d’Amsterdam, Pays-Bas; Institut d’Astrophysique, KU Leuven, Belgique), S. E. de Mink (Institut Astronomique Anton Pannekoek, Université d’Amsterdam, Pays-Bas), P. L. Dufton (Centre de Recherche en Astrophysique, Ecole de Mathematique et de Physique, Université de la Reine à Belfast, Irlande du Nord, Royaume-Uni), M. Garcia (Centre d’Astrobiologíe, CSIC-INTA, Madrid, Espagne), M. Gieles (Département de Physique, Faculté d’Ingénierie et des Sciences Physiques, Université de Surrey, Royaume-Uni), V. Hénault-Brunet (Conseil National de la Recherche, Centre d’Astronomie et d’Astrophysique, Canada; Département d’Astrophysique/Institut de Mathématiques, Astrophysique et Physique des Particles, Université de Radboud, Pays-Bas), A. Herrero (Département de Physique et d’Astronomíe, Université de La Serena, Chili), R. G. Izzard (Département de Physique, Faculté d’Ingénierie et des Sciences Physiques, Université du Surrey, Royaume-Uni; Institut d’Astronomie, Les Observatoires, Cambridge, Royaume-Uni), V. Kalari (Département d’Astronomíe, Université du Chili, Santiago, Chili), D. J. Lennon (Centre Européen d’Astronomie Spatiale, Madrid, Espagne), J. Maíz Apellániz (Centre d’Astrobiologíe, CSIC–INTA, Centre Européen d’Astronomie Spatiale, Villanueva de la Cañada, Espagne), N. Markova (Institut d’Astronomie de l’Observatoire Astronomique National, Academie des Sciences Bulgare, Smolyan, Bulgare), F. Najarro (Centre d’Astrobiologíe, CSIC-INTA, Madrid, Espagne), Ph. Podsiadlowski (Département de Physique, Université d’Oxford, Royaume-Uni; Institut Argelander d’Astronomie de l’Université de Bonn, Allemagne), J. Puls (Université Ludwig-Maximilians de Munich, Allemagne), W. D. Taylor (Centre d’Astronomie et de Technologie du Royaume-Uni, Observatoire Royal d’Edimbourg, Edimbourg, Royaume-Uni), J. Th. van Loon (Laboratoires Lennard-Jones, Université de Keele, Staffordshire, Royaume-Uni), J. S. Vink (Observatoire Armagh, Ireland du Nord, Royaume-Uni) et C. Norman (Université Johns Hopkins, Baltimore, Etats-Unis;  Institut des Sciences du Télescope Spatial, Baltimore, Etats-Unis).

L'ESO est la première organisation intergouvernementale pour l'astronomie en Europe et l'observatoire astronomique le plus productif au monde. L'ESO est soutenu par 15 pays : l'Allemagne, l'Autriche, la Belgique, le Danemark, l'Espagne, la Finlande, la France, l'Italie, les Pays-Bas, la Pologne, le Portugal, la République Tchèque, le Royaume-Uni, la Suède et la Suisse. L'ESO conduit d'ambitieux programmes pour la conception, la construction et la gestion de puissants équipements pour l'astronomie au sol qui permettent aux astronomes de faire d'importantes découvertes scientifiques. L'ESO joue également un rôle de leader dans la promotion et l'organisation de la coopération dans le domaine de la recherche en astronomie. L'ESO gère trois sites d'observation uniques, de classe internationale, au Chili : La Silla, Paranal et Chajnantor. À Paranal, l'ESO exploite le VLT « Very Large Telescope », l'observatoire astronomique observant dans le visible le plus avancé au monde et deux télescopes dédiés aux grands sondages. VISTA fonctionne dans l'infrarouge. C'est le plus grand télescope pour les grands sondages. Et, le VLT Survey Telescope (VST) est le plus grand télescope conçu exclusivement pour sonder le ciel dans la lumière visible. L'ESO est le partenaire européen d'ALMA, un télescope astronomique révolutionnaire. ALMA est le plus grand projet astronomique en cours de réalisation. L'ESO est actuellement en train de programmer la réalisation d'un télescope géant (ELT pour Extremely Large Telescope) de la classe des 39 mètres qui observera dans le visible et le proche infrarouge. L'ELT sera « l'œil le plus grand au monde tourné vers le ciel ».

Liens

Contacts

Zhi-Yu Zhang
University of Edinburgh and ESO
Garching bei München, Germany
Tél: +49-89-3200-6910
Courriel: zzhang@eso.org

Fabian Schneider
Department of Physics — University of Oxford
Oxford, United Kingdom
Tél: +44-1865-283697
Courriel: fabian.schneider@physics.ox.ac.uk

Rob Ivison
ESO
Garching bei München, Germany
Tél: +49-89-3200-6669
Courriel: rob.ivison@eso.org

Mariya Lyubenova
ESO Outreach Astronomer
Garching bei München, Germany
Tél: +49 89 3200 6188
Courriel: mlyubeno@eso.org

Thierry Botti (contact presse pour la France)
Réseau de diffusion scientifique de l'ESO et Laboratoire d'Astrophysique de Marseille
Marseille, France
Tél: +33 4 95 04 41 06
Courriel: eson-france@eso.org

Connect with ESO on social media

Ce texte est une traduction du communiqué de presse de l'ESO eso1817.

A propos du communiqué de presse

Communiqué de presse N°:eso1817fr
Type:Early Universe : Galaxy : Activity : Starburst
Facility:Atacama Large Millimeter/submillimeter Array, Very Large Telescope
Instruments:FLAMES
Science data:2018Sci...359...69S
2018Natur.558..260Z

Images

Vue d’artiste d’une galaxie à sursauts d’étoiles poussiéreuse
Vue d’artiste d’une galaxie à sursauts d’étoiles poussiéreuse
Vue d’artiste d’une galaxie poussiéreuse à formation d’étoiles
Vue d’artiste d’une galaxie poussiéreuse à formation d’étoiles
Vue d’artiste d’une galaxie à formation d’étoiles
Vue d’artiste d’une galaxie à formation d’étoiles
Observations de quatre galaxies lointaines à sursauts d’étoiles au moyen d’ALMA
Observations de quatre galaxies lointaines à sursauts d’étoiles au moyen d’ALMA

Vidéos

ESOCast 163 Light: Excès d’étoiles massives dans les galaxies à sursauts d’étoiles (4K UHD)
ESOCast 163 Light: Excès d’étoiles massives dans les galaxies à sursauts d’étoiles (4K UHD)
Vue d’artiste d’une galaxie lointaine à sursauts d’étoiles
Vue d’artiste d’une galaxie lointaine à sursauts d’étoiles

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.