eso2006pt-br — Nota de imprensa científica

Telescópio do ESO observa estrela “dançando” em torno de buraco negro supermassivo, provando uma vez mais que Einstein tinha razão

16 de Abril de 2020

Observações feitas com o Very Large Telescope do ESO (VLT) revelaram pela primeira vez que uma das estrelas em órbita do buraco negro supermassivo situado no centro da Via Láctea se desloca como previsto pela Teoria da Relatividade Geral de Einstein. A sua órbita apresenta a forma de uma roseta e não a de uma elipse como previsto pela Teoria da Gravitação de Newton. Este resultado, procurado há muito tempo, foi possível graças a medições cada vez mais precisas executadas durante 30 anos, que permitiram aos cientistas desvendar os mistérios do monstro que se esconde no coração da nossa Galáxia.

A Relatividade Geral de Einstein prevê que as órbitas ligadas de um objeto em torno de outro não são fechadas, como descrito na Gravitação Newtoniana, mas que precessam na direção do plano do movimento. Este efeito famoso — observado pela primeira vez na órbita que o planeta Mercúrio descreve em torno do Sol — se tratou da primeira evidência a favor da Relatividade Geral. Detectamos agora, um século mais tarde, este mesmo efeito no movimento de uma das estrelas que orbita a fonte rádio compacta Sagitário A*, situada no centro da Via Láctea. Esta descoberta observacional fortalece a evidência que aponta para Sagitário A* ser um buraco negro supermassivo com 4 milhões de massas solares,” diz Reinhard Genzel, Diretor do Instituto Max Planck de Física Extraterrestre (MPE) em Garching, Alemanha, e o cientista por detrás do programa de 30 anos que deu origem a este resultado.

Situado a 26 000 anos-luz de distância do Sol, Sagitário A* e o aglomerado estelar denso que o rodeia nos fornecem um laboratório único para testar a Física num regime de gravidade extrema, que, de outra maneira, permaneceria inexplorado. Uma destas estrelas, a S2, desloca-se em direção ao buraco negro atingindo uma proximidade de 20 bilhões de km (o que corresponde a cento e vinte vezes a distância entre o Sol e a Terra), sendo assim uma das estrelas mais próximas encontradas em órbita do gigante massivo. Na sua máxima aproximação ao buraco negro, a S2 desloca-se pelo espaço a uma velocidade de quase 3% da velocidade da luz, completando uma órbita a cada 16 anos. “Depois de seguirmos a estrela na sua órbita durante mais de duas décadas e meia, as nossas medições extremamente precisas detectam de forma robusta a precessão de Schwarzschild no percurso da S2 em torno de Sagitário A*,” explica Stefan Gillessen do MPE, que liderou a análise das medições publicada hoje na revista Astronomy & Astrophysics.

A maioria das estrelas e planetas têm uma órbita não circular e por isso o seu deslocamento as afasta e as aproxima do objeto que orbitam. A órbita da S2 precessa, o que significa que a localização do ponto mais próximo do buraco negro supermassivo muda a cada órbita, de tal modo que a órbita seguinte se encontra rodada relativamente à anterior, fazendo assim com que o seu percurso siga a forma de uma roseta. A Relatividade Geral nos dá uma previsão precisa de quanto é que a órbita muda e as medições mais recentes correspondem exatamente à teoria. Este efeito, chamado precessão de Schwarzchild, nunca tinha sido medido antes em uma estrela em órbita de um buraco negro supermassivo.

Este estudo feito com o auxílio do VLT do ESO ajuda também os cientistas a compreender melhor o que se passa na vizinhança do buraco negro supermassivo situado no centro da nossa Galáxia. “Uma vez que as medições da S2 seguem tão bem a Relatividade Geral, podemos colocar limites rigorosos na quantidade de matéria invisível — tal como matéria escura distribuída ou buracos negros menores — que circunda Sagitário A*. Isto é importante para percebermos a formação e evolução dos buracos negros supermassivos,” dizem Guy Perrin e Karine Perrault, os cientistas líderes do projeto em França.

Este resultado é a culminação de 27 anos de observações da estrela S2, usando, na maior parte do tempo, uma frota de instrumentos instalados no VLT do ESO, situado no deserto chileno do Atacama. O número de dados que marcam a posição e velocidade da estrela atesta bem a exaustividade e precisão deste novo trabalho de pesquisa: a equipe efetuou mais de 330 medições no total, usando os instrumentos GRAVITY, SINFONI e NACO. Uma vez que a estrela leva vários anos para completar uma órbita em torno do buraco negro, foi crucial seguir a estrela durante quase três décadas para que pudessem ser reveladas as complexidades do seu movimento orbital.

Este trabalho foi feito por uma equipe internacional liderada por Frank Eisenhauer do MPE com colaboradores de França, Portugal, Alemanha e do ESO. Esta equipe compõe a colaboração GRAVITY, nome retirado do instrumento desenvolvido para o Interferómetro do VLT, que combina a radiação colectada pelos quatro Telescópios Principais de 8 metros do VLT, transformando-os num super-telescópio com uma resolução equivalente a um telescópio de 130 metros de diâmetro. Em 2018, esta mesma equipe revelou outro efeito previsto pela Relatividade Geral, ao observar a radiação emitida pela S2 sendo esticada para comprimentos de onda maiores, na altura em que esta estrela passou perto de Sagitário A*. “O nosso resultado anterior mostrou que a radiação emitida pela estrela sofre os efeitos da Relatividade Geral. Agora mostramos que também a própria estrela sente o efeito da Relatividade Geral,” disse Paulo Garcia, pesquisador no Centro de Astrofísica e Gravitação, no Porto, e um dos cientistas que lidera o projeto GRAVITY.

Com o futuro Extremely Large Telescope (ELT) do ESO, a equipe acredita poder observar estrelas muito mais tênues em órbitas ainda mais próximas do buraco negro supermassivo. “Com o ELT talvez possamos capturar estrelas suficientemente próximas do buraco negro para sentirem efetivamente a rotação, o spin, deste objeto supermassivo,” disse Andreas Eckart da Universidade de Colônia, Alemanha, outro dos cientistas que lidera o projeto. Se tal acontecer, os astrônomos poderão medir as duas quantidades, spin e massa, que caracterizam Sagitário A* e definir o espaço-tempo que o circunda. “Isto corresponderia, uma vez mais, a testar a Relatividade, mas a um nível completamente diferente,” conclui Eckart.

Mais Informações

Esta pesquisa foi apresentada no artigo “Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole” que será publicado na revista Astronomy & Astrophysics.

A equipe que constitui a Colaboração GRAVITY é composta por R. Abuter (Observatório Europeu do Sul, Garching, Alemanha [ESO]), A. Amorim (Faculdade de Ciências, Universidade de Lisboa, Portugal, e Centro de Astrofísica e Gravitação, IST, Universidade de Lisboa, Portugal [CENTRA]), M. Bauböck (Instituto Max Planck de Física Extraterrestre, Garching, Alemanha [MPE]), J.P. Berger (Univ. Grenoble Alpes, CNRS, Grenoble, França [IPAG], e ESO), H. Bonnet (ESO), W. Brandner (Instituto Max Planck de Astronomia, Heidelberg, Alemanha [MPIA]), V. Cardoso (CENTRA e CERN, Genebra, Suíça), Y. Clénet (Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, França [LESIA], P.T. de Zeeuw (Sterrewacht Leiden, Universidade de Leiden, Holanda, e MPE), J. Dexter (Department of Astrophysical & Planetary Sciences, JILA, Duane Physics Bldg., University of Colorado, Boulder, EUA, e MPE), A. Eckart (1º Institute de Física, Universidade de Colônia, Alemanha [Cologne], e Instituto Max Planck de Rádio Astronomia, Bona, Alemanha), F. Eisenhauer (MPE), N.M. Förster Schreiber (MPE), P. Garcia (Faculdade de Engenharia, Universidade do Porto, Portugal, e CENTRA), F. Gao (MPE), E. Gendron (LESIA), R. Genzel (MPE, Departments of Physics and Astronomy, Le Conte Hall, University of California, Berkeley, EUA), S. Gillessen (MPE), M. Habibi (MPE), X. Haubois (Observatório Europeu do Sul, Santiago, Chile [ESO Chile]), T. Henning (MPIA), S. Hippler (MPIA), M. Horrobin (Cologne), A. Jiménez-Rosales (MPE), L. Jochum (ESO Chile), L. Jocou (IPAG), A. Kaufer (ESO Chile), P. Kervella (LESIA), S. Lacour (LESIA), V. Lapeyrère (LESIA), J.-B. Le Bouquin (IPAG), P. Léna (LESIA), M. Nowak (Institute of Astronomy, Cambridge, RU, e LESIA), T. Ott (MPE), T. Paumard (LESIA), K. Perraut (IPAG), G. Perrin (LESIA), O. Pfuhl (ESO, MPE), G. Rodríguez-Coira (LESIA), J. Shangguan (MPE), S. Scheithauer (MPIA), J. Stadler (MPE), O. Straub (MPE), C. Straubmeier (Cologne), E. Sturm (MPE), L.J. Tacconi (MPE), F. Vincent (LESIA), S. von Fellenberg (MPE), I. Waisberg (Departamento de Física das Partículas & Astrofísica, Instituto de Ciências Weizmann, Israel, e MPE), F. Widmann (MPE), E. Wieprecht (MPE), E. Wiezorrek (MPE), J. Woillez (ESO) e S. Yazici (MPE, Cologne).

O ESO é a mais importante organização europeia intergovernamental para a pesquisa em astronomia e é de longe o observatório astronômico mais produtivo do mundo. O ESO tem 16 Estados Membros: Alemanha, Áustria, Bélgica, Dinamarca, Espanha, Finlândia, França, Holanda, Irlanda, Itália, Polônia, Portugal, Reino Unido, República Tcheca, Suécia e Suíça, além do país anfitrião, o Chile, e a Austrália, como parceiro estratégico. O ESO se destaca por realizar um programa de trabalhos ambicioso, focado na concepção, construção e operação de observatórios astronômicos terrestres de ponta, que possibilitam aos astrônomos importantes descobertas científicas. O ESO também desempenha um papel de liderança na promoção e organização da cooperação em pesquisa astronômica. O ESO mantém em funcionamento três observatórios de ponta no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera  o Very Large Telescope e o Interferômetro do Very Large Telescope, o observatório astronômico óptico mais avançado do mundo, além de dois telescópios de rastreio: o VISTA, que trabalha no infravermelho, e o VLT Survey Telescope, concebido exclusivamente para mapear os céus no visível. O ESO também é um parceiro importante em duas instalações situadas no Chajnantor, o APEX e o ALMA, o maior projeto astronômico que existe atualmente. E no Cerro Armazones, próximo do Paranal, o ESO está construindo o Extremely Large Telescope (ELT) de 39 metros, que será “o maior olho do mundo virado para o céu”.

Links

Contatos

Reinhard Genzel
Director, Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel.: +49 89 30000 3280
e-mail: genzel@mpe.mpg.de

Stefan Gillessen
Max-Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel.: +49 89 30000 3839
Cel.: +49 176 99 66 41 39
e-mail: ste@mpe.mpg.de

Frank Eisenhauer
Max-Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel.: +49 89 30000 3563
Cel.: +49 162 3105080
e-mail: eisenhau@mpe.mpg.de

Paulo Garcia
Faculdade de Engenharia, Universidade do Porto and Centro de Astrofísica e Gravitação, IST, Universidade de Lisboa, Portugal
Porto, Portugal
Cel.: +351 963235785
e-mail: pgarcia@fe.up.pt

Karine Perraut
IPAG of Université Grenoble Alpes/CNRS
Grenoble, France
e-mail: karine.perraut@univ-grenoble-alpes.fr

Guy Perrin
LESIA – Observatoire de Paris - PSL
Meudon, France
e-mail: guy.perrin@observatoiredeparis.psl.eu

Andreas Eckart
1st Institute of Physics, University of Cologne
Cologne, Germany
Tel.: +49 221 470 3546
e-mail: eckart@ph1.uni-koeln.de

Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6670
Cel.: +49 151 241 664 00
e-mail: pio@eso.org

Connect with ESO on social media

Este texto é a tradução da Nota de Imprensa do ESO eso2006, cortesia do ESON, uma rede de pessoas nos Países Membros do ESO, que servem como pontos de contato local para a imprensa. O representante brasileiro é Eugênio Reis Neto, do Observatório Nacional/MCTIC. A nota de imprensa foi traduzida por Margarida Serote (Portugal) e adaptada para o português brasileiro por Eugênio Reis Neto.

Sobre a nota de imprensa

No. da notícia:eso2006pt-br
Nome:Sgr A*
Tipo:Milky Way : Galaxy : Component : Central Black Hole
Facility:Very Large Telescope
Instruments:GRAVITY, NACO, SINFONI

Imagens

Concepção artística da precessão de Schwarzschild
Concepção artística da precessão de Schwarzschild
Órbitas das estrelas em torno do buraco negro situado no coração da Via Láctea
Órbitas das estrelas em torno do buraco negro situado no coração da Via Láctea
Imagem de grande angular do centro da Via Láctea
Imagem de grande angular do centro da Via Láctea
Sagitário A* na constelação do Sagitário
Sagitário A* na constelação do Sagitário

Vídeos

ESOcast 219 Light: Estrela dança em torno de buraco negro supermassivo
ESOcast 219 Light: Estrela dança em torno de buraco negro supermassivo
Animação artística do efeito de precessão da S2
Animação artística do efeito de precessão da S2
Zoom no coração da Via Láctea
Zoom no coração da Via Láctea
A estrela S2 faz uma aproximação ao buraco negro situado no centro da Via Láctea
A estrela S2 faz uma aproximação ao buraco negro situado no centro da Via Láctea
Entrevista com Reinhard Genzel (em inglês)
Entrevista com Reinhard Genzel (em inglês)
Entrevista com Reinhard Genzel (em alemão)
Entrevista com Reinhard Genzel (em alemão)
Outra concepção artística do efeito de precessão da S2
Outra concepção artística do efeito de precessão da S2

Veja também