Els telescopis, aquests meravellosos instruments, obren el camí a una comprensió més profunda i més perfecta de la naturalesa en portar la nostra vista molt més enllà del reialme de la imaginació”. René Descartes, 1637.

Durant millennis la bellesa del cel nocturn ha captivat la humanitat sense que ens adonéssim que les estrelles de la nostra galàxia, la Via Làctia, són uns altres sols, o veure els altres mils de milions - miliards - de galàxies veïnes que formen la resta de l'Univers, o que només som un puntet en els 13.700 milions d'anys d'història de l'Univers.

L'observació a ull nu ens feia del tot impossible trobar sistemes solars al voltant d'unes altres estrelles, o esbrinar si potser n'hi ha vida a uns altres llocs de l'Univers.

Avui som al bon camí per resoldre molts dels misteris de l'Univers. Vivim la que podria ser la més important
era de les descobertes astronòmiques.

Sóc el Dr. J. I us faré de guia per la història del telescopi -

l'eina meravellosa que ha estat la finestra de la humanitat a l'Univers.

ULLS ENVERS EL CEL 400 anys de descobertes telescòpiques.

1. Noves vistes del cel

Fa quatre segles, en 1609, un home passejava pels camps de vora casa seva.

S'havia fet un telescopi amb què apuntaria a la Lluna, als planetes i les estrelles.

Era Galileu Galilei.

Avui, 400 anys des que Galileu adrecés un telescopi a la volta del cel els astrònoms utilitzen miralls gegants en cims remots per explorar el firmament els radiotelescopis recullen senyals i remors febles provinents de l'espai exterior.
i els científics, fins i tot han situat a l'espai telescopis en òrbita
més enllà dels molestos efectes de la nostra atmosfera.
I ens ha deixat sense alè el que hi hem vist!
Galileu, de fet, no fou l'inventor del telescopi.
Aqueix mèrit és de Hans Lipperhey, un vitraller
alemany-holandès del que sabem poca cosa.
Hans Lipperhey mai no va utilitzar aquest telescopi per observar els estels.
En comptes d'això, pensava que el seu invent aprofitaria
pels faroners i els militars.
Lipperhey venia de Middelburg, aleshores una gran ciutat comercial
de la jove República d'Holanda.
En 1608 Lipperhey va descobrir que si mirava un objecte llunyà
mitjançant una lent convexa i una côncava, si aquestes es col·locaven
a la distància correcta, l'una de l'altra, l'objecte s'engrandia.

Al setembre de 1608, Lipperhey va mostrar el seu nou invent al príncep Maurici I de Nassau-Orange.

No hi hagués pogut escollir millor ni més avantatjós moment, atès que aleshores els Països Baixos lluitaven contra Espanya en la Guerra dels 80 Anys.

La lent espia engrandia els objectes i tot d'una revelava vaixells enemics i tropes massa allunyats per l'ull sol.

Però, el govern holandès no mai va atorgar Lipperhey una patent per al seu telescopi.

Perquè uns altres mercaders també se n'adjudicaven l'invent especialment el competidor de Lipperhey Sacharias Janssen.
Aquesta disputa no s'hi va resoldre mai.

I des de llavors, el veritable origen del telescopi encara és un misteri.

Galileu Galilei, l'astrònom italià pare de la Física moderna va sentir parlar del telescopi i va decidir construir-se'n un.

"Fa uns 10 mesos, em va arribar el rumor que un flamenc havia construït una ullera espia que fa visibles coses molt llunyanes a l'ull de l'observador que les veu.

Galileu fou el científic més gran del seu temps.

A més, també era un gran defensor de la nova cosmovisió proposada per l'astrònom polonès Nicolau Copèrnic, que mantenia que la Terra girava al voltant del Sol, en comptes de fer-ho a l'inrevés.

Sobre la base del que havia sentit a dir del telescopi holandès, Galileu
va construir els seus propis instruments.

Que van estar de molt millor qualitat.

"Al final, sense estalviar-me treballs ni despeses, la vaig encertar,
construint-me tan bon aparell que els objectes que hi veia semblaven mil vegades més grans que com s'hi podien veure amb els ulls."

Havia arribat l'hora d'adreçar el telescopi al cel.

"Jo pensava i estava convençut que la superfície de la Lluna no era tan suau, uniforme i perfectament esfèrica com molts filòsof s'ho pensaven;
sinó, més aviat, irregular, i amb tot de cavitats i prominències,

Un paisatge fet de cràters,
muntanyes i valls”.

Un món com el nostre!

Algunes setmanes després, al gener de 1610, Galileu va observar Júpiter.

Prop del planeta hi va poder veure quatre punts lluminosos que canviaven la seva posició al cel, nit rere nit, al voltant de Júpiter.

Semblava un dolç ballet còsmic dels satèl·lits en l’òrbita d’aquest planeta.

Aquelles quatre llumetes serien conegudes com les llunes galileianes de Júpiter.

¿Galileu va descobrir alguna cosa més?

Les fases de Venus!

Com ho fa la luna, Venus creixia i minvava de lluna vella a lluna nova i recomençava.

També va veure apèndixs estranys a cada costat de Saturn.

Taques fosques sobre la superfície del Sol.
I, per descomptat, estrelles.

95
00:07:03,560 --> 00:07:06,400
Milers d'estrelles,
potser, fins i tot, milions.

96
00:07:06,520 --> 00:07:09,320
Estrelles massa tênues
per albirar-les només amb els ulls.

97
00:07:09,440 --> 00:07:13,920
Va ser com si, de sobte, la humanitat
s'hagués tret la bena de la ceguesa.

98
00:07:13,960 --> 00:07:18,000
Allà enfora hi havia tot un univers
per descobrir-lo.

99
00:07:23,440 --> 00:07:27,760
Com un reguer de pólvora, la descoberta del telescopi
s'escampà per tot Europa.

100
00:07:27,880 --> 00:07:32,080
Johannes Kepler, a Praga, a la cort de l'emperador Rodolf II,

101
00:07:32,200 --> 00:07:34,800
millorava el disseny
del telescopi.

102
00:07:34,880 --> 00:07:38,840
El cartògraf holandès Michael van Langren,
a Anvers, va dibuixar

103
00:07:38,960 --> 00:07:41,920
els primers mapes versemblants de la Lluna
que mostraven el que ell creia que eren

104
00:07:41,960 --> 00:07:44,400
continents i oceans.

105
00:07:44,560 --> 00:07:49,680
I Johannes Hevelius, un ric
cerveser polonès, va construir telescopis

106
00:07:49,760 --> 00:07:53,200
enormes al seu
observatori de Danzig.

107
00:07:53,280 --> 00:07:57,880
Aquell observatori era tan gran
per tres teulades!

Però, els millors telescopis de l’època foren, tal vegada, els construïts per Christiaan Huygens als Països Baixos.

En 1655, Huygens descobrí Tità, el satèl·lit més gran de Saturn.

Anys després, les seves observacions van revelar els anells de Saturn, quelcom que Galileu mai arribà a escatir.

Finalment, Huygens també va descobrir les taques fosques i els brillants casquets polar de Mart.

Podria haver-hi vida en aquests remots i estranys mons?

Els astrònoms d’avui encara treballen sobre aquesta qüestió.

Tots els primers telescopis eren refractors, utilitzaven lents que captaven i mostraven alhora la llum de les estrelles.

Aviat, els miralls van reemplaçar les lents.
Niccolò Zucchi va estar el primer que va construir aquest telescopi reflector. Isaac Newton el va afinar encara més. A finals del segle XVII, els miralls més grans del món els construïa William Herschel, un organista posat a astrònom que treballava amb la seva germana Caroline.

Els Herschel, a casa seva, a Bath, Anglaterra, emmotllaven metall fos i quan es refredava eren capaços de polir-ne la superfície tan bé que podia reflectir la llum estel·lar. Al llarg de la seva vida, Herschel construí més de 400 telescopis. El més gran era de tals característiques que li calien quatre servents per menar les cordes, rodes i politges necessàries, per seguir el desplaçament de les estrelles al firmament, degut a la rotació de la Terra.
Herschel va ser un explorador i cartògraf que escorcollava el cel i catalogava centenars de noves nebuloses i estrelles binàries visuals.

Ell també va descobrir que la Via Llàctia deu ser com un disc pla. I fins i tot va mesurar el moviment del Sistema Solar en aquest disc mitjançant els moviments relatius de les estrelles i els planetes.

I encara més, el 13 de març de 1781, va descobrir un planeta nou: Urà.

Tot això s’esdevenia 200 anys abans que la sonda espacial Voyager 2 de la NASA oferís la seva visió més acostada d’aquell astre.

Al centre d’Irlanda, al camp fèrtil i esponerós, William Parsons, tercer comte de Rosse, va fer el telescopi més gran del segle XIX.

Amb un enorme mirall metàl·lic d’1,8 metres de diàmetre, aquest telescopi gegant fou batejat com “El Leviatan de Parsonstown”.

En les nits clares, pocs freqüents allà, o sense lluna, el comte seia a l’ocular
i navegava en un viatge a través de l'Univers.

Arribava a la nebulosa d'Orió –que ara sabem que és un bressol d'estrelles.

O a la misteriosa nebulosa del Cranc, el romanent d'una supernova.

I la galàxia del Remoli

Lord Rosse va estar el primer que es va adonar de la seva majestuosa espiral.

Una galàxia com la nostra, amb núvols capriciosos de pols fosca i de gas brillant

miliards d'estrelles soles, i qui ho sap?

Potser fins i tot planetes com la Terra.

El telescopi ha esdevingut el nostre vaixell d'exploració de l'Univers!

2. Com més gran, millor

A la nit, els teus ulls s'adapten a la foscor.

Les pupil·les s'engrandeixen perquè t'entri més llum als ulls.

Així, hi pots veure objectes enfosquits i estrelles tènues.
Ara, imagina que les teves pupil·les tinguessin un metre de diàmetre.

Potser semblaries molt estrany, però tindries una visió molt poc corrent!

El telescopi fa això per tu.

Un telescopi és com un embut.

Els miralls o les lents principals recullen la llum de les estrelles i la duen als teus ulls.

Com més grans són les lents o els miralls del telescopi, et permeten veure objectes més i més tènues.

Les dimensions, en aquest cas, ho són tot.

I un telescopi, com de gran pot arribar a ser?

Doncs, a hores d’ara, no massa gran si es tracta d’un refractor.

La llum de les estrelles ha de passar per la lent principal.

Només podries subjectar-lo per les vores.

Si fessis les lents massa grans, esdevindria massa pesant, llavors es deformaria pel seu propi pes.

Veuriem una imatge distorsionada.

El telescopi refractor més gran de la història fou muntat en 1897, a l’observatori Yerkes, als afores de Chicago.

La seva lent principal a penes feia una mica més d’un metre de diàmetre.
Per increíble que sembli, el tub feia 18 metres de llargada.

Els constructors de telescopis refractors, en acabar el telescopi de Yerkes, havien assolit gairebé els seus límits.

En vols, de telescopis més grans?
Pensem en els miralls.

En un telescopi reflector, la llum de les estrelles es reflecteix en un mirall, en comptes de travessar una lent.

Podries fer el mirall molt més prim que una lent i agafar-lo per darrere.

És a dir: pots construir miralls moltíssim més grans que les lents.

Els grans miralls foren assajats al sud de Califòrnia fa cent anys.

Llavors, el Mont Wilson era un cim remot perdut a les asprives Muntanyes de Sant Gabriel.

Allà el cel era net i les nits, fosques.

George Ellery Hale va construir-hi primer un telescopi d'1,5 metres.

Era més petit que el Leviatan de Lord Rosse, que ja no s'utilitzava però era de molta més qualitat.

I estava molt millor ubicat, tot s'ha de dir.
Hale va demanar finançament per un telescopi de 2,5 metres a l’empresari local John Hooker.

Tones de vidre i d’acer reblat foren encimbellades a Mont Wilson.


I el va atacar, i tant que el va atacar!

A més de la increïble mesura del nou telescopi s’hi afegien transformacions en la manera d’observar-hi la imatge.

Els astrònoms, amb tot, no trigarien a abandonar l’ocular del nou gegant.

En canvi, recollien la seva llum hores i hores en plaques fotogràfiques.

Abans, ningú no s’havia endinsat tan a l’interior del cosmos.

Allò que semblaven nebuloses en espiral van resultar aplecs curulls d’estrelles individuals.

Potser contenien sistemes estel·lars com la nostra Via Llàctia?
Edwin Hubble, a la nebulosa d'Andròmeda,
va descobrir un tipus molt especial d'estrella
que canvia la seva brillantor amb la precisió d'un relotge.

Hubble fou capaç de calcular la distància a Andròmeda
mitjançant les seves observacions:
si fa o no fa, dos milions d'anys llum.

Les nebuloses espirals, com ara Andròmeda, eren clarament
galàxies individuals amb tots els ets i els uts.

Això no va ser pas l'únic que podríem dir-ne increïble.

Es va comprovar que moltes d'aquestes galàxies
es mouen tot allunyant-se de la Via Llàctia.

A Mont Wilson, Hubble va descobrir que les
galàxies més properes s'allunyen a velocitats baixes.

Les galàxies més llunyanes, per contra
es desplacen a velocitats molt més grans.

Qué en podríem concloure?

Que l'Univers s'està expandint.

El telescopi Hooker ha fornit els científics
de la més gran descoberta astronòmica del segle XX.

Gràcies al telescopi, hem pogut dibuixar
les fites de la història de l'Univers.

L'Univers va nàixer
farà un poc menys de 14 miliards d'anys,
com a resultat d’una tremenda explosió del temps i de l’espai, de la matèria i l’energia; allò que anomenem el Big Bang, el Gran Esclat.

Onades petitíssimes fluctuacions quàntiques van expandir-se conformant densos conglomerats en el brou primigeni.

D’aquí es van condensar les galàxies.

En una meravellosa diversitat de mides i formes.

La fusió nuclear, al nucli de les estrelles va engendrar àtoms nous.

Carboni, oxigen, ferro, or.

Les explosions de les supernoves, amb un sol esbufec van escampar aquests elements per l’espai.

La matèria primera per a la formació de noves estrelles.

La matèria primera dels planetes, també!

Un dia, qui sap on? qui sap com? molècules orgàniques van esdevenir organismes vius.

La vida és un miracle en un univers en continua evolució.

Som pols d’estrelles.

Una visió esborronadora i una història majestuosa.
Que ens ha estat duta per les observacions amb el telescopi.

Imagina-t’ho: sense telescopis potser, a hores d’ara, només coneixeríem sis planetes una Lluna i uns pocs milers d’estrelles.

L’Astronomia encara seria a les beceroles.

Com tresors soterrats, l’avantguarda de l’Univers ens ha estat fent agosarats senyals de temps remotíssims.

Prínceps i poderosos, governants o industrials, de la mateixa manera que els científics han mossegat l’esquer ofert pels mars còsmics ignots, i sense cartes de navegació; amb l’afaiçonament d’aquests instruments, la esfera de l’exploració s’ha eixamplat amb molta rapidesa.

George Ellery Hale tenia un somni suprem:

construir un telescopi dues vegades més gran que el que ja detentava el rècord de grandesa.

Heus-ne aquí la gran senyora de l’astronomia del segle XX.

El telescopi Hale, de cinc metres de diàmetre, al Mont Palomar.

Més de cinc tones de pes en moviment, tan acuradament equilibrat
que es mou amb la gràcia i la delicadesa d’una ballarina.

El seu mirall de 40 tones ens ha mostrat estrelles
d’una feblesa menor a 40 milions de vegades del que li és permès de percebre al nostre
ull.

Acabat en 1948, el telescopi Hale
ens ha lliurat insuperables vistes de planetes,
de cúmuls estel·lars, nebuloses i galàxies.

Júpiter, el gegant, i totes les seves llunes.

La impressionant nebulosa de la Flama.

Imperceptibles filets de gas a la nebulosa d’Orió.

Pero, ho podríem fer més gran encara?

Si més no, els astrònoms soviètics
ho van intentar a finals dels anys '70.

A les muntanyes més altes del Caucas,
van construir el Bolshoi Teleskop Azimutalnyi

amb un mirall principal
d’un diàmetre de sis metres.

Tanmateix, la veritat és que no mai es va complir
el que d’aquest telescopi s’esperava.

Claro y ras: era massa gran, massa car,
masa difícil.
Què havien de fer els astrònoms en arribar a aquest punt?

256
00:19:25,080 --> 00:19:28,480
El somni de fer telescòpis més grans s'havia de deixar perdre?

257
00:19:28,560 --> 00:19:31,960
Era la fi prematura de la història del telescopi?

258
00:19:32,080 --> 00:19:33,400
Doncs no!

259
00:19:33,480 --> 00:19:36,480
Avui tenim telescòpis de 10 metres operatius

260
00:19:36,560 --> 00:19:39,160
I se'n projecten de més grans encara.

261
00:19:39,240 --> 00:19:40,720
Quina ha estat la solució?

262
00:19:40,800 --> 00:19:42,640
Les noves tecnologies.

263
00:19:44,000 --> 00:19:48,760
3. La tecnologia al rescat

264
00:19:48,960 --> 00:19:52,800
Així com els cotxes d'avui no s'hi assemblen gaire a un Seat 600, també

265
00:19:52,880 --> 00:19:56,280
els telescòpis contemporanis són radicalment distints dels seus predecessors d'abans

266
00:19:56,360 --> 00:19:58,680
com el telescopi Hale de 5 metres.

267
00:19:58,760 --> 00:20:01,880
D'entrada, les seves muntures són molt més petites.

268
00:20:01,960 --> 00:20:05,840
El model de les velles muntures era equatorial on un dels eixos
es muntava sempre en paral·lel a l’eix de rotació de la Terra.

Per a seguir l’aparent moviment del cel, al telescopi només li cal rotar sobre el seu eixa la mateixa velocitat que ho fa la Terra.

Senzill, però ens hi cal molt, molt d’espai.

Les muntures altazimutals d’avui són molt més compactes.

Amb una d’aquestes muntures, el telescopi pot apuntar com si fos un canó.

L’astrònom tria l’orientació, l’altitud i amb això en té prou.

El problema és mantenir-se al compàs del moviment celest.

El telescopi ha de rotar sobre els dos eixos, a velocitats diferents.

Això només ha estat factible fer-ho quan els telescopis han pogut ser controlats per ordinadors.

A més a més, una muntura petita és més barata de construir i es pot encabir en una cúpula més petita. Això redueix els costos i també permet millorar la qualitat de la imatge.

Veiem, per exemple, els telescopis bessons Keck
a Hawaii.

283
00:21:03,880 --> 00:21:06,600
Tot i tenir miralls de 10 metres
i ser dues vegades més grans

284
00:21:06,680 --> 00:21:10,440
que el del telescopi Hale,
estant muntats en cúpules més petites

285
00:21:10,520 --> 00:21:13,240
que la de Mont Palomar.

286
00:21:15,080 --> 00:21:17,440
Els miralls dels telescopis també han evolucionat.

287
00:21:17,520 --> 00:21:19,120
Abans eren gruixuts i pesants.

288
00:21:19,200 --> 00:21:21,840
A hores d’ara són prims i lleugers.

289
00:21:21,920 --> 00:21:26,800
Les làmines dels miralls, que poden ser de molts metres
d’amplada es fonen en gegantins forns rotatoris.

290
00:21:26,880 --> 00:21:30,320
I amb tot, fan menys
de 20 centímetres de gruix.

291
00:21:30,400 --> 00:21:32,960
Una complicada estructura de suport
protegeix el mirall fi

292
00:21:33,080 --> 00:21:35,200
de trencar-se a causa del seu propi pes.

293
00:21:35,280 --> 00:21:39,120
Pistons i manejadors controlats per ordinador
ajuden a mantenir la forma

294
00:21:39,200 --> 00:21:40,840
exacta que precisen els miralls.

295
00:21:43,400 --> 00:21:45,520
Aquest sistema s’anomena òptica activa.

296
00:21:45,600 --> 00:21:49,840
La idea és compensar i corregir
qualsevol deformació del mirall principal

bé sigui causada per la gravetat, el vent,
o els canvis de temperatura.

Ara, un mirall fi també
pesa molt menys.

Això vol dir que l'estructura que el suporta
inclouent-hi la muntura
pot ser més perfecta, lleugera.

I més barata!

Heus ací el New Technology Telescopi,
de 3,6 metres,
construït per astrònoms europeus
a finals dels anys '80.

Va servir de laboratori de proves
per a moltes de les noves tecnologies
aplicades a la construcció de telescopis.

Tot i que la seva cúpula no té res a
veure amb les dels telescopis tradicionals,

El New Technology Telescopi
va assolir un gran èxit.

Era l'hora de travessar
el rècord dels sis metres.

L'observatori de Mauna Kea és
al punt més alt del Pacific
310
00:22:31,480 --> 00:22:34,960
a 4.200 metres sobre el nivell del mar.

311
00:22:36,960 --> 00:22:41,120
Els turistes gaudeixen del Sol i fan surf
a les platges de Hawaii.

312
00:22:41,200 --> 00:22:44,520
Molt per sobre d'ells, els astrònoms
se les han de veure amb temperatures glaçadores

313
00:22:44,600 --> 00:22:51,160
i lluitar contra el mal de les altures en la seva recerca in per
desentrenyar els misteris que amaga l'Univers.

314
00:22:51,240 --> 00:22:54,120
Els telescopis Keck estan entre
els més grans del món.

315
00:22:54,200 --> 00:22:59,120
Els seus miralls tenen més de 10 metres
d'una banda a l'altra, i el gruix del pa d'àngel.

316
00:22:59,200 --> 00:23:04,040
Enrajolats, com una cambra de bany,
els formen 36 segments hexagonals.

317
00:23:04,120 --> 00:23:07,480
cadascun és controlat amb una precisió nanomètrica.

318
00:23:07,560 --> 00:23:11,200
Són veritables gegants, consagrats
a l'observació del cel.

319
00:23:11,280 --> 00:23:14,120
Les catedrals de la ciència.

320
00:23:14,200 --> 00:23:16,600
Capvespre a Mauna Kea.

321
00:23:16,680 --> 00:23:21,720
Els telescopis Keck comencen la collita
de fotons que cerquen als racons més llunyans del cosmos.

322
00:23:21,800 --> 00:23:24,520
Els seus miralls bessons s'acoblen
per esdevenir d'una àrea útil que supera
la de tots els telescopis anteriors.

Què descobriran aquesta nit?

Una parella de galàxies en col·lisió, a una llunyania de miliards d’anys llum?

Una estrella moribunda, amb la ranera de l’última alenada que fa en una nebulosa planetària?

0, potser, un planeta fora del sistema solar que podria albergar alguna forma de vida diferent?

A Cerro Paranal, al desert d’Atacama, a Xile, l’indret més sec de tota la Terra-

hi trobem l’enginy astronòmic més gran mai construït:

es tracta de l’European Very Large Telescopi (VLT).

El VLT és, en realitat, quatre telescopis en un.

Cadascun d’aquests té un mirall de 8,2 metres.

Antu.

Kueyen.

Melipal.

Yepun.

Són els noms maputxes per designar el Sol, la Lluna, la Creu del Sud i Venus.
Aquests miralls gegantins els hi van fondre a Alemanya, els hi van polir a França, i enviats a Xile, llavors van ser molt lentament transportats pel desert.

D’horabaixa, aquest telescopi obre la cúpula que el cobreix.

La llum de les estrelles és una pluja que aviva els miralls del VLT.

Llavors hi fem noves descobertes.

Un làser travessa el firmament nocturn i projecta una estrella artificial en l’atmosfera a 90 quilòmetres per sobre nostre.

Els sensors d’ona mesuren la distorsió de la imatge de l’estrella deguda a les turbulències atmosfèriques.

Aleshores, computadores molt ràpids expliquen als miralls flexibles com han de deformar-se per corregir-ne la distorsió.

De fet, es tracta de treure el titill·lar de les estrelles.
Això és el que anomenem l'òptica adaptativa
i és un esplèndid truc de màgia

de l'astronomia del nostre temps.

Sense aquest truc, el que veuríem de l'Univers
ens estaria esborrallat per l'atmosfera.

Però amb ell, les nostres imatges són
d'una claredat extrema.

L'altra part de la màgia que es fa amb l'òptica
és allò que coneixem com la interferometria.

La idea bàsica és la de captar la llum des de
dos telescopis separats i

acoblant totes dues imatges en un punt,
alhora que podem mantenir-hi

de les seves respectives ones luminiques.

Si ho fem de manera acurada,
el resultat és que els dos telescopis

interactuen com si fossin part d'un
únic, colossal mirall

tan gran com la distància
que els separa.

En efecte, la interferometria proporciona
ulls d'àguila al nostre telescopi.

La qual cosa permet a telescopis més petits
que ens revelin detalls a una escala que,
D’una altra manera, només seria visible
amb un telescopi molt més gran.

Els telescopis bessons de Keck, a
Mauna Kea, habitualment interactuen
com un interferòmetre.

En el cas del VLT, els seus tots quatre telescopis treballen en equip.

I, a més a més, alguns telescopis
auxiliars, més petits, poden també
afegir-se’n a la tasca comuna per a
afinar més encara les imatges.

Podem trobar uns altres telescopis grans
per tot arreu del món.

Subaru i Gemini Nord
a Mauna Kea.

Gemini Sud i els telescopis Magellan a Xile.

El Gran Telescopi Binocular
a Arizona.

Tots han estat construïts
als millors indrets de què disposen.

Ben alts i amb molt poca humitat, ben clars i amb nits molt fosques.

Amb ulls grans
com catedrals.

Tots equipats amb òptica adaptativa
a fi de neutralitzar els efectes de distorsió deguts a l'atmosfera.

De vegades poden assolir una resolució d'un gegant mític i virtual, d'un Behemoth, per exemple;

gràcies a la interferometria.

Vet aquí el que ens han mostrat.

Planetes.

Nebuloses.

Les dimensions actuals -i les esclafades geometries- d'algunes estrelles.

Un planeta en òrbita en torn a una estrella nana marró.

I estrelles gegants orbitant, al bel centre de la nostra Via Llàctia, la galàxia que habitem,

menades per la força gravitatòria d'un forat negre supermassiu.

Hem recorregut un bon camí des de els dies de Galileu.

4. De la plata al silici

Fa 400 anys, quan Galileu Galilei va voler mostrar el que veia amb el seu telescopi,
Havia de dibuixar-ho.

00:27:53,120 --> 00:27:56,240
La cara de la Lluna
com picadeta per la verola.

00:27:56,360 --> 00:28:00,400
La dansa
dels satèl·lits de Júpiter.

00:28:00,520 --> 00:28:02,160
Les taques de la superfície del Sol.

00:28:02,280 --> 00:28:04,160
O les estrelles d'Orion.

00:28:04,280 --> 00:28:06,720
Aquells dibuixos els va publicar
en un llibre petit

00:28:06,760 --> 00:28:08,400
El «Sidereus Nuncius» o
el «Missatger de les Estrelles».

00:28:08,440 --> 00:28:10,800
Era l'única manera que tenia
per a compartir els seus
descobriments.

00:28:10,920 --> 00:28:12,400
Durant més de 200 anys,
els astrònoms havien de ser també artistes.

00:28:12,440 --> 00:28:16,640
Escorcollant amb els seus oculars,
van fer dibuixos

00:28:16,760 --> 00:28:19,000
ben acurats d'allò
que veien.

00:28:19,120 --> 00:28:20,960
L'inhòspit paisatge
de la Lluna.

00:28:21,040 --> 00:28:23,080
Una tempesta en l'atmosfera
de Júpiter.
405
00:28:26,040 --> 00:28:29,000
El vel subtil de gas
d’una nebulosa llunyana.

406
00:28:29,120 --> 00:28:32,320
Alguns cops van magnificar
el que observaven.

407
00:28:32,440 --> 00:28:36,560
Van creure que les línies fosques de la superfície de Mars
eren canals

408
00:28:36,680 --> 00:28:39,880
que suggerien l’existència de civilitzacions en
la superfície del planeta vermell.

409
00:28:39,960 --> 00:28:43,480
Els canals, ara ho sabem,
eren una il·lusió òptica.

410
00:28:43,600 --> 00:28:47,160
Els astrònoms realment necessitaven
una manera objectiva de recollir

411
00:28:47,280 --> 00:28:51,480
la llum que els arribava pels telescopis
sense que la informació

412
00:28:51,520 --> 00:28:54,480
fos tamisada pels seus cervells, primer,
i pels llapis després.

413
00:28:54,600 --> 00:28:57,400
La fotografia va venir
al seu ajut.

414
00:28:58,760 --> 00:29:01,160
El primer daguerreotip
de la Lluna

415
00:29:01,200 --> 00:29:03,880
el va fer, en 1840,
Henry Draper.

416
00:29:03,920 --> 00:29:07,240
La fotografia tenia menys
de 15 anys, però els astrònoms

417
00:29:07,360 --> 00:29:10,880
ja hi havien albirat
les seves possibilitats revolucionàries.

418
00:29:10,920 --> 00:29:13,080
Com funcionava la fotografia d’aleshores?

419
00:29:13,120 --> 00:29:17,160
Bé. Una placa fotogràfica estava coberta
d’una emulsió sensible que contenia

420
00:29:17,280 --> 00:29:19,400
grans molt petits d’halur de plata.

421
00:29:19,440 --> 00:29:22,160
Que, si s’exposaven a la llum,
s’enfosquien.

422
00:29:22,200 --> 00:29:24,800
Com a resultat s’hi obtenia
una imatge en negatiu del cel

423
00:29:24,920 --> 00:29:28,080
amb estrelles fosques sobre
un fons blanc.

424
00:29:28,200 --> 00:29:31,560
Però l’avantatge realment consistia a
poder exposar una placa fotogràfica

425
00:29:31,680 --> 00:29:33,960
durant moltes hores.

426
00:29:34,040 --> 00:29:36,720
Quan mires el cel a la nit,
un cop els teus ulls s’acostumen a la foscor,

427
00:29:36,760 --> 00:29:39,640
no hi veus més i més estrelles

428
00:29:39,680 --> 00:29:42,320
només perquè hi miris més lluny, ni més temps.

429
00:29:42,440 --> 00:29:45,240
Però amb una placa
fotogràfica pots fer-ho.

430
00:29:45,360 --> 00:29:48,480
Hi pots recollir i afegir-hi
la llum durant hores i més hores.
Doncs, com més llarga és l'exposició revela més i més estrelles.

I més encara.

I encara més.

I fins i tot algunes més!

Als anys '50, el telescopi Schmidt a l'Observatori de Palomar fou emprat per fotografiar tot el cel de l'hemisferi nord.

Van ser més de 2.000 plaques fotogràfiques, cadascuna exposada gairebé una hora.

La troballa d'un tresor per a fer-ne més descobertes.

La fotografia ha transformat l'observació astronòmica en una autèntica ciència.

Objectiva, mesurable i reproduble.

Però la plata és molt lenta.

Has de tenir-ne molta, de paciència.

La revolució digital ho va capgirar tot.

El silici va reemplaçar la plata.
Els grans van esdevenir píxels.

Fins i tot en les càmeres d’anar per casa, ja no emprem pel·lícula fotogràfica.

Ara, enregistrem les imatges en un xip fotosensible:

Un dispositiu acoblat per càrrega (Charge Coupled Device), les sigles CCD, per fer-ho més curt.

Els CCD professionals són d’allò més eficients.

I perquè siguin més sensibles encara, es refreden molt per sota dels zero graus, amb nitrogen líquid.

Gairebé tots els fotons entrants són enregistrats.

Com a conseqüència, els temps d'exposició poden ser molt més curts.

Allò que l'Observatori de Palomar recollia en una hora un CCD ho fa ara en pocs minuts.

I amb un telescopi molt més petit.

La revolució del silici
tot just ha començat.

00:31:18,200 --> 00:31:21,080
Els astrònoms han construït enormes càmeres CCD amb

00:31:21,200 --> 00:31:23,560
centenars de milions de píxels.

00:31:28,120 --> 00:31:32,560
I encara han arribat més coses.

00:31:28,120 --> 00:31:32,560
El gran avantatge de les imatges digitals és que són això: digitals.

00:31:32,600 --> 00:31:35,800
Estan pensades i preparades per a treballar amb ordinadors.

00:31:35,840 --> 00:31:38,800
Els astrònoms empren programari especialitzat per processar les seves observacions del cel.

00:31:38,840 --> 00:31:40,880
Pujant o abaixant el contrast, se'ns mostren els detalls més imperceptibles

00:31:40,880 --> 00:31:45,080
de les nebuloses o de les galàxies.

00:31:45,200 --> 00:31:47,640
La codificació del color posa de manifest estructures molt difícils de veure amb uns altres mètodes.

00:31:47,760 --> 00:31:51,240
molt difícils de veure amb uns altres mètodes.

00:31:51,280 --> 00:31:53,640
I amb tot i això, si es combinen imatges múltiples del mateix objecte

00:31:53,680 --> 00:31:57,880
fotografiat amb diferents filtres, els astrònoms
desenvolupen espectaculars composicions que difuminen les fronteres entre la ciència i l'art.

Tu també te'n pots beneficiar de l'astronomia digital.

Mai no havia estat tan fàcil obtenir-ne i gaudir-ne les impressionants imatges del cosmos.

De les fotografies de l'Univers només hi som a la distància d'un clic!

Els telescopis robòtics, equipats amb detectors electrònics força sensibles escorcollen els cels ara mateix.

El telescopi Sloan, a Nou Mèxic, ha fotografiat i catalogat més d'un centenar de milions d'objectes estel·lars, ha mesurat les distàncies que ens separen d'un milió de galàxies, i ha descobert centenars de milers de nous quàsars. Però amb una sola, d'observació, no n'hi ha prou.
L'Univers és un lloc que canvia constantment.

Els cometes glaçats van i vénen, escampant les seues deixalles al pas de les seues esteles.

Els asteroides passen rabent.

Planetes llunyans orbiten temporalment les seues estrelles mares i ens bloquen l'arribada de llum d'aqueixes.

Les supernoves esclaten, mentre per tot arreu neixen noves estrelles.

Llampades de pulsars; ràfegues de raigs gamma produldes per l'acreció de matèria sobre forats negres.

Els astrònoms, per enregistrar aquestes grandioses actuacions de la naturalesa,

voldrien escrutar la totalitat dels cels tots els anys.

00:33:25,360 --> 00:33:26,840
0 un cop al mes.

00:33:26,920 --> 00:33:28,640
0 dos cops per setmana.

00:33:28,680 --> 00:33:33,800
Aquest és l'ambiciós objectiu del Telescopi Large Synoptic Survey.

Si esdevé operatiu a l'any 2015, la seva càmera de tres gigapíxels obrirà
una finestra, a l'estil d'una càmera web, sobre l'Univers.

Haurem superat els somnis més agosarats dels astrònoms amb aquest telescopi reflector i fotografirem ben bé la totalitat del cel cada tres nits.

5. Observant l'invisible

En escoltar la teva música preferida l'oïda és capaç de registrar un ventall molt ample de freqüències, des de les més profundes remors dels baixos fins a les més estridents vibracions dels aguts.

Ara, imagina que la teva oïda només és sensible a un espectre de freqüències molt limitat.

Perdries gairebé el bo i millor de la música!

Aquesta és, aproximadament la situació en què es troben els astrònoms.

L'ull humà és sols sensible a un ventall molt estret de freqüències lumíniques: la llum visible.
Doncs som completament cecs a tota la resta de formes de radiació electromagnètica.

I tanmateix, hi ha molts astres en l'Univers que emeten radiacions en aquestes altres bandes de l'espectre electromagnètic.

Per exemple, als anys '30 es va descobrir accidentalment que hi ha ones de ràdio que ens arriben des de les profunditats de l'espai. Algunes d'aquestes ones tenen la mateixa freqüència que la teva emissora preferida, però són molt més febles i, per descomptat, no n'hi ha res que puguis escoltar.

Per a «sintonitzar» la ràdio de l'Univers, ens cal alguna mena de receptor: un radiotelescopi.

Ara com ara, tret de les longituds d'ona més grans, un radiotelescopi només és com un plat.
Però, com que les ones de ràdio són molt més llargues que les de la llum visible, la superfície del plat no té perquè ser tan perfectament llisa i polida com la superfície d’un mirall.

Per això resulta molt més senzill construir un gran radiotelescopi que no pas un gran telescopi òptic.

I també, amb les longituds de les ones de ràdio és molt més fàcil treballar-hi amb la interferometria. O sigui, augmentar el nivell de detall que podem veure quan combinem la llum de dos telescopis separats, com si foren les dues parts d’un únic disc gegant.

El Very Large Array, de Nou Mèxic, per exemple, consisteix en 27 antenes separades, cadascuna de les quals té 25 metres de diàmetre. Cada antena es pot fer moure i girar de manera aïllada, i configurades en la màxima amplitud, l’antena virtual
generada fa un disc de 36 kilòmetres de diàmetre.

Llavors, ¿A què s'hi assembla l'Univers en la ràdio?

Bé, per a començar, el nostre Sol brilla amb molta claredat en les longituds d'ona de ràdio.

És el mateix que passa amb la nostra galàxia, la Via Llàctia.

I això no ho és tot.

Els púlsars són cossos estel·lars molt densos que emeten ràdio ones només en una banda molt estreta.

Els púlsars, a més a més, giren a velocitats de centenars de revolucions per segon.

En efecte, un púlsar és com un far d'ones ràdio que giravolta.

El que veiem dels púlsars és una seqüència força regular i ràpida de pulsacions ràdio molt curtes.

D'aquí el seu nom.
La radiofont coneguda com Cassiopeia A és 551
el romanent, les restes, d’una supernova que va explotar al segle XVII.

00:36:39,440 --> 00:36:43,640

Centaurus A, Cignus A i Virgo A són galàxies gegants que 553
emeten immenses quantitats d’ones ràdio.

00:36:43,680 --> 00:36:48,240
La emissió de cada galàxia està alimentada per un forat negre massiu que hi ha al seu centre.

00:36:50,640 --> 00:36:55,960
Algunes d’aquestes radiogalàxies i els quàsars són emissors tan potents que 555
els seus senyals poden detectar-se des d’una distància de 10 miliards d’anys llum.

00:37:00,120 --> 00:37:05,320
També hi ha la tènue remor de les ones relativament curtes,

00:37:05,360 --> 00:37:08,880
que omple la totalitat de l'Univers.

00:37:08,960 --> 00:37:11,320
És el que coneixem com el fons cósmic de microones,

00:37:14,200 --> 00:37:16,400
es tracta de l’eco del Big Bang.

00:37:14,200 --> 00:37:16,400
L’autèntica resplendor del roent néixer de l'Univers.

00:37:16,440 --> 00:37:20,560
Totes i cadascuna de les parts de l’espectre tenen la seva pròpia història per explicar-nos.
Els astrònoms estudien, al mil·límetre i per sota dels mil·límetres, les longituds d’ona, la formació de les galàxies en els orígens de l'Univers i en el naixement de les estrelles i els planetes de la nostra Via Làctia.

Tanmateix, el vapor de l’atmosfera entrebanca molta d’aquesta radiació. Per estudiar-la, ens cal anar a llocs alts i eixuts. A Pla de Chajnantor, per exemple. A cinc quilòmetres sobre el nivell del mar, aquest altiplà surrealista del nord de Xile és el lloc on s’hi està construint ALMA: l’Atacama Large Millimeter Array. Quan s’acabi en 2014, l’ALMA serà l’observatori astronòmic més gran que s’hagi construït mai.

64 antenes, amb un pes cadascuna de 100 tones, treballaran aplegades. Camions gegants les escamparan per una extensió més gran que la ciutat de Londres a fi
d’augmentar el detall de la imatge,
o les ajuntaran

577
00:38:16,880 --> 00:38:19,000
perquè ofereixin una visió molt més vasta.

578
00:38:19,120 --> 00:38:23,240
Cada moviment serà
d’una precisió mil·limètrica.

579
00:38:24,680 --> 00:38:28,160
Molts objectes de l’Univers
també brillen en infrarojos.

580
00:38:28,280 --> 00:38:31,960
La radiació infraroja,
descoberta per William Herschel, sovint també l’anomenem

581
00:38:32,040 --> 00:38:36,720
«la radiació calenta» atès que l’emeten
tots els objectes amb més o menys escalfor,

582
00:38:36,760 --> 00:38:39,080
inclusos les persones.

583
00:38:41,840 --> 00:38:45,240
La radiació infraroja hi és a la nostra vida
amb més presència de la que ens pensem.

584
00:38:45,360 --> 00:38:48,240
Atès que a la Terra, aquesta mena
de radiació s’empra en les

585
00:38:48,360 --> 00:38:51,160
ulleres de visió nocturna
i en les càmeres.

586
00:38:51,280 --> 00:38:55,160
Però, els astrònomes, per detectar la tènue lluentor infraroja
dels astres llunyans,

587
00:38:55,280 --> 00:38:58,960
necessiten detectors força sensibles,
refredats a uns pocs graus

588
00:38:59,040 --> 00:39:04,000
per sobre del zero absolut, a fi de poder suprimir
la seva pròpia radiació calorífica.

589
00:39:06,920 --> 00:39:11,720
Avui, molts dels grans telescopis òptics també estan equipats amb càmeres infraroses,
que ens permeten veure perfectament a través dels núvols de pols còsmica, tot revelant-nos l'interior de les estrelles acabades de naixer, quelcom que no podriem veure amb els telescopis òptics.

Per exemple, fem una ullada a questa imatge del famós bressol d'estrelles d'Orió.

I ara observem quina diferència en veure'l amb els ulls d'una càmera d'infrarojos!

L'observació a l'infraroig resulta també de gran ajut per estudiar les galàxies més allunyades.

Les estrelles acabades de néixer en una jove galàxia resplendeixen amb molta claredat en el ultraviolat.

Però aquesta llum ultraviolada ha de viatjar durant miliards d'anys per tot l'Univers en expansió.

I aquesta expansió «estira» de les ones lluminoses de tal manera que quan ens arriben s'ha desplaçat a la zona de l'infraroig proper.

Aquest instrument tan estilitzat és el telescopi MAGIC, a l'illa de La Palma.
Escorcolla l'Univers a la recerca de raigs gamma còsmics

la forma de radiació més energètica de la naturalesa.

Som afortunats, perquè els raigs gamma són mortals, però ens els bloca

Som afortunats, perquè els raigs gamma són mortals, però ens els bloca

l'atmosfera de la Terra.

No obstant això, deixen prou empremtes perquè els astrònoms puguin estudiar-los.

Després de xocar contra l'atmosfera, els raigs gamma generen cascades.

Aquí tenim l'observatori Pierre Auger, a l'Argentina.

El Pierre Auger són 1.600 detectors, escampats sobre una extensió de 3.000 kilòmetres quadrats.

Aquí tenim l'observatori Pierre Auger, a l'Argentina.

El Pierre Auger són 1.600 detectors, escampats sobre una extensió de 3.000 kilòmetres quadrats.

Aquí tenim l'observatori Pierre Auger, a l'Argentina.

El Pierre Auger són 1.600 detectors, escampats sobre una extensió de 3.000 kilòmetres quadrats.

Aquí tenim l'observatori Pierre Auger, a l'Argentina.

El Pierre Auger són 1.600 detectors, escampats sobre una extensió de 3.000 kilòmetres quadrats.

Aquí tenim l'observatori Pierre Auger, a l'Argentina.

El Pierre Auger són 1.600 detectors, escampats sobre una extensió de 3.000 kilòmetres quadrats.

Aquests capten les partícules que plouen dels raigs còsmics de remotes supernoves.
i de forats negres.

I què hi ha dels detectors de neutrins, construïts en profundes mines o sota la superfície oceànica, o al gel del l'Antàrtida?

¿Podriem anomenar-los telescopis?

Per què no??

Fet i fet, tots observen l'Univers, fins i tot si no prenen dades de l'espectre electromagnètic.

Els neutrins són partícules molt esquerpes que es produeixen en el Sol i en les explosions de les supernoves.

També es van produir fins i tot en el mateix Big Bang.

Els neutrins, a diferència d'unes altres partícules elementals poden travessar la matèria convencional, viatjar quasi a la velocitat de la llum i no tenen càrrega elèctrica.

Encara que són difícils d'estudiar, hi són per tot arreu.

Cada segon, més de 50 bilions
de neutrins electrònics solars

00:41:34,200 --> 00:41:36,560
passen a través del teu cos.

00:41:36,680 --> 00:41:40,800
Per últim, els astrònoms i els físics treballen plegats per construir detectors d'ones gravitatòries.

00:41:40,920 --> 00:41:42,640
Aquests «telescòps» no observen radiacions ni tampoc capturen partícules.

00:41:46,680 --> 00:41:51,240
En comptes d'això, mesuren petites ondulacions a l'estructura intima de l'espai-tempes un concepte predit en la teoria de la relativitat d'Albert Einstein.

00:41:51,280 --> 00:41:56,960
Els astrònoms, amb una formidable diversitat d'eines ens han obert completament l'espectre de la radiació electromagnètica, i encara han gosat anar més lluny.

00:42:01,200 --> 00:42:06,960
Perquè algunes observacions, clar i ras, no es poden fer des de la Terra.

00:42:07,040 --> 00:42:11,240
Quina resposta ens donen?

00:42:11,280 --> 00:42:12,800
Els telescòps espacials.

6. Més enllà de la Terra

00:42:22,000 --> 00:42:26,560
El telescopi espacial Hubble.
És, sense dubte, el telescopi més famós de la història.

I té bones raons per a ser-ho.

Hubble ha revolucionat molts àmbits de l'astronomia.

Pels estàndards actuals, el mirall del Hubble és encara molt petit.

Només fa 2,4 metres de diàmetre.

Però està localitzat, literalment, fora d'aquest món.

Molt alt. Per sobre dels efectes de distorsió de l'atmosfera, gaudeix d'una excepcional precisió per a observar l'Univers.

Els telescopis terrestres no poden veure aquesta llum perquè la bloca l'atmosfera.

Càmeres i espectrografs, alguns tan grans com cabines telefòniques, analitzen i registren la llum de llunyanes ribes còsmiques.

Com els telescopis terrestres,
de tant en en tant el Hubble s'actualitza.

657
00:43:19,400 --> 00:43:22,760
Astronautes que fan passejades espacials
hi van en missions de servei.

658
00:43:22,840 --> 00:43:24,440
Hi canvien peces espatllades.

659
00:43:24,520 --> 00:43:27,000
Els instruments més vells els
canvien per uns altres de més moderns

660
00:43:27,080 --> 00:43:29,800
amb tecnologia d'avantguarda.

661
00:43:29,880 --> 00:43:33,280
Hubble ha esdevingut la punta de llança
de l'observació astronòmica.

662
00:43:33,360 --> 00:43:37,240
I ha capgirat
la nostra comprensió del cosmos.

663
00:43:39,840 --> 00:43:44,800
Hubble, amb la seva penetrant mirada,
ha contemplat els canvis estacionals a Mart;

664
00:43:45,920 --> 00:43:48,800
l'impacte d'un cometa a Júpiter;

665
00:43:50,520 --> 00:43:53,880
el perfil transversal dels anells de Saturn...

666
00:43:56,920 --> 00:44:00,400
Fins i tot la superfície del minúscul Plutó.

667
00:44:00,480 --> 00:44:06,320
Ens ha revelat el cicle de la vida de les estrelles,
des l'instant de la naixença, quan són estrelles nadons

668
00:44:06,600 --> 00:44:12,560
en bressols de núvols curulls
de gas, fins la darrera alenada:

669
00:44:12,640 --> 00:44:17,800
com delicades nebuloses, a poc a poc
ventades per l'espai per estrelles moribundes,
o les explosions titàniques d'una supernova que brillen més enllà de les seves galàxies.

Molt endins de la nebulosa d'Orió, Hubble també ha vist camps on broten nous sistemes solars: discs de pols, a l'entorn d'estrelles nounades, que potser aviat es condensaran en planetes.

El telescopi espacial ha estudiat milers d'estrelles individuals en cúmuls globulars gegants, les famílies d'estrelles més velles de l'Univers.

I, per descomptat, galàxies. Els astrònoms no mai les havien vistes tan detalladament.

Espirals majestuoses, franges de pols que absorbeixen la llum, col·lisions violentes.

Exposicions llarguíssimes en regions suposadament buides del cel han revelat milers de galàxies molt tènues a miliards d'anys llum de distància.

Fotons que va ser emeses quan l'Univers encara era jove.

Una finestra al passat remot que ens permet veure nous aspectes
El Hubble no és pas l'únic telescopi espacial. Aquest és el telescopi espacial Spitzer, de la NASA, llançat a l'agost de 2003. Podríem dir-ne que és l'equivalent del Hubble per als infrarojos. Spitzer té un mirall de només 85 centímetres de diàmetre. Però aquest telescopi s'amaga darrere d'un escut de calor que el protegeix i els seus detectors estan encastats en un vas Dewar amb heli líquid. Els detectors es refreden fins a uns pocs graus per sobre del zero absolut. La qual cosa els fa molt i molt sensibles. Spitzer ha revelat un Univers tot ple de pols Núvols foscos i opacs de pols que brillen a l'infraroig quan són escalfats des del seu interior.
697
00:46:04,600 --> 00:46:08,720
Ones de xoc produïdes per la col·lisió de
galàxies escombrren la pols en anells delators

698
00:46:08,760 --> 00:46:13,480
i rastres de l’acció de les forces de marea, nous indrets
per a la formació ubiqueta d’estrelles.

699
00:46:15,520 --> 00:46:19,080
La pols també és present
a les seqüècies de la mort d’una estrella.

700
00:46:19,200 --> 00:46:23,080
Spitzer ha descobert que les nebuloses planetàries
i les despulles de les supernoves són planes

701
00:46:23,200 --> 00:46:28,320
de partícules de pols, el prerequisit
dels maons dels quals es bastiran nous planetes.

702
00:46:28,440 --> 00:46:32,080
A altres freqüències de l’infraroig,
Spitzer també ha observat a través de núvols de pols,

703
00:46:32,200 --> 00:46:37,720
i ha descobert estrelles amagades dins
al nucli d’aquests núvols foscos.

704
00:46:37,840 --> 00:46:40,960
Al remat, els espectrôgrafs del telescopi
espacial han estudiat

705
00:46:40,960 --> 00:46:44,880
l’atmosfera de planetes gasosos,
de fora del sistema solar. Gegants com Júpiter

706
00:46:44,920 --> 00:46:48,880
que orbiten molt ràpid, entorn a la seva estrella mare,
en cicles d’uns pocs dies.

707
00:46:50,680 --> 00:46:52,880
¿I què en direm dels raigs X
i dels raigs gamma?

708
00:46:52,920 --> 00:46:55,560
Bé, els atura completament
l’atmosfera terrestre.

709
00:46:55,680 --> 00:46:59,160
Per això, els astrònoms serien del tot cecs,
a aqueixes formes de radiació energètica,

Els telescopis espacials de raigs X i raig gamma revelen un Univers calent violent i ple d’energia amb cúmuls galàctics, forats negres, explosions de supernoves, i xocs de galàxies.

Realment, són molt complicats de construir.

La radiació d’alta energia travessa com si res els miralls convencionals.

Els raigs X només poden ser enfocats emprant capes de miralls niats d’or pur.

I els gamma cal estudiar-los amb sofisticades càmeres estenopeiques o escintil·ladors aplıllats que capten els breus flaixos de llum normal quan els colpeja un fotó de raigs gamma.

Als anys ’90, la NASA va posar en òrbita l’observatori Compton de raigs gamma.

En aquell temps, fou el més gran i el més car dels satèl·lits científics mai enlairats.
Un laboratori de física a ple rendiment en l'espai.

En 2008, el GLAST va reemplaçar el Compton:

el «Gamma Ray Large Area Space Telescope».

que ha d'estudiar qualsevol aspecte a alta energia, de l'Univers, de la matèria fosca als pulsars.

Mentre, els astrònoms tenen dos telescopis de raigs X a l'espai.

El Chandra X-ray Observatory, de la NASA, i el XMM-Newton Observatory de l'ESA, ambdós estudien els indrets més calents de l'Univers.

Així és com es veu el cel amb els raigs X.

Les parts esteses són núvols de gas, escalfat a milions de graus per ondes de xoc de les restes d'una supernova.

Les fonts puntuals de llum brillant són sistemes binaris de raigs X: estrelles de neutrons o forats negres que engoleixen matèria.
de l'estrella companya.

I aquest gas calent que cau, emet raigs x.

Així, els telescopis de raigs X revelen forats negres més que gegants als nuclis de galàxies llunyanes.

La matèria que gira en espirals s'escalfa tant com per a brillar amb raigs X l'instant abans d'enfonsar-se en un forat negre i perdre's de vista per sempre més.

El gas calent, però tènue, també omple l'espai entre les galàxies individuals en un cúmul de galàxies. De vegades, aquest gas intracumular s'agita i s'escalfa encara més; per la col·lisió i fusió de cúmuls de galàxies. Més fascinants encara són les explosions de raigs gamma, el fenomen més energètic de l'Univers.

Aquestes són explosions terminals i catastròfiques d'estrelles molt massives que giren a velocitats de vertigen.
En menys d’un segon, desprenen més energia de la que emet el Sol en 10 miliards d’anys.

Hubble, Spitzer, Chandra, XMM-Newton i GLAST són tots gegants força versàtils.

Tanmateix, alguns telescopis espacials són més petits i realitzen missions molt més concretes.

El COROT, per exemple.

Aquest satèl·lit francès està consagrat a l’estudi de la sismologia estel·lar i dels planetes extrasolars.

O el satèl·lit Swift, de la NASA, un observatori tant de raigs X com de raigs gamma, dissenyat per desentranyar els misteris de les explosions de raigs gamma.

Aquí tenim el WMAP, el «Wilkinson Microwave Anisotropy Probe».

En només dos anys a l’espai, ja ha fet el mapa de la radiació cósmica de fons amb un detall inimaginable fins ara.
WMAP ha lliurat als cosmòlegs la millor vista d'una de les fases més primordials de l'Univers, un succés esdevingut fa més de 13 miliards d'anys.

L'obertura de la frontera espacial ha estat un dels fets més excitants en la història dels telescopis.

Podem anar-hi més lluny encara?

A Arizona, ha estat construït el primer mirall pel «Giant Magellan Telescope».

Aquest enorme instrument s'ubicarà a l'observatori Las Campanas, a Xile.

Tindrà set miralls, cadascun de més de 8 metres de diàmetre, disposats com els pètals d'una flor.

I treballant plegats, recolliran més de quatre cops
la quantitat de llum que un telescopi corrent pot copsar.


Centenars de peces formaran un mirall enorme tan alt com un edifici de sis pisos.

A Europa, ja és a punt la planificació del “European Extremely Large Telescope”.

Tindrà 42 metres de diàmetre i un espill tan gran com la superfície d'una piscina olímpica –dos cops la superfície del “Californian Thirty Meter Telescope”.

Aquests monstres del futur s'equiparan tots amb instruments d'alta sensibilitat i òptiques adaptatives per a optimitzar l'observació a l'infraroig.

Ells ens mostraran la primera generació de galàxies i estrelles que va existir en la història de l'Univers.

A més, podrien oferir-nos
la primera imatge

00:51:53,200 --> 00:51:56,160
d’un planeta d’un altre
sistema solar.

00:51:56,240 --> 00:52:00,000
Per als radioastrònoms,
42 metres són com un cacauet.

00:52:00,080 --> 00:52:02,720
Ells acoblen molts instruments
més petits per a configurar

00:52:02,799 --> 00:52:05,080
un receptor molt més gran.

00:52:05,160 --> 00:52:08,799
Als Països Baixos, es construeix
el «Low Frequency Array».

00:52:08,880 --> 00:52:10,520
o LOFAR.

00:52:10,600 --> 00:52:15,840
Amb fibra òptica connectaran 30.000
antenes a un superordinador central.

00:52:15,920 --> 00:52:19,440
Aquest disseny innovador no té parts
móbils, però pot observar en

00:52:19,520 --> 00:52:22,840
vuit direccions diferents
alhora.

00:52:22,920 --> 00:52:26,120
És probable que la tecnologia del LOFAR
sigui emprada pel «Square

00:52:26,200 --> 00:52:28,600
Kilometre Array», que és,
a hores d’ara, la major aspiració

00:52:28,680 --> 00:52:30,560
dels radioastrònoms.

00:52:30,640 --> 00:52:34,640
El projecte internacional del «SKA» es
construirà a Austràlia o a Sud-àfrica.
Antenes de plat ben grans i petits receptors formaran un equip per oferir-nos vistas increïblement detallades de la banda de ràdio del cel.

Amb una àrea d’observació total d’un quilòmetre quadrat, el nou enginy serà amb escreix l’instrument de ràdio més sensible que mai s’ha construït.

Galàxies en evolució, potents quàsars, púlsars titil·lants cap font d’emissió d’ones de ràdio s’escaparà dels ulls espietes del «Square Kilometre Array».

Aquest instrument cercarà fins i tot possibles senyals de ràdio de civilitzacions extraterrestres.

¿I què hi ha de l’espai??

Doncs, després de la cinquena i última missió de servei, el Hubble estarà en servei actiu fins 2013, aproximadament.
El seu successor serà llançat aquest any.

Mireu: el telescopi espacial «James Webb» un observatori d'infrarojos batejat amb el nom d’un ex administrador de la NASA.

Un cop sigui a l’espai, el seu espill segmentat de 6,5 metres es desplegarà igual que s’obre una flor, set vegades més sensible que el Hubble.

Un gran para-sol protegirà l’òptica i els instruments que han de funcionar a baixissimes temperatures.

A la seva ombra sempre, podran operar prop dels quasi menys 233 graus Celsius.

El telescopi espacial «James Webb» no orbitarà sobre la Terra.

En comptes d’això, romandrà a 1,5 milions de quilòmetres del nostre planeta, en una òrbita ampla al voltant del Sol.

Fa cinquanta anys, el telescopi Hale, a Mont Palomar,
va ser el més gran de la història.

Ara, un de més gran,
volarà cap a les profunditats de l'espai.

Només podem somiar sobre
les excitanents descobertes que hi farà.

Hem de ser-hi a l'aguait!

Mentre, enginyers creatius
treballen tothora en dissenys

per a nous telescopis.

Al Canadà, els científics han construït
eix de mirall líquid.

En aquesta mena de telescopi,
la llum de les estrelles no la reflecteix

un mirall sòlid, sinó la superfície
corbada d'un contenidor

de mercuri líquid.

Amb aquest disseny, els telescopis

de mercuri només poden apuntar cap amunt,

però tenen l'avantatge
de ser relativament barats

i fàcils de construir.

Els radioastrònoms volen col·locar
un dispositiu com el LOFAR, fet de petites antenes a la superfície de la Lluna, tan lluny com puguin de les fonts terrestres d’interferències.

Qui sap si fins i tot algun dia un gran telescopi òptic es podria col·locar a la cara oculta de la Lluna.

Utilitzant telescopis espacials i discos ocultadors, els astrònoms dedicats als raigs X esperen millorar força les prestacions en aquest camp en el futur.

Podrien reeixir en detectar les vores dels forats negres.

Un dia, els telescopis podrien donar resposta a una de les qüestions més demandades per la humanitat: ¿estem sols a l’Univers?

Sabem que hi ha uns altres sistemes solars fora d’aquí.

Sospitem també que hi ha
planètes com la Terra, potser

856
00:55:48,400 --> 00:55:50,200
amb aigua en estat líquid.

857
00:55:50,320 --> 00:55:51,200
Però,

858
00:55:51,320 --> 00:55:53,440
¿Hi ha vida?

859
00:55:54,320 --> 00:55:58,120
La localització d’aquestos planetes extrasolars
és molt difícil.

860
00:55:58,240 --> 00:56:00,680
Sovint s’amaguen dels astrònoms
en la intensa llum que

861
00:56:00,720 --> 00:56:03,960
desprenen
les seves estrelles mare.

862
00:56:04,920 --> 00:56:08,040
Si llancem interferòmetres a la
fosca de l’espai podem

863
00:56:08,160 --> 00:56:10,760
trobar-hi noves respostes.

864
00:56:10,799 --> 00:56:13,520
A hores d’ara la NASA evalua un projecte
anomenat

865
00:56:13,560 --> 00:56:16,120
el Cercador de Planetes Terrestres.

866
00:56:16,240 --> 00:56:20,680
I a Europa, els científics
treballen en el projecte Darwin.

867
00:56:20,799 --> 00:56:24,360
Sis telescopis espacials que orbitarien
el Sol, en formació.

868
00:56:24,480 --> 00:56:28,520
Utilitzant làsers es controlaran les distàncies d’un a l’altre
amb una precisió nanomètrica.
Junts tindran una capacitat de resolució prou gran com per anul·lar la llum de les estrelles que entrebanquen l'observació de planetes com la Terra, que estan voltant altres estrelles.

Els futurs astrònoms hauran d'estudiar la llum reflectida per aquests planetes. Això ens donarà les empremtes dactilars espectroscòpiques de l'atmosfera d'aquests planetes.

Qui sap si, en 15 anys, serem capaços de trobar-hi empremtes d'oxigen, metà i ozó?:

Que són els indicadors de la presència de vida.

L'Univers és ple de sorpreses.

El cel no mai deixa d'impressionar-nos.

No ens hem d'estranyar que centenars de milers d'astrònoms aficionats de tota la Terra surtin les nits clares per meravellar-se amb el cosmos.

Els seus telescopis són molt millors que els que va emprar
Galileu.

Les seves fotografies digitals són millors que les imatges fotogràfiques preses per professionals de només fa unes dècades.

La cursa astronòmica per entendre el cosmos, l'exploració telescòpica de l'Univers, només té 400 anys.

Hi ha encara molt de terreny sense cartografiar allà enfora.

Hem fet molta via des que Galileu començà a fer mapes del cel amb el seu telescopi fa quatre segles.

Avui encara observem l'Univers amb telescopis i no només de la Terra estant, també des de l'espai infinit.

El que diferencia l'èsser humà és la nostra inexhaurible càrrega de curiositat i també d'ingenuïtat.

Tot just acabem de respondre algunes de les preguntes més grans
ma formulades.

Hem identificat la presència d’uns 300 planetes al voltant d’altres estrelles a la nostra Via Llàctia i localitzat molècules orgàniques a planetes que orbiten estrelles molt llunyanes.

Aquestes increïbles descobertes poden semblar el cim de la recerca humana, però, indubtablement, el millor encara està per venir.

I vosaltres podeu ser d’aquesta mena d’aventurers!

Els ulls envers al cel i a meravellar-s’hi!