1 00:00:03,000 --> 00:00:06,000
To je zgodba o epski pustolovščini...

2 00:00:10,320 --> 00:00:15,320
Zgodba o kozmični radovednosti, pogumu in vztrajnosti...

3 00:00:19,000 --> 00:00:24,000
Zgodba o tem, kako je Evropa šla na jug, da bi raziskovala zvezde.

4 00:01:13,000 --> 00:01:17,000
Pot na jug

5 00:01:18,000 --> 00:01:23,000
Dobrodošli na ESO, Evropskem južnem observatoriju.

6 00:01:24,999 --> 00:01:28,400
Star je že 50 let, vendar bolj poln energije kot kadarkoli prej.

7 00:01:34,520 --> 00:01:37,520
ESO je portal Evrope do zvezd.

8 00:01:38,280 --> 00:01:41,280
Tukaj astronomi iz petnajstih držav

9 00:01:41,320 --> 00:01:44,240
z združenimi močmi rešujejo skrivnosti vesolja.

10 00:01:44,960 --> 00:01:45,960
Kako?

11 00:01:45,999 --> 00:01:49,400
Z gradnjo največjih teleskopov na Zemlji.

12 00:01:49,440 --> 00:01:51,840
Z izdelavo občutljivih kamer in instrumentov.

13 00:01:52,280 --> 00:01:54,280
S podrobnim pregledovanjem neba.

14 00:01:57,000 --> 00:02:00,000
Pri svojem delu so opazovali bližnje in oddaljene objekte,

15 00:02:00,000 --> 00:02:03,000
od kometov, ki potujejo preko Sončevega sistema,

16 00:02:03,000 --> 00:02:06,560
do oddaljenih galaksij na robu prostora in časa,
in so nam tako posredovali svež in nov pogled na vesolje.

Vesolje polno globokih nedoumljivosti in nevidnih skrivnosti.

In osušljivih lepot.

Iz oddaljenih vrhov v Čilu
evropski astronomi segajo po zvezdah.

A zakaj Čile?

Zakaj so se astronomi odločili, da gredo na jug?

Evropski južni observatorij ima svoj glavni center v Garchingu v Nemčiji.

Vendar lahko iz Evrope opazujemo le del neba.

Za dopolnitev moramo potovati na jug.

Zemljevidi južnega neba so več stoletij prikazovali velike praznine -

nebesno Neznano pokrajino (Terra Incognita).

Nizozemski trgovci so prvič pluli proti Vzhodnim Indijam.

Ponoči sta pomorščaka Pieter Keyser in Frederik de Houtman

1595.
izmerila položaje več kot 130 zvezd na južnem nebu.

Torej zakaj je južno nebo tako pomembno?

Najprej zato, ker je bilo v veliki meri še neraziskano področje.
Celotnega neba iz Evrope enostavno ne moremo videti.

Izrazit primer je središče naše domače galaksije.
S težavo jo vidimo s severne poloble,
na jugu pa se razteza nad našimi glvami.
Tu sta tudi Magellanova oblaka - dve manjši galaksiji, ki sta sopotnici naše galaksije.
Nevidni s severa, vendar izjemno opazni, ko se nahajamo južno od ekvatorja.
In končno
evropske astronome je oviralo svetlobno onesnaženje in slabo vreme.
Z odhodom na jug so rešili večino svojih težav.
Izlet z ladjo na Nizozemskem junija leta 1953.
Tu, na krovu IJsselmeer,
sta nemško-ameriški astronom Walter Baade in nizozemski astronom Jan Oort
razložila kolegom svoj načrt za evropski observatorij na južni polobi.

Nobena izmed evropskih držav ni mogla posamično tekmovati z ZDA. Skupaj pa bi lahko.

Sedem mesecev kasneje se je dvanajst astronomov iz šestih držav sestalo tukaj v državni senatski zbornici na Leidenski univerzi.

Podpisali so izjavo, kjer so navedli svojo željo, da bi ustanovili evropski observatorij v Južni Afriki.

To je tlakovalo pot za nastanek ESO.

Vendar, počakajte!... Južna Afrika?

To je bilo seveda povsem smiselno.

V Južni Afriki se je nahajal Observatorij Rt dobre nade in po letu 1909 tudi observatorij Transvaal v Johannesburgu.

Leidenski observatorij je imel svojo južno postajo v Hartebeespoortu.

Leta 1955 so astronomi sestavili testno opremo, da bi našli naboljšo točko za velik teleskop.

Vendar vreme ni bilo zelo ugodno.

Okrog leta 1960 se je pozornost obrnila na skalnato pokrajino na severu Čile.

Tudi ameriški astronomi so tukaj načrtovali svoj observatorij na južni polobli.

Težke ekspedicije s konji so razkrile veliko boljše pogoje kot v Južni Afriki.

Kocka je padla leta 1963. To bo Čile.

Šest mescev kasneje je bil izbran Cerro La Silla kot bodoči kraj, kjer bo stal Evropski južni observatorij.

ESO ni bil več samo oddaljene sanje.

Pet evropskih držav je podpisalo dogovor za ESO dne 5. oktobra 1962 -

to je uradni rojstni dan Evropskega južnega observatorija.

Belgija, Nemčija, Francija, Nizozemska in Švedska so bile odločene, da skupaj sežejo po južnih zvezdah.

La Sillo in okolico so odkupili od Čilske vlade.
Cesta je bila zgrajena na sredi puste pokrajine.

96 00:08:33,880 -- 00:08:38,999
ESO-v prvi teleskop je dobil svojo obliko v tovarni jekla v Rotterdamu.

97 00:08:40,880 -- 00:08:43,600
In decembra 1966

98 00:08:43,640 -- 00:08:49,000
je Evropski južni observatorij odprl svojo prvo oko zazrto v nebo.

99 00:08:49,000 -- 00:08:54,320
Evropa se je vkrcala na veličastno potovanje k odkritju kozmosa.

100 00:09:00,000 -- 00:09:05,000
Pogled v nebo

101 00:09:07,000 -- 00:09:14,640
Pred 167.000 leti je v majhni galaksiji, ki se giblje okrog naše Galaksije, eksplodirala zveza.

102 00:09:17,720 -- 00:09:20,160
V času te oddaljene eksplozije

103 00:09:20,200 -- 00:09:24,440
je Homo sapiens šele začel naseljevati afriško savano.

104 00:09:26,720 -- 00:09:29,640
A nebesnega ognjemeta ni mogel opaziti nihče,

105 00:09:29,760 -- 00:09:34,920
saj je blisk svetlobe šele začel svojo dolgo pot proti Zemlji.

106 00:09:36,240 -- 00:09:41,280
V času, ko je svetloba supernove prepotovala že 98% svoje poti,

107 00:09:41,360 -- 00:09:46,200
so grški filozofi ravno začeli razmišljati o naravi vesolja.

108 00:09:48,520 -- 00:09:50,840
Tik preden je svetloba dosegla Zemljo,

109 00:09:50,920 -- 00:09:56,400
je Galileo Galilej obrnil svoj prvi preprosti teleskop v nebo.

110 00:09:59,800 -- 00:10:03,000
In 24. februarja 1987,
ko so fotoni iz eksplozije končno le dosegli naš planet,

so lahko astronomi supernovo opazovali že zelo podrobnio.

Supernova 1987A,

ki je zažarela na južnem nebu,

ni bila vidna iz Evrope ali Združenih držav Amerike.

A v tem času je ESO že zgradil svoj prvi veliki teleskop v Čili,

s katerim je astronomom ponudil sedež v prvi vrsti za ta kozmični spektakel.

Teleskop je seveda osrednje orodje, ki nam omogoča razkriti skrivnosti vesolja.

Teleskopi zberejo veliko več svetlobe kot človeško oko,

zato lahko z njihovo pomočjo odkrivamo šibkejše zvezde in gledamo globlje v vesolje.

Podobno kot povečevalna stekla nam pokažejo podrobnosti.

Kadar so opremljeni še z občutljivimi kamerami in spektrografii,

pa nam priskrbljajo še obilico podatkov o planetih, zvezdah in galaksijah.

ESO-vi prvi teleskopi na La Silli so bili pisana druščina.

Od majhnih nacionalnih instrumentov
do velikih astrografa in širokokotnih kamer.

2,2-metrski teleskop - zdaj star skoraj že 30 let - še vedno poskrbi za nekatere najbolj dramatične poglede na kozmos.

Na najvišji točki na Cerro La Silla leži ESO-va največja pridobitev iz zgodnjih let - 3,6-metrski teleskop.

Pri starosti 35 let trenutno živi svoje drugo življenje kot lovec na planete.

Zraven tega so švedski astronomi zgradili svetlečo posodo s premerom 15 metrov, ki služi raziskovanju mikrovalov iz hladnih vesoljskih oblakov.

Skupaj so ti teleskopi pomagali odkrivati vesolje, v katerem živimo.

Zemlja je le eden od osmih planetov v Sončevem sistemu.

Vse od majcenega Merkurja pa do velikanskega Jupitra so te kamnite krogle in plinaste žoge ostanki procesa, v katerem je nastalo Sonce.

Sonce samo leži nekje na polovici poti skozi našo galaksijo.

En drobcen vir svetlobe med stotinami milijardami podobnih zvezd - med njimi so tudi napihnjene rdeče orjakinje, implodirane bele pritlikavke.
in hitro vrteča nevtronske zvezde.

143
00:13:50,920 --> 00:13:55,840
Spiralni rokavi Galaksije so posuti s svetlečimi meglicami,

144
00:13:56,000 --> 00:13:59,040
svetlimi oblaki novorojenih zvezd,

145
00:13:59,240 --> 00:14:03,640
medtem ko stare kroglaste kopice počasi rojijo po Galaksiji.

146
00:14:08,560 --> 00:14:13,400
Naša galaksija je le ena od neštetih galaksij v prostranem vesolju,

147
00:14:13,400 --> 00:14:18,920
ki se širi vse od prapoka pred skoraj 14 milijardami let.

148
00:14:26,440 --> 00:14:31,560
Zadnjih 50 let je ESO pomagal odkrivati naše mesto v vesolju.

149
00:14:31,760 --> 00:14:36,000
In z gledanjem v nebo smo odkrivali tudi svoj izvor.

150
00:14:36,240 --> 00:14:41,999
Smo del velike kozmične zgodbe. Brez zvezd nas ne bi bilo tukaj.

151
00:14:45,320 --> 00:14:50,320
Vesolje je bilo v začetku sestavljeno iz vodika in helija, dveh najlažjih elementov.

152
00:14:50,400 --> 00:14:55,720
A zvezde so jedrske peči, ki spreminjajo lažje elemente v težje.

153
00:14:58,040 --> 00:15:01,560
Supernove, kot je 1987A,

154
00:15:01,600 --> 00:15:05,680
posejejo vesolje s produkti te zvezdne alkemije.

155
00:15:08,440 --> 00:15:13,240
Ko se je izoblikoval Sončev sistem, pred približno 4,6 milijardami let,

156
00:15:13,440 --> 00:15:16,960
je vseboval nekaj teh težjih elementov.

157
00:15:17,080 --> 00:15:21,400
Kovine in silikate, pa tudi ogljik in kisik.
Ogljik v naših mišicah, železo v naši krvi in kalcij v naših kosteh so bili skovani v prejšnjih generacijah zvezd.

Vi in jaz smo bili dobesedno narejeni v nebesih.

Toda odgovori vedno porodijo nova vprašanja.

Več kot se naučimo, globlje postajajo skrivnosti.

Kakšen je izvor in končna usoda galaksij?

So tam zunaj druga osončja in ali obstaja nezemeljsko življenje?

In kaj preži v temnem središču naše galaksije?

Astronomi so očitno potrebovali močnejše teleskope.

In ESO jih je oskrbel z revolucionarnimi novimi orodji.

Ostro oko

Večje je boljše - tako je vsaj pri zrcalih teleskopov.

Vendar morajo biti velika zrcala debela, da se pod lastno težo ne deformirajo.

Zelo velika zrcala pa se deformirajo ne glede na to, kako debela in težka so.

Rešitev? Tanka, lahka zrcala - in čarovniški trik imenovan aktivna optika.

ESO je bil pionir te tehnologije v pozih 1980.-ih
s Teleskopom novih tehnologij (New Technology Telescope).

In to je današnji instrument.

Zrcala Zelo velikega teleskopa (Very Large Telescope – VLT) – merijo 8,2 metra počez...

... a so samo 20 centimetrov debela.

In tu je čarovnija:

računalniško kontroliran podporni sistem zagotavlja da zrcalo ves čas ohranja željeno obliko do nanometra natančno.

VLT je ESO-ov vrhunski teleskop.

Štirje identični teleskopi združujejo svoje sile na vrhu Cerro Paranal v severnem Čilu.

Zgrajeni so bili v poznih 1990.-tih in nudijo astronomom najboljšo razpoložljivo tehnologijo.

Sredi puščave Atacama je ESO ustvaril raj za astronome.

Znanstveniki bivajo v stavbi La Residencia, ki je deloma zakopana pod prst in grušč.

enega najbolj suhih krajev na našem planetu.

Toda v notranjosti so bujne palme, plavalni bazen in ... okusne čilske sladice.
Seveda

po čemer je Zelo velik teleskop edinstven ni njegov bazen,

ampak njegov neprekosljivi razgled v vesolje.

Brez tankih zrcal in aktivne optike VLT ne bi bil mogoč.

A tu je še več.

Tudi z najboljšimi in največjimi teleskopi so zvezde videti razmazane.

Razlog? Zemljino ozračje popači sliko.

Tu nastopi drugi čarovniški trik: prilagodljiva optika.

Na Paranalu laserski žarki svetijo v nočno nebo, da ustvarijo umetne zvezde.

Senzorji uporabijo te zvezde, da izmerijo popačitve zaradi ozračja.

In stokrat na sekundo

računalniško kontrolirane deformacije zrcal popravijo sliko.

In kakšen je končni učinek? Kot da bi turbulentno ozračje popolnoma odstranili.

Samo poglejte razliko!

Naša galaksija je velika spiralna galaksija.
V njenem jedru – 27.000 svetlobnih let daleč –

leži skrivnost, ki jo je ESO-v Zelo velik teleskop pomagal razkriti.

Masivni oblaki prahu nam zakrivajo pogled na jedro Galaksije.

Občutljive infrardeče kamere pa lahko vidijo skozi prah in razkrijejo, kaj leži za njim.

Ob pomoči prilagodljive optike razkrijejo ducate orjaških rdečih zvezd.

In sčasoma, v nekaj letih, lahko opazimo, da se te zvezde premikajo!

Gibljejo se okrog nevidnega telesa v središču Galaksije.

Na podlagi gibanja teh zvezd lahko astronomi sklepajo, da mora biti nevidno telo izjemno masivno.

Poštastna črna luknja, ki ima 4,3 milijon-krat večjo maso od našega Sonca.

Astronomi so opazili tudi močne bliske svetlobe iz oblakov plina.

ki padajo proti črni luknji.

Vse to razkrivajo zmožnosti prilagodljive optike.

Tako tanka zrcale in aktivna optika omogočajo gradnjo velikanskih teleskopov.

prilagodljiva optika pa poskrbi za turbulence v ozračju

in nam daje izjemno ostre slike.
221 00:21:32,000 --> 00:21:34,640
Toda s čarovniškimi triki še nismo končali.

222 00:21:34,680 --> 00:21:38,240
Tu je še tretji, imenovan interferometrija.

223 00:21:40,680 --> 00:21:44,360
VLT sestavljajo štirje teleskopi.

224 00:21:44,360 --> 00:21:49,960
Skupaj lahko delujejo kot virtualni teleskop s premerom 130 metrov.

225 00:21:52,520 --> 00:21:57,560
Svetlobo, ki jo zberejo posamezni teleskopi, usmerijo skozi tunele, v katerih je vakuum.

226 00:21:57,560 --> 00:22:00,800
in združijo v podzemnem laboratoriju.

227 00:22:03,000 --> 00:22:09,000
Tu združijo svetlobne valove, pri čemer uporabijo laserske meritve in komplicerane zakasnitvene linije.

228 00:22:13,960 --> 00:22:19,240
Skupni rezultat je zbiralna svetlobna moč štirih 8,2-metrskih zrcal.

229 00:22:19,280 --> 00:22:25,440
in orlovski pogled imaginarnega teleskopa, velikega za petdeset teniških igrišč.

230 00:22:28,040 --> 00:22:32,080
Štirje dodatni teleskopi dajajo tej mreži teleskopov večjo fleksibilnost.

231 00:22:32,120 --> 00:22:35,840
Morda so poleg štirih velikanov videti drobceni.

232 00:22:35,960 --> 00:22:40,400
a njihova zrcala merijo 1,8 metrov počez.

233 00:22:40,800 --> 00:22:45,360
To je več, kot je pred samo sto leti meril največji teleskop na svetu!

234 00:22:47,040 --> 00:22:50,360
Optična interferometrija je pravi čudež.

235 00:22:50,640 --> 00:22:54,400
Magija zvezdnih svetlobe začarana v puščavi.

236 00:22:54,960 --> 00:22:58,160
In rezultati so impresivni.

Interferometer Zelo velikega teleskopa razkriva petdesetkrat manjše podrobnosti kot vesoljski teleskop Hubble.

Na primer, dal nam je bližnji pogled na vampirsko dvojno zvezdo.

Neka zvezda krade snov svoji spremljevalki.

Odkril je nepravilni piš vzeznega prahu okrog Betelgeze — zvezdne orjakinje, ki bo kmalu eksplodirala kot supernova.

V diskih prahu okrog novorojenih zvezd pa so astronomi našli ... surovine za bodoče Zemlji podobne svetove.

Zelo velik teleskop je najostrejše oko človeštva, ki zre v nebo.

Toda astronomi imajo še druge načine, s katerimi razširijo svoja obzorja in razgled.

Na Evropskem južnem observatoriju so se naučili videti vesolje v popolnoma drugačni luči.

Različni pogledi

Odlična glasba, kajne?
Predstavljamo si, da bi imeli slušno okvaro.

Kaj bi bili ne mogli slišati nizkih frekvenc?

Ali visokih frekvenc?

Astronomi so bili nekoč v podobnem položaju.

Človeško oko je občutljivo le na majhen del svetlobe iz vesolja.

Ne vidimo svetlobe z valovno dolžino krajšo od vijolične,

ali daljšo od rdeče.

Enostavno ne dojemamo celotne kozmične simfonije.

Infrardeče ali toplotno sevanje je leta 1800 odkril William Herschel.

V temni sobi me ne morete videti.

Če bi si nadel infrardeča očala, pa bi lahko "videli" toploto mojega telesa.

Na podoben način infrardeči teleskopi razkrivajo kozmične objekte, ki so prehladni, da bi oddajali vidno svetlobo.

Tak primer so temni oblaki plina in prahu, kjer se rojevajo zvezde in planeti.

Že desetletja

ESO-vi astronomi z navdušenjem raziskujejo vesolje

v infrardečih valovnih dolžinah.
Ne pozabite na zvezde in oblake plina,

ki jih ujame poštastna črna luknja v središču naše galaksije.

Brez infrardečih kamer jih ne bi nikoli videli.

V drugih galaksijah

so raziskave v infrardeči svetlobi pokazale pravo razporeditev zvezd podobnih Soncu.

Najbolj oddaljene galaksije lahko proučujemo le v infrardeči svetlobi.

Njihova svetloba je bila premaknjena k tem daljšim valovnim dolžinam zaradi širjenja vesolja.

Blizu Paranala je manjši gorski vrh z osamljeno zgradbo.

V njej se nahaja 4,1-metrski teleskop VISTA.

Zgradila ga je Velika Britanija, ESO-va deseta država članica.

Trenutno VISTA opazuje samo v infrardeči svetlobi.

Uporablja ogromno kamera, ki je težka kot manjši tovornjak.

VISTA ponuja pogled (špansko "vista") na infrardeče vesolje, kot ga nismo imeli še nikoli prej.

ESO se ukvarja z optično astronomijo od samega začetka pred petdesetimi leti.

In z infrardečo astronomijo že približno trideset let.
Obstaja pa še več registrov za kozmično simfonijo.

Na pet tisoč metrih nadmorske višine visoko v čilskih Andih se nahaja planota Chajnantor.

Astronomija ne more višje od tega.

Na Chajnantorju je doma ALMA – Veliki milimetrski/podmilimetrski niz v Atacami (Atacama Large Millimeter/submillimeter Array).

ALMA je še v fazi gradnje.

Na kraju, ki je tako negostoljuben, da je tam težko celo dihati!

Z desetimi od 66-ih anten je ALMA naredila prva opazovanja jeseni leta 2011.

Milimetrski valovi iz vesolja. Da jih lahko opazujemo, moramo biti visoko in imeti suho ozračje.

Chajnantor je eden najboljših krajec na svetu za taka opazovanja.

Vidni postanejo oblaki hladnega plina in temnega prahu v dveh galaksijah, ki sta v trku.

To ni prostor, kjer se zvezde rojevajo, ampak kjer so spočete.

Spiralni valovi v toku umirajoče zvezde
— bi lahko bil zanje kriv planet v tirkici okoli zveze?

S spremenbo na čina gledanja se približujemo razumevanju nastanka planetov, zvezd in galaksij.

In celotni simfoniji kozmosa.

Stephane Guisard ima rad zveze.

Ni čudno, da ima rad tudi severni Čile.

Od tukaj ima enega najlepših pogledov na vesolje.

Tudi ni čudno, da ima rad Evropski južni observatorij.

Stephane je večkrat nagrajeni francoski fotograf in avtor.

Je tudi eden od ESO-vih foto ambasadorjev.

V dih jemajo čih slikah ujame samoto puščave Atacama,

visoko-tehnološko popolnost orjaških teleskopov in veličastnost nočnega neba.

Kot drugi foto ambasadorji s celega sveta
tudi Stephane pomaga pri širjenju ESO-vega poslanstva.

Širi radovednost, čudenje in navdih skozi sodelovanje in popularizacijo astronomije.

Sodelovanje je že od nekdaj temelj ESO-vega uspeha.

Pred 50-timi leti je Evropski južni observatorij ustanovilo pet držav članic: Belgija, Francija, Nemčija, Nizozemska in Švedska.

V zadnjem desetletju so se tudi Finska, Španija, Češka in Avstrija pridružile največji evropski astronomski organizaciji.

Nazadnje se je kot 15. država članica pridružila Brazilija, ki je tudi prva ne-evropska članica.

Kdo ve, kaj bo prinesla prihodnost?
Skupaj države članice omogočajo najboljšo astronomsko znanost na največjih svetovnih observatorijih.

To pomaga tudi njihovim gospodarstvam.

ESO tesno sodeluje z industrijo v Evropi in v Čili.

Zgraditi so morali dovozne ceste.

Vrhove gora so morali zravnati.

Italijanski industrijski konzorcij AES je zgradil osrednjo konstrukcijo štirih VLT teleskopov.

Vsak teleskop tehta približno 430 ton.

Zgradili so tudi ogromne kupole, visoke kot 10-nadstropna stavba.

Nemška steklarna Schott je za VLT izdelala občutljiva zrcala — vsako meri v prmeru več kot osem metrov, debela pa so le 20 centimetrov.

V REOSC-u v Franciji so zrcala zbrusili do natančnosti milijoninke milimetra, preden so se odpravila na dolgo pot do Paranala.
Medtem so univerze in raziskovalne ustanove po vsej Evropi razvile občutljive kamere in spektrometre.

ESO-vi teleskopi so zgrajeni z davkoplačevalskim denarjem.

Vašim denarjem. Zato lahko z nami delite vznemirjenje.

Na primer: ESO-va spleta stran je bogat vir astronomskih informacij, vključno s tisočimi čudovitimi slikami in video posnetki.

ESO ustvarja tudi revije, izjave za javnost in video dokumentarce, kot je ta, ki ga pravkar gledate.

Evropski južni observatorij sodeluje na razstavah in znanstvenih sejmih.

Nešteto možnosti je za sodelovanje pri odkrivanju vesolja!

Ali ste vedeli, da se je imen za štiri VLT teleskope domislilo mlado dekle iz Čile?

17-letna Jorssy Albanez Castilla je predlagala imena Antu, Kueyen, Melipal in Yepun,
kar v jeziku Mapuche pomeni Sonce, Luna, Južni križ in Venera.

Vključevanje šolskih otrok in študentov, kot je Jorssy, je pomembno.

Tu je prostor za ESO-ve izobraževalne aktivnosti,

kot so vaje za študente in predavanja.

Ko je Venera prečkala Sončev ploskev leta 2004,

je bil učencem in učiteljem namenjen poseben program.

Leta 2009, ko je bilo Mednarodno leto astronomije,

je ESO dosegel milijone šolskih otrok in študentov po vsem svetu.

Današnji otroci so namreč astronomi prihodnosti.

Vendar pri popularizaciji astronomije nič ne more premagati vesolja samega.

Astronomija je vizualna znanost.

Slike galaksij, zvezdnih kopic in porodnišnic zvezd burijo našo domišljijo.

Ko se ne ukvarjajo z znanostjo,

ESO-vi teleskopi včasih sodelujejo v programu Vesoljski dragulji.

- snemajo fotografije za poučevanje in popularizacijo.

Konec koncev slika pove več kot tisoč besed.
Javnost lahko sodeluje tudi pri ustvarjanju teh osupljivih slik na tekmovanju Skriti zakladi.

Ruski astronomski zanesenjak Igor Chekalin je zmagal na tekmovanju leta 2010. Njegove čudovite slike temeljijo na pravih znanstvenih podatkih.

Države članice, industrija in univerze. Preko sodelovanja na vseh mogočih ravneh je ESO postal ena najuspešnejših astronomskih organizacij na svetu.

In preko vključevanja javnosti ste k sodelovanju v tej pustolovščini vabljeni tudi vi. Vesolje vas čaka, da ga odkrijetе.

Lov na svetlobo. Že pol stoletja. nam Evropski južni observatorij postavlja na ogled veličastne lepote vesolja.

Zvezdna svetloba se usipa na Zemljo. Velikanski teleskopi ujamejo kozmične fotone in jih usmerijo na vrhunske kamere in spektrografe.

Današnje astronomske slike so zelo drugačne od tistih iz 60. let prejšnjega stoletja.
V času ESO-vih začetkov, leta 1962,
so astronomi uporabljali velike steklene fotografiske plošče.
Ne preveč občutljive, nenatančne in nerodne za rokovanje.
Kako drugačni so današnji elektronski detektorji!
Ujamejo skorajda vsak foton.
Slike so na razpolago v trenutku.
In kar je najvažnejše
lahko jih obdelujejo in analizirajo z računalniškimi programi.
Astronomija je postala digitalna znanost.
ESO-vi teleskopi uporabljajo nekatere od največjih
in najbolj občutljivih detektorjev na svetu.
Ta gromozanski instrument ujame infrardeče svetlobo kozmičnih oblakov prahu,
Tekoči helij drži temperaturo detektorjev na minus 269 stopinjah.

00:40:05,600 --> 00:40:09,320
VISTA dela pregled južnega neba,

00:40:09,320 --> 00:40:13,040
podobno kot raziskovalna odprava raziskuje neznano celino.

00:40:15,640 --> 00:40:19,080
Pregledovalni VLT teleskop (VLT Survey Telescope) je še en stroj za odkrivanje,

00:40:19,120 --> 00:40:22,040
le da ta dela v vidnih valovnih dolžinah.

00:40:27,960 --> 00:40:31,880
Njega kamera, imenovana OmegaCAM, je še večja.

00:40:32,520 --> 00:40:37,480
32 CCD kamer deluje kot tim in posname spektakularne slike

00:40:37,480 --> 00:40:42,480
s težko predstavljalivimi 268 milijoni slikovnih elementov.

00:40:44,680 --> 00:40:47,999
Zorno polje je veliko eno kvadratno stopinjo

00:40:48,000 --> 00:40:51,360
štirikrat toliko kot polna Luna.

00:40:53,520 --> 00:40:58,040
OmegaCAM proizvede petdeset gigabyte-ov podatkov vsako noč.

00:40:59,400 --> 00:41:02,160
In to so res čudoviti gigabyte-i.

00:41:05,800 --> 00:41:09,200
Pregledovalni teleskopi, kot sta VISTA in VST,

00:41:09,200 --> 00:41:12,920
na nebu iščejo tudi redke in zanimive objekte.

00:41:13,360 --> 00:41:17,240
Nato astronomi uporabijo moč Zelo velikega teleskopa (VLT),

00:41:17,240 --> 00:41:20,880
da proučijo te objekte bolj podrobnno.
Vsak od štirih teleskopov VLT ima svoj set posebnih instrumentov, vsak od njih ima svoje posebne prednosti.

Brez teh instrumentov bi bilo ESO-vo velikansko oko pravzaprav slepo.

Instrumenti imajo zanimiva imena, kot ISAAC, FLAMES, HAWK-I in SINFONI.

Velikanski visoko-tehnološki stroji, vsak velikosti manjšega avtomobila.

Njihov namen: posneti fotone iz vesolja in uporabiti vsak možni bit informacije v njih.

Vsi ti instrumenti so edinstveni, a nekateri so še bolj posebni od drugih.

Na primer, NACO in SINFONI uporabljata VLT-jev sistem prilagodljive optike.

Laserji naredijo umetne zvezde, ki astronomom pomagajo popraviti razmazanost slik, ki nastane zaradi motenj ozračja.

NACO-vi posnetki so tako ostri, kot če bi jih posneli v vesolju, nad Zemljinim ozračjem.

In tu sta še MIDI in AMBER. Dva interferometrična instrumenta.

Tukaj pripeljejo skupaj svetlobne valove z dveh ali večih teleskopov, kot da bi jih ujelo eno samo velikansko zrcalo.
Rezultat:
	najostrejši pogled, kar si jih lahko zamislite.

Vendar astronomija ni samo snemanje lepih slik. Če vas zanimajo podrobnosti, morate zvezdno svetlobo razrezati in proučiti njeno sestavo.

Spektroskopija je eno najmočnejših orodij astronomije. Ni čudno, da ima ESO nekatere od najbolj naprednih spektrografov na svetu, kot je na primer X-Shooter.

Slike so lahko lepe, a spektri razkrivajo več informacij.

Sestava.

Gibanje.

Starosti.

Atmosfere eksoplanetov, ki se gibljejo okoli daljnih zvezd.

Ali novorojene galaksije na robu vidnega dela vesolja.

Brez spektroskopije bi bili samo raziskovalci, ki strmijo v lepo pokrajino.
izvemo topografijo, geologijo, razvoj in sestavo pokrajine.

In še nekaj.

Kljub umirjeni lepoti je vesolje zelo divji kraj.

Stvari počijo sredi teme in astronomi si želijo ujeti vsak tak dogodek.

Masivne zvezde končajo življenje v titanskih eksplozijah supernov.

Nekatere kozmične detonacije so tako silovite, da za kratak čas zasencijo svojo galaksijo in razlijejo v medgalaktični prostor nevidno, visoko-energijsko sevanje gama.

Majhni robotski teleskopi se avtomatsko odzovejo na opozorila s satelitov. V nekaj sekundah se obrnejo v pravi položaj in snemajo posledice teh eksplozij.

Drugi robotski teleskopi pa se zanimajo za manj dramatične dogodke, kot so daljni planeti, ki delno zakrijejo svojo zvezdo.

Vesolje je v stanju nenehnega gibanja.

ESO se trudi, da ne bi zgrešil niti enega srčnega utripa.
Kozmologija proučuje vesolje kot celoto.

Njegovo strukturo, razvoj in izvor.

Tu je še posebej bistveno ujeti vso razpoložjivo svetlobo.

Te galaksije so tako daleč, da le peščica njihovih fotonov doseže Zemljo.

Toda ti fotoni imajo ključ do ugank kozmične preteklosti.

Potovali so milijarde let.

Slikajo nam portret zgodnjih dni vesolja.

Zato so veliki teleskopi in občutljivi detektorji tako pomembni.

V zadnjih petdesetih letih

so ESO-vi teleskopi razkrili nekatere od najbolj oddaljenih galaksij in kvazarjev

znanih doslej.

Pomagali so celo razkrivati porazdelitev temne snovi,

katere narava je še vedno skrivnost.

Kdo ve, kaj bo prineslo naslednjih petdeset let?

Iskanje življenja

Ste se že kdaj spraševali o življenju kje drugje v vesolju?
O naseljenih planetih okrog daljnih zvezd?

Astronomi so se – že stoletja.

Konec koncev, pri množici galaksij, od katerih ima vsaka množico zvezd,

kako bi lahko bila Zemlja edina?

Leta 1995 sta švicarska astronoma Michel Mayor in Didier Queloz prva odkrila eksoplanet, ki se giblje okrog normalne zvezde.

Od takrat do danes so lovci na planete odkrili stotine tujih svetov.

Velike in majhne, vroče in hladne, potujejo po zelo različnih tirnicah.

Sedaj smo tik pred odkritjem Zemljinih dvojčic.

In v prihodnosti: odkritje planeta z življenjem - to je sveti gral astrobiologov.

Evropski južni observatorij igra pomembno vlogo pri iskanju eksoplanetov.

Skupina Michela Mayora je našla stotine eksoplanetov z observatorija Cerro La Silla,

E50-ve prve postojanke v Čilu.

Tole je spektrograf CORALIE montiran na švicarskem teleskopu Leonhard Euler.
Meri drobreno opletanje zvezd, ki ga povzroča gravitacija planetov v njihovi bližini.

ESO-ov časitljiv 3,6-metrski teleskop je prav tako na lovu za eksoplaneti.

Spektrograf HARPS je najnatančnejši na svetu.

Doslej je odkril več kot 150 planetov.

Njegova največja trofeja:

bogato osončje, ki ima vsaj pet morda pa celo sedem tujih svetov.

Obstajajo pa tudi drugi načini iskanja eksoplanetov.

Leta 2006 je 1,5-metrski Danski teleskop pomagal pri odkritju daljnjega planeta ki ima le petkrat večjo maso kot Zemlja.

V čem je trik? Gravitacijsko mikrolečenje.

Planet in njegova zvezda prečkata smer, v kateri vidimo neko svetlo zvezdo, ki leži v ozadju,

ter ob tem povečata njeno sliko.

V nekaterih primerih lahko eksoplanete celo ujamete s kamero.

Leta 2004 je NACO, kamera s prilagodljivo optiko na Zelo velikem teleskopu (VLT) posnela prvo sliko eksoplaneta.
Rdeča pika na tej sliki je planet velikan v tihnici okoli zvezde, ki je rjava pritlikavka.

00:50:26,560 --> 00:50:31,640
Leta 2010 je NACO naredil korak naprej.

00:50:33,160 --> 00:50:37,320
Ta zvezda je 130 svetlobnih let daleč od Zemlje.

00:50:37,320 --> 00:50:43,600
Je mlajša in svetlejša od Sonca, njeni štrirje planeti pa so na velikih tihnicah.

00:50:45,720 --> 00:50:50,960
NACO-ov orlovski vid je omogočil izmeriti svetlobo s planeta c

00:50:50,960 --> 00:50:55,480
— plinastega velikana, ki ima desetkrat večjo maso kot Jupiter.

00:50:56,840 --> 00:50:59,440
Klub blišču staršavske zvezde

00:50:59,440 --> 00:51:03,440
lahko šibko svetlobo, ki prihaja s planeta, raztegnejo v spekter,

00:51:03,440 --> 00:51:06,400
ki odkriva podrobnosti o njegovi atmosferi.

00:51:08,080 --> 00:51:14,680
Danes odkrijejo mnogo planetov, ko ti zakrijejo del svoje staršavske zvezde.

00:51:14,760 --> 00:51:18,040
Če slučajno vidimo planetovo tihnico s strani

00:51:18,040 --> 00:51:21,400
bo ob vsakem obhodu navidezno potoval čez zvezdino ploskev.

00:51:21,400 --> 00:51:25,880
Tako nam pravilno ponavljajoča a drobcena zmanjšanja zvezdinega sija

00:51:25,880 --> 00:51:29,320
izdajajo obstoj planeta v tihnici okoli nje.

00:51:31,760 --> 00:51:36,600
Teleskop TRAPPIST na observatoriju La Silla bo pomagal pri iskanju teh izmuzljivih prehodov.

00:51:37,240 --> 00:51:38,560
Medtem pa
je Zelo velik teleskop proučil en tak planet zelo podrobno.

Spoznajte GJ1214b, super-Zemljo, ki je 2,6-krat večja od našega domačega planeta.

Med prehodom planetovo ozračje delno absorbiira svetlobo svoje zvezde.

ESO-ov občutljivi spektrograf FORS je razkril, da je GJ1214b morda svet, ki je vroč in vlažen kot savna.

Plinasti velikani in savnasti svetovi so negostoljubni za življenje.

A lov še ni končan.

Kmalu bo novi instrument SPHERE instaliran na VLT. SPHERE bo lahko opazil šibke planete kljub blišču njihovih zvezd.

Leta 2016 bo na VLT prispel spektrograf ESPRESSO in daleč prekosil sedanji instrument HARPS. ESO-v Izjemno velik teleskop (Extremely Large Telescope - ELT) bo, ko bo končan, morda našel dokaze o tujih biosferah.

Na Zemlji je življenje povsod prisotno. Severni Čile ima svoj delež kondorjev, vicuñ, vizcach in velikanskih kaktusov.

Celo v suhi prsti puščave Atacama mrgoli trdoživih mikrobov.
V medzvezdnem prostoru smo našli gradnike življenja.

Ugotovili smo, da so planeti v vesolju pogosti.

Pred milijardami let so kometi prinesli vodo in organske molekule na Zemljo.

Ali ne bi pričakovali, da se je to zgodilo tudi kje drugje?

Ali pa smo sami?

To je največje vprašanje vseh časov.

In odgovor je že skorajda v našem dosegu.

Gradnja velikanov

Astronomija je velika znanost.

Vesolje tam zunaj je veliko

in raziskovanje kozmosa zahteva velike instrumente.

To je 5-metrski reflektor Hale na gori Palomar.

Ko je pred petdesetimi leti nastal Evropski južni observatorij

je bil to največji teleskop na svetu.

Danes pa je najbolj dovršen ESO-v Zelo velik teleskop (VLT) na Cerro Paranal.
Kot najzmogljivejši observatorij v zgodovini

582 00:55:09,237 --> 00:55:13,080
je razkril celoten sijaj vesolja v katerem živimo.

583 00:55:15,720 --> 00:55:20,089
Vendar si astronomi želijo še večje instrumente.

584 00:55:20,114 --> 00:55:23,360
In ESO uresničuje njihove sanje.

585 00:55:37,822 --> 00:55:40,142
San Pedro de Atacama.

586 00:55:41,424 --> 00:55:45,410
Postavljeno sredi prekrasne pokrajine in naravnih čudes

587 00:55:45,435 --> 00:55:49,484
se nahaja to slikovito mesto, ki je dom tako domorodnih Atacameños

588 00:55:49,509 --> 00:55:52,040
kot tudi pustolovcev z nahrbtniki.

589 00:55:54,280 --> 00:55:58,080
In ESO-vih astronomov in tehnikov.

590 00:56:03,400 --> 00:56:07,696
Nedaleč od mesta San Pedro oblikujejo ESO-v prvi sanjski instrument.

591 00:56:07,721 --> 00:56:13,080
Imenuje se ALMA - Veliki milimetrski/podmilimetrski niz v Atacami (Atacama Large Millimeter/Submillimeter Array).

592 00:56:14,160 --> 00:56:19,491
ALMA je skupni projekt Evrope, Severne Amerike in Vzhodne Azije.

593 00:56:19,889 --> 00:56:23,057
Deluje kot velikanska zoom leča.

594 00:56:23,082 --> 00:56:28,076
Ko je 66 anten tesno skupaj, zagotavljajo širokokotni pogled.

595 00:56:28,101 --> 00:56:33,838
Ko so postavljene bolj narazen, pa razkrijejo veliko manjše podrobnosti na manjšem območju neba.

596 00:56:35,760 --> 00:56:40,643
V podmillimetrskih valovnih dolžinah vidi ALMA vesolje v drugačni luči.
Toda kaj bo razkrila?

Rojstvo čisto prvih galaksij v vesolju, kmalu po prapoku.

Hladne oblake prahu in molekularnega plina - zvezdne porodnišnice, kjer se rojevajo nova sonca in planeti.

In: kemijo kozmosa.

ALMA bo izsledila organske molekule - gradnike življenja.

Gradnja anten ALMA je v polnem zagonu.

Dve velika tovornjaka, ki se imenujeta Otto in Lore, peljeta dokončane antene na planoto Chajnantor.

Na 5000 metrih nadmorske višine zagona.

zagotavlja ta niz anten neprimerljivi pogled na vesolje v mikrovalovih.

A medtem ko je ALMA že skoraj končana,

manjka do naslednjega ESO-vega sanjskega inštrumenta še nekaj let.

Vidite to goro?

To je Cerro Armazones.
Nedaleč od Paranala

00:58:04,073 --> 00:58:09,286
bo dom največjega teleskopa v zgodovini človeštva.

00:58:09,659 --> 00:58:14,080
Spoznajte Evropski izjemno velik teleskop (European Extremely Large Telescope - E-ELT).

00:58:14,520 --> 00:58:17,240
Največje svetovno oko zazrto v nebo.

00:58:22,000 --> 00:58:25,500
Opremljen s 40-metrskim zrcalom

00:58:25,525 --> 00:58:30,465
E-ELT daleč prekaša vse dosedanje teleskope.

00:58:32,838 --> 00:58:36,198
Skoraj 800 računalniško nadzorovanih segmentnih zrcal.

00:58:37,917 --> 00:58:41,930
Zapletena optika, ki zagotavlja najostrejše slike.

00:58:44,510 --> 00:58:47,317
Kupola visoka kot cerkveni zvonik.

00:58:52,520 --> 00:58:56,844
Z E-ELT-jem vadimo superlative.

00:59:00,167 --> 00:59:04,647
Toda pravi čudež je seveda v vesolju tam zunaj.

00:59:10,120 --> 00:59:14,415
E-ELT bo razkril planete, ki se gibljejo okoli drugih zvezd.

00:59:18,160 --> 00:59:22,384
Njegovi spektrografi bodo zasledovali atmosfere teh tujih svetov

00:59:28,320 --> 00:59:33,969
Še globje v vesolju bo E-ELT proučeval posamezne zvezde v drugih galaksijah.

00:59:33,994 --> 00:59:38,480
To je podobno prvemu srečanju s prebivalci sosednjih mest.