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Abstract

High-velocity stars and peculiar G objects orbit the central supermassive black
hole (SMBH) Sagittarius A* (Sgr A*). Together, the G objects and
high-velocity stars constitute the S cluster. In contrast with theoretical
predictions, no binary system near Sgr A* has been identified. Here, we report
the detection of a spectroscopic binary system in the S cluster with the masses
of the components of 2.80 ± 0.50M⊙ and 0.73 ± 0.14M⊙, assuming an
edge-on configuration. Based on periodic changes in the radial velocity, we
find an orbital period of 372± 3 days for the two components. The binary sys-
tem is stable against the disruption by Sgr A* due to the semi-major axis of the
secondary being 1.59± 0.01 AU, which is well below its tidal disruption radius
of approximately 42.4 AU. The system, known as D9, shows similarities to the
G objects. We estimate an age for D9 of 2.7+1.9

−0.3 × 106 yr that is comparable to
the timescale of the SMBH-induced von Zeipel-Lidov-Kozai cycle period of about
106 yr, causing the system to merge in the near future. Consequently, the popu-
lation of G objects may consist of pre-merger binaries and post-merger products.
The detection of D9 implies that binary systems in the S cluster have
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the potential to reside in the vicinity of the supermassive black hole
Sgr A* for approximately 106 years.

The central parsec around the supermassive black hole (SMBH) Sgr A* contains a
large number of stars that constitute the Nuclear Star Cluster (NSC) [1], which is
one of the densest and most massive stellar systems in the Galaxy. These stars vary
in terms of their ages, masses, sizes, and luminosities [2]. In the vicinity of Sgr A* of
about 40 mpc, there is a high concentration of stars [3] that orbit the black hole at
velocities of up to several thousand km/s [4, 5] inside the S cluster. The presence of
stars close the Sgr A* is not surprising because it was expected that old and evolved
stars would gradually descend towards Sgr A* due to the cluster relaxation timescale
of about 1010 yr [6]. This is because star formation is significantly inhibited by tidal
forces and high energetic radiation in the vicinity of the SMBH. In fact, [7] identified a
cusp of late-type stars with stellar ages of > 3 × 109 yr. Interestingly, these late-type
stars coexist with massive early-type S cluster members that exhibit an average age
of approximately 4 − 6 × 106 yr [8, 9], resulting in the formulation of the “paradox
of youth” [10]. Until now, no companions have been identified for these young B-type
stars [11], although binary rates close to 100% have been proposed [12]. Therefore,
the presence of binary systems in the S cluster is a crucial question to investigate
the dynamical evolution of stars in the vicinity of Sgr A* [13, 14]. Given that the
evolution of high-mass stars is altered by their binary interactions [15], it is important
to understand the prevalence of putative binary systems in this cluster.
In this work, we present the detection of a spectroscopic binary in the S cluster.
Based on the photometric characteristics of the binary system, known as D9, it can be
considered to be a member of the G object population [16, 17]. The age of the system
is about 2.7 × 106yr, which is comparable to the von Zeipel-Lidov-Kozai cycle period
of approximately 106 years. The dusty source D9 is most likely composed of a Herbig
Ae/Be star associated with the primary. The lower-mass companion can be classified
as a T-Tauri star. In the near future, the binary may undergo a merging event due to
the ongoing three-body interaction of the system with Sgr A*. The uncertain nature
of the G objects can thus be resolved, at least in part, thanks to the binary system
D9 whose imminent fate appears to be a stellar merger.

Results

Observations

Using archival data observed with the decommissioned near-infrared integral field unit
(IFU) of Spectrograph for INtegral Field Observations in the Near Infrared
(SINFONI, mounted at the Very Large Telescope) [18, 19] in the H+K band
(1.4−2.4µm) between 2005 and 2019, we investigate the blue-shifted Brackettγ (Brγ)
emission of the source D9 (Fig. 1), which is part of the G object population in the
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S cluster [16, 17, 20]. In addition, we include recent Enhanced Resolution Imaging
Spectrograph (ERIS) observations carried out by the ERIS Team as part of the com-
missioning run in 2022 [21]. For the analysis of the three-dimensional data cubes that
consist of two spatial and one spectral dimensions, we perform standard reduction
steps (flat-fielding, dark, and distortion corrections). We obtain single barycentric and
heliocentric corrected data cubes that are stacked for each year individually to con-
struct a final mosaic of the entire S cluster region. Based on the best-fit Keplerian
solution, we obtain an estimate of the periapse distance of the D9 system from Sgr A*
of 29.9 mpc (0.75 arcseconds) adopting MSgrA∗ = 4 × 106 M⊙ and 8 kpc for the
mass and the distance of Sgr A*, respectively [22, 23]. Furthermore, we find a close
to edge-on orbital inclination of (102.55 ± 2.29)◦. With an eccentricity of 0.32 and a
semi-major axis of 44 mpc, D9 qualifies as an S cluster member with orbital param-
eters comparable to other S stars [3, 24]. Due to the orbit of the B2V star S2 (S0-2)
that intercepts with the trajectory of D9, we focus on the data set of 2019 to identify
a continuum counterpart in the H and K band to the Brγ line-emitting source.

Magnitudes

To increase the photometric baseline, we incorporate Near-infrared Camera 2
(NIRC2, mounted at the Keck telescope) L band imaging data from 2019 to
cover the near- and mid-infrared [25]. The science-ready data was downloaded
from the Keck Observatory Archive [26]. Due to the high stellar density of the
S cluster [27], dominant point spread function (PSF) wings are a common obsta-
cle that hinders confusion-free detection of fainter objects such as G1 [28], DSO/G2
[29], or D9 [20]. Therefore, we used an image sharpener on the continuum data of
2019 to reduce the impact of the challenging crowding situation in the S cluster (Sup-
plementary Fig. 1 and Supplementary Table 1). With this procedure, we enhance
fainter structures but preserve the photo- and astrometric aspects of the input data.
To emphasize the robustness of the image sharpener, we invoke the contour lines of
the input data as a comparison, as demonstrated in Fig. 1. Analyzing the displayed
extinction corrected data (Supplementary Table 2), we find H − K = 1.75 ± 0.20 and
K − L = 2.25 ± 0.20 colors for D9 suggesting photometric similarities with D2 and
D23 [20]. The latter two sources are believed to be associated with young T Tauri or
low-mass stars [16, 30, 31]. Due to these photometric consistencies (Supplementary
Fig. 2), we tested the hypothesis using a Spectral Energy Distribution (SED) fitter.

Spectral Energy Distribution

The SED fitter [32] applies a convolving filter to the individual values to reflect on
the response function of the instrument filter. Because the photometric system of
SINFONI is based on the Two Micron All Sky Survey (2MASS) data base, we select
the corresponding filters “2H” and “2K”. For the NIRC2 MIR data, we use the United
Kingdom Infrared Telescope (UKIRT) L’ band filter because it is based on the Mauna
Kea photometric system [33]. With these settings, the fitter compares models with the
input flux (Fig. 2) where we limit the possible output that satisfies ∆χ2 ≤ 3. These
models represent young stellar objects (YSOs) and are composed of a stellar core, an
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Fig. 1 Detection of the D9 system close to Sgr A* in 2019. Subplot (a) shows the Doppler-
shifted Brγ line map extracted from the H+K SINFONI data cube with a corresponding wavelength
of 2.1646µm (vacuum wavelength 2.1661µm). Subplot (b) and (c) shows the near-infrared H (1.6µm)
and K (2.1µm) band data observed with SINFONI. Subplot (d) denotes the mid-infrared L (3.76µm)
band observation carried out with NIRC2. Sgr A* is marked with a ×, D9 is encircled in every plot.
Due to its main sequence character, the marked close-by star S59 can only be observed in the H and K
bands. On the contrary, the brightest K band source of the S cluster, S2/S0-2 can be observed in every
shown infrared band. To increase contrast, an image sharpener is applied suppressing expansive point
spread function (PSF) wings. To emphasize the astrometric robustness of the image sharpener, we
adapt the lime-colored contour lines from the non-sharpened data. The contour line levels in panel
b) are at 10%-80% of the peak intensity of S2, increasing in 5% steps. In panel c), the contour lines
are set at 20%-100% of the peak intensity of S2, separated by 10%. For panel d), the contour lines
are set to 85%, 90%, 95%, and 100% of the peak intensity of S2. The labels of the axis indicate the
distance to Sgr A* located at ∆RA=0.00” and ∆DEC=0.00”. In any plot shown, north is up, and
east is to the left.

accretion disk, and a dusty envelope. These typical components constitute a YSO and
can be traced in the near- and mid-infrared parts of the spectrum. As input parameters,
we used the H (0.8 ± 0.1 mJy), K (0.3 ± 0.1 mJy), and L (0.4 ± 0.1 mJy) band
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Fig. 2 Spectral Energy Distribution of the D9 system. The extinction corrected data points
refer to the flux density values in the H, K, and L band observed with SINFONI and NIRC2. We use
104 individual models to find the best fit of the data shown with grey lines. The final best-fit result
is depicted with a black line. Based on the shown fit, the properties of the primary of the D9 binary
system are derived and listed in Table 1. The uncertainties of the data points are estimated from the
photometric variations along the source. Based on the reduced χ2 value of about 2, the displayed
best-fit solution was selected.

common YSO models, the H and K band emission traces the core components of the
system, whereas the L band emission can be associated with a dusty envelope. Based
on a photometric comparison with 104 individual models, the best-fit of the SED fitter
results in a stellar temperature of 1.2 × 104 K and a corresponding luminosity of
approximately 93L⊙, which are associated with a stellar mass of 2.8 ± 0.5 M⊙ (see
Table 1).

Periodic pattern

While finalizing the analysis of D9, a pattern of radial velocity came to our atten-
tion. By inspecting the SINFONI mosaics that depict every observed night between
2005 and 2019, we found a clear periodic signal shown in Fig. 3 between −80 km/s
and −225 km/s using the Doppler-shifted Brγ emission line with respect to its
rest wavelength at 2.1661µm. A comparison of the periodic pattern of D9 with the
Doppler-shifted Brγ emission line of D23 demonstrates that the signal is not an
artefact (Supplementary Fig. 3). From the orbital fit and the related inclination of
i = (102.55 ± 2.29)◦, we know that D9 is moving on an almost edge-on orbit with a
proper motion of vprop = 249.43 ± 5.01 km/s. Since S2 (S0-2) moves with a proper
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Fig. 3 Radial velocity of D9 between 2005 and 2022 observed with SINFONI and ERIS.
In subplots (a), (b), and (c), we display three selected nights to show the variable Brγ emission line
with respect to the rest wavelength at 2.1661 µm. The top three plots correspond to the same colored
boxes as in the radial velocity evolution model shown in subplot (d). We have indicated the exact
data point using magenta color. In subplot (d), the SINFONI data is indicated in green, the two
ERIS observations from 2022 are highlighted in black. Due to the decommission, no high-resolution
spectroscopic data are available between 2020 and 2021. In addition, the usual observation time for
the Galactic center at Cerro Paranal (Chile) is between March and September, which explains the
limited phase coverage. All data points in the radial velocity subplot (d) correspond to a single night
of observation. The velocities in the left y-axis are related to the observed blue-shifted Brγ emission
lines. Due to data processing, these values are shifted and arranged to an estimated zero-velocity
baseline (see the right y-axis). The uncertainties of the individual data points are calculated from the
root-mean-square (RMS) deviation (see Table 1).

motion of almost 800 km/s [34], the comparable slow velocity of D9 implies that
the intrinsic RV baseline vbase of the system, estimated with (vmin+vmax)/2, will not
change significantly between 2005 and 2019. We normalize all observed velocities vobs

to this baseline with vobs-vbase to obtain vnorm, which is the input quantity for the
fit of the binary system performed with Exo-Stricker [35]. Due to the poor phase cov-
erage before 2013, we split the data to perform an independent sanity check. The fit
displayed in Figure 3 resembles the epochs between 2013 and 2019, where we used a
false-alarm probability of 10−3 similar to that used by [14]. The data baseline between
2005 and 2012 represents a non-correlated parameter to the Keplerian model of the
binary provided by Exo-Striker, which is in agreement with the fit that is based on
the epochs between 2013 and 2019 (Fig. 3). With a similar motivation, we incorpo-
rate the ERIS observations from 2022 that show a satisfactory agreement with the
RV model and the expected LOS velocity of the binary, consisting of a primary and
a secondary. Regarding the possible impact of a variable baseline vbase (i.e., the LOS
velocity vobs of D9 increases), we measure a difference of ± 15 km/s between 2013
and 2019, which is consistent with the estimated uncertainty of ± 17 km/s from the
fit. We conclude that a variation of vbase over the complete data baseline is inside the
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uncertainties and does not impact the analysis significantly. However, a forthcoming
analysis of the binary system D9 should take this adaptation into account because it
is expected that an alteration of the intrinsic LOS velocity will exceed the uncertainty
range of the individual measurements of the periodic signal within the next decade.
In the subsequent analysis, we will refer to the primary as D9a, whereas
the secondary companion will be denoted as D9b. With the binary orbiting
Sgr A*, this three-body system is divided into an inner and outer binary.
The inner binary describes D9a and D9b, while the outer one represents
the D9 system orbiting Sgr A*.
The best-fit result includes an offset of vbase with RVoff = -29.19 ± 3.00 km s−1 due
to the eccentricity of the secondary eD9b of 0.45± 0.01, which causes an asymmet-
ric distribution of the LOS velocity around the baseline. With this offset, we obtain
vmod = vnorm + RVoff as displayed in Fig. 3. The related Keplerian parameters of
the secondary orbiting its primary are listed in Table 1. From the fit but also evident
in the periodic RV data points (Fig. 3), we find an orbital period for the secondary
of PD9b = 372.30± 3.65 days = 1.02±0.01 yr, which can be transferred to a total
mass of the system of about Mbin=3.86 ± 0.07 M⊙, considerably above the derived
D9 (i.e., the primary) mass of MD9a = 2.8 ± 0.5 M⊙. The difference in mass for MD9a

and Mbin cannot be explained solely by the uncertainty range. However, inspecting
m sin(iD9b) = 0.73 M⊙ and the assumed inclination of the secondary of 90◦ results
in the maximum mass of the companion. The assumed inclination of the secondary
is motivated by an almost edge-on orbit of D9 (Table 1). Although the circumpri-
mary disk does not necessarily have to be aligned with the orbit of the binary as
is found for T-Tauri systems [36], surveys of Herbig Ae/Be stars suggest a tendency
towards a coplanar arrangement [37]. Assuming that the orbit of the secondary is
approximately aligned with the circumprimary disk with an intrinsic inclination of
the primary D9a of iintrinsic = (75 ± 19)◦ (Table 1), we are allowed to transfer the
related uncertainties to m sin(iD9b). Following this assumption, we find a mass for the
secondary of MD9b = 0.73 ± 0.14 M⊙ consistent with the derived primary mass of
MD9a = 2.8 ± 0.5 M⊙ and the total mass Mbin = 3.86 ± 0.07 M⊙ of the system.

Discussion

Radiation mechanism

Taking into account the periodic variation of Brγ emission, we want to highlight three
different scenarios as a possible origin of the periodic Brγ signal.
Firstly, the emission of the Brγ line is solely the result of a combination between the
gaseous accretion disk and stellar winds of the primary [38, 39]. In this scenario, the
secondary disturbs this emission by its intrinsic Keplerian orbit around the primary.
Secondly, a possible origin of the Brγ line could be the presence of a circumbinary disk
around the D9 binary system enveloping the primary and the secondary. In this case,
the interaction between the primary with the secondary allows inward gas streams
from the circumbinary disk resulting in the observed periodic Brγ line [40].
The third and foremost plausible scenario is the interaction between two accreting
stellar objects. It is well known that especially Herbig Ae and T-Tauri stars exhibit
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prominent Brγ emission lines associated with accretion mechanisms [41, 42]. For
instance, a radial shift of the accretion tracer has been observed for the DQ Tau
binary system [43]. It has been proposed that this resonance-intercombination may be
explained by stellar winds of the secondary [44]. Due to Keplerian shear, line photons
can escape the optically thick material and produce the RV pattern, as observed for
the D9 binary system [45].

Stellar types of the primary and secondary

Considering the presence of a primary and its companion, it is suggested that stellar
winds interact with the Brγ emission of the accretion disk(s) of the binary system
[38, 46] that gets periodically disturbed by the presence of the secondary [47, 48].
Alternatively, the Brγ emission line is produced by both the primary and secondary
as it is observed for the Herbig Ae star HD 104237 with its T Tauri companion [49].
Comparing MD9a with the total mass of Mbin=3.86 M⊙ of the system suggests that the
secondary does not contribute significantly to the photometric measurements analyzed
in this work. If it were not the case, the estimated mass for the primary of the D9
system of MD9a=2.8 ± 0.5 M⊙ would be lower, while MD9b = 0.73 ± 0.14 M⊙ should
be increased. Considering the estimated mass of the primary MD9a and the fixed upper
limit of Mbin based on the observed period, the secondary can be classified as a faint
low-mass companion, suggesting a classification as a T-Tauri star [50]. Considering
the stellar mass, radius, and luminosity of the primary (Table 1), the system may be
comparable to the young Herbig Ae/Be star BF Orionis, which is speculated to also
have a low-mass companion [51]. On the basis of observational surveys, it is intriguing
to note that most Herbig Ae/Be stars exhibit an increased multiplicity rate of up to
80% [37, 52]. Another result of the radiative transfer model is the relatively small disk
mass MDisk of (1.61± 0.02)× 10−6 M⊙, which could be interpreted as an indicator of
the interaction between D9a and its low-mass companion D9b. Possibly, this ongoing
interaction, but most likely the stellar winds of the S stars [53], will disperse the
disk of D9a in the future [54–57]. Using the derived luminosity and stellar
temperature of D9a together with the evolutionary tracks implemented in
PARSEC [58], we estimated the age of the system of 2.7+1.9

−0.3 × 106 yr.

Migration scenario

A potential migration scenario has been proposed by [59] and can be described as the
triple-system hypothesis. In this scenario, a triplet system migrates towards Sgr A*
[60–62], where the two companions are captured to form a binary. It is possible that the
third companion may be ejected from the cluster and subsequently become a hyper-
velocity (HV) star, as postulated by [63, 64]. A consequence of the disruption of the
initial triplet is the resulting high eccentricity of the captured binary system close to
unity [65]. Since the derived outer eccentricity of the D9 system is eD9a = 0.32 ± 0.01
(Table 1), we consider a migration channel different from the triple-system hypothesis.
As proposed by [60] and [61], molecular clouds can migrate towards the inner parsec
and consequently close to Sgr A*. Speculatively, the D9 system could have formed
during such an inspiral event. An additional implication based on the age estimate
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is the presumably evaporated circumbinary disk that enveloped the primary and sec-
ondary. The authors of [66] found that the timescales for dismantling the circumbinary
disk scale with the separation between the primary and secondary. The relation can
be formulated with tdis.time ≤ 106 yr< tD9a,age = 2.7+1.9

−0.3 × 106 yr. The former rela-
tion is strengthened by the analysis of [67] who found that photoevaporative winds
decrease the lifetime of the circumbinary disk as a function of distance. Independent
of the stellar wind model, the author of [67] found that circumbinary disks evaporate
between approximately 1−10 × 106 yr providing an explanation for the low disk mass
of (1.61± 0.02)× 10−6 M⊙ found for the D9 binary system. Between 2005 and 2022,
the D9 binary system has remained stable in the gravitational potential dominated by
Sgr A*. This is evident from the observable periodic RV signal for almost 20 years. The
conditions for the dynamical stability of the binary can be extracted directly from the
Keplerian orbital fit and binary mass estimate by calculating the tidal (Hill) radius.
For the periapse distance rp of approximately 30 mpc corresponding to 6200 AU, we
find the tidal (Hill) radius for D9 of rHill = rp(Mbin/3MSgrA∗)1/3 = 42.4 AU. The
effective orbital radius of the inner binary system is reff = 1.26 ± 0.01 AU using the
Keplerian orbital parameters for the secondary listed in Table 1. Therefore, the sys-
tem remains in a stable, mildly eccentric orbit around Sgr A*, and it can be further
described as a hard binary. This is expected since the evolution of the outer
orbit of the system D9-Sgr A* is dominated by the gravitational poten-
tial of the SMBH. However, because of its age and potential interaction with the
dense environment, the question of binary destruction timescales should be addressed.
It is plausible that the inner system D9a-D9b will actually become even
harder and the components will eventually merge [76]. This is due to the
interaction of the D9 system with Sgr A*, which acts as a distant massive
perturber that alters the orbital parameters through the von Zeipel-Lidov-
Kozai (vZLK) mechanism [68–70]. Due to the young age of the binary
system and, therefore, the short time in the S cluster (compared to the
evolved stars), we will focus in the following section on the vZLK and other
effects induced by the dark cusp of the S cluster.

Dynamical processes and stellar populations

The lifetime of the D9 system with its estimated age of 2.7+1.9
−0.3 × 106 yr and the semi-

major axis of about 44 mpc can be compared with basic dynamical processes and their
timescales as well as with other known stellar populations in the central parsec in the
distance-timescale plot. Such a plot (see e.g. [71]) can be used to infer which dynami-
cal processes can be relevant for the current and the future orbital evolution of D9 at
a given distance. We use the timescales for the two-body non-resonant relaxation τNR,
scalar and vector resonant relaxation τ sRR and τvRR, respectively, and the vZLK mech-
anism driving inclination-eccentricity oscillations taking place on the vZLK timescale
τvZLK. In Fig. 4, we show the D9 system (red star), the timescales related to the
dynamical processes, and the relevant stellar populations identified in the inner parsec:
S cluster, clockwise (CW) disk, and late-type stars. For most of the timescales (non-
resonant, scalar, and vector resonant relaxations), we need an estimate for the number
of stars inside the given distance r from Sgr A*, N(< r). For this purpose, we use the
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Fig. 4 Distance and age of D9 in the context of basic dynamical processes and stellar
populations in the Galactic center. In terms of the semi-major axis, D9 is positioned in the outer
part of the S cluster, close to the innermost part of the clockwise (CW) disk of OB/Wolf-Rayet stars.
With its estimated age of 2.7+1.9

−0.3 × 106 yr, its orbit around Sgr A* can just be under the influence
of the fast vector resonant relaxation (RR; shaded area stands for the vector resonant relaxation of
a 1M⊙ star and a 10M⊙ star represented by the top and the bottom lines, respectively). However,
the scalar resonant relaxation (RR) and the non-coherent two-body relaxation have not had sufficient
time to affect significantly the angular momentum and the orbital energy of the D9 system yet. Hence,
D9 as a binary system is currently stable against the tidal disruption by Sgr A* (vertical dotted
magenta line denotes the binary tidal radius). A similar conclusion can be drawn with regard to
the minimum relaxation time min τrlx resulting from the dark cusp (illustrated by the orange dotted
line). In addition, the von Zeipel-Lidov-Kozai (vZLK) mechanism that involves the SMBH-D9-CW
disk (τdiskvZLK ; dashed purple line) operates on a long timescale to cause the tidal disruption of the
binary. On the other hand, in the hierarchical setup where the inner D9 binary orbits the SMBH, the
corresponding vZLK timescale is comparable to the age of D9, which implies a likely merger (orange
dash-dotted line).

power-law mass density profile ρ(r) = 1.35 × 105(r/2 pc)−1.4 M⊙ pc−3, whose power-
law index is adopted from [72] and the normalization coefficient is determined so that
M(< 2 pc) = 2MSgrA∗, i.e. twice the Sgr A* mass at the influence radius. We see that
for the inferred age of D9, none of the relaxation processes is fast enough to change
significantly the angular momentum magnitude, i.e. the eccentricity. Hence, the D9
binary is stable against disruption by Sgr A* at the corresponding tidal radius rt of
about 161(aD9b/1.59 AU)(MSgrA∗/4×106 M⊙)1/3(Mbin/3.86M⊙)−1/3 AU ≃ 0.78 mpc,
for which the orbital eccentricity of e ≃ 1−rt/a = 0.98 would be required. Apart from
nonresonant and scalar resonant relaxation processes, such a high eccentricity of the
D9 orbit around Sgr A* cannot be reached via the vZLK oscillations, where we con-
sider Sgr A* – D9 as an inner binary and the CW disk as an outer perturber with the
mass of Mdisk ≲ 104 M⊙. With the mean distance of the disk rdisk of about 0.274 pc

10



461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

from D9, the corresponding vZLK cycle timescale is given by,

τdiskvZLK = 2π

(
MSgrA∗

Mdisk

)(
rdisk
aD9a

)3

PD9a

= 2.6 × 108
(

MSgrA∗

4 × 106 M⊙

)(
Mdisk

104 M⊙

)−1 (
rdisk

0.274 pc

)3

×

×
(

aD9a

0.044 pc

)−3 (
PD9a

432.35 years

)
yr , (1)

which is two orders of magnitude longer than the lifetime of D9 (see also Fig. 4 for
the radial dependency of τdiskvZLK). In Eq. (1), we adopted the notation of the D9
orbital parameters as summarized in Table 1.
When we concentrate instead on the other hierarchical three-body system – the inner
D9 binary and the outer binary D9–Sgr A*, the inner binary components undergo the
vZLK inclination–eccentricity cycles. The corresponding vZLK timescale then is,

τSMBH
vZLK = 2π

(
Mbin

MSgrA∗

)(
aD9a

aD9b

)3

PD9b

= 1.1 × 106
(

Mbin

3.86M⊙

)(
MSgrA∗

4 × 106 M⊙

)−1 (
aD9a

0.044 pc

)3

×

×
( aD9b

1.59 AU

)−3
(

PD9b

1.02 years

)
yr , (2)

which is within the uncertainties comparable to the age of D9. In Eq. (2), we
adopted the notation of the parameters of both the D9 orbit around Sgr A*
and the binary orbit as summarized in Table 1. Hence, the system appears be
detected in the pre-merger stage. As the eccentricity of the D9 binary will increase
during one vZLK timescale, the strong tidal interaction between the components dur-
ing each periastron will perturb the stellar envelopes significantly, which will plausibly
lead to the merger of both components once they are significantly tidally deformed
[73]. Such a merger process is first accompanied by the Roche-lobe overflow of the stel-
lar material from one of the components and then a subsequent merger of the stellar
cores (see e.g. [74]). At the same time, the common envelope is progressively inflated to
several thousand Solar radii. As it cools down, the infrared excess increases consider-
ably. In this way, some or all of the G objects observed in the Galactic center could be
produced and the D9 system would represent a unique pre-merger stage, which is also
hinted by the smaller near-infrared excess in comparison with other G objects [17].

Fate of the binary

Due to the young age of the binary system and therefore its short time in the S cluster
(compared to the evolved stars), we will first focus on the effect of the dark cusp.
Old and faint stars have migrated into the S cluster from a distance of a few parsecs
[6] and might alter the orbits of the young and bright cluster members [7, 75, 76].
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With the detection of the binary system D9, we convert its stellar parameters (Table
1) and age of TD9a = 2.7+1.9

−0.3 × 106 yr to a lower limit for the minimum two-body
relaxation timescale of min trlx = 4.8(MSgr A∗/Mbin)(aD9b/aD9a)TD9a resulting in
about 874 × TD9a yr [75], equivalent to approximately 109 yr exceeding the lifetime
of the binary by three orders of magnitude. This suggests that the dark cusp does not
have any significant imprint on the D9 system independent of its time in the cluster.
Given that the assumed inclination is a geometrical parameter contingent upon the
observer, it is reasonable to conclude that it will have, such as the dark cusp, no impact
on the dynamical evolution of the binary system. We will now examine the evolutionary
path that is described by the vZLK mechanism where D9 is the inner binary and D9-
Sgr A* represents the outer binary [73]. For this hierarchical setup, the vZLK timescale
is τSMBH

vZLK = 1.1 × 106 yr, see Fig. 4 and Eq. (2), which is comparable with the
approximate lifetime of the binary of TD9a = 2.7 × 106 yr. It is reasonable to assume
that the ongoing interaction between the primary, secondary, and Sgr A* is reflected
in altering the eccentricity of the D9 binary, which very likely results in a merger. This
supports the idea that the G-object population [17] has a contribution from recently
merged binary systems, as proposed by [16]. Considering the vZLK timescale τSMBH

vZLK

of about 106 yr and the age of D9 of 2.7+1.9
−0.3 × 106 yr, the system could have migrated

to its current location and may soon merge to become a G-object. D9 thus offers a
glimpse on one potential evolutionary path of the S stars. Taking into account that
the bright and massive B-type S stars with an average age of 6 ×106yr [8, 9] may have
formed as binary systems [12], it is suggested that these young S cluster members might
have lost their putative companions in the immediate vicinity of Sgr A* assuming an
ex-situ formation. In [11] and [14], the authors explored the probability density for the
young stars in and outside the S cluster. The authors propose that the probability of a
binary system is significantly higher outside the central arcsecond (≥ 72 % compared
to ≤ 17 % at 68% confidence interval). If we consider the recent detection of the new
G object X7.2 [77], we estimate with R = NB/(2Nm) a binary fraction of the central
0.1 pc to be approximately 10 % using the Ansatz of [16], where NB = 86 [20, 77]
represents the assumed number of binaries and Nm = 478 [16] the amount of low-mass
stars in the S cluster using the initial mass function derived by [8]. This implies that
the majority of expected binaries in the S cluster should be among the G objects [20].
Regardless of the formation or migration scenarios, we can estimate that
the B type stars of the S cluster reside in their environment for at least
1.1× 106 years due to the absence of their expected companion stars [11, 12].
The estimated vZLK timescale is compatible with the predicted decrease of binaries
for a possible star-formation episode in the Galactic center 6× 106 yr ago [8, 73]. This
suggests that the vZLK mechanism may be the driving force of the decrease in binary
fraction in the dense S cluster [7, 76, 78].

Alternative explanations

The number of detected binaries in the Galactic center is surprisingly low. Only five
confirmed binaries have been found, which is, considering an approximate number of
stars in the NSC of approximately 106 [1], a negligible fraction of the overall population
(Supplementary Table 3). Although the multiplicity fraction in the NSC should be
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higher [73, 78], other possible scenarios that explain the periodic RV pattern displayed
in Fig. 3 should be taken into account. One possible alternative explanation for the
periodic variations of RV could be stellar pulsations [79]. This scenario was initially
used to explain the photometric variability of IRS 16SW [80, 81]. However, it was
later confirmed that the Ofpe/WN9 star IRS 16SW is indeed a massive binary by
conducting IFU observations with SINFONI [82] analyzing the Brγ emission line.
Considering the binary period of the D9 system of about 372 days, stellar pulsations
are rather unlikely, since they occur on daily timescales [83]. Alternatively, the Brγ
emission could be related to the rotation of the accretion disk of D9. Although ionized
hydrogen and disk winds are associated with YSOs [38, 46], the dimensions of the disk
itself and the spectral resolution of the instrument pose a strong constraint on the
detectability of the system.

Methods

Age of the system

For an age estimate of the D9 binary system, we use the temperature and radius
listed in Table 1 with stellar evolutionary tracks from PARSEC [58]. Considering
the low mid-infrared flux in the L band of 0.4±0.1 mJy compared to the K band of
0.8±0.1 mJy, questions the proposed classification for D9 as a candidate Class I YSO
as suggested by [17]. Taking into account the derived stellar mass of the system in
combination with the hydrogen emission line, alternative explanations are required to
classify the binary system. As outlined before, it is known that the Brγ line is a tracer
for accretion disks of Herbig Ae/Be stars [39]. Similar to Herbig Ae/Be surveys [84],
we use the PARSEC isochrones [58] to estimate the age of D9 (Fig. 5). We find an
age of the D9 system of 2.7+1.9

−0.3 × 106 yr (Fig. 5), which is, in combination with the
high binary rate [37, 52, 84], typical for Herbig Ae/Be stars. This age estimate implies
an ex-situ formation scenario because the dominant winds of the massive stars inside
the S cluster would have photoevaporated the required star formation material in the
first place [53, 90]. The stellar evolution model is in agreement with common stellar
parameters of Herbig Ae/Be stars [84, 91] that are derived from the Gaia Data Release
2 [92, 93].

Keplerian orbit

Using the well-known orbit of S2 (S0-2) [94, 95], we determine the position of Sgr A*.
Since the intrinsic proper motion of Sgr A*, vprop,SgrA∗ , is only a fraction of a pixel
per epoch [96] and thus several orders of magnitude smaller than the distance to
D9, we neglect this velocity term. The rejection of vprop,SgrA∗ is motivated by the
typical astrometric uncertainties of ±12.5 mas that exceed the intrinsic proper motion
of Sgr A* with vprop,SgrA∗ = 0.3 mas/yr. From the fixed position of Sgr A*, we use
the astrometric information of D9 to derive a related Keplerian orbital solution. We
incorporate the LOS velocity of D9 using the estimated baseline of about 150 km/s and
a corresponding uncertainty range of ±15 km/s. Comparing the statistical significance
of the Keplerian fit with and without the LOS velocity results in a difference of almost
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Fig. 5 Hertzsprung-Russel diagram using the evolutionary tracks based on the PARSEC
stellar evolution model. The D9 binary system is indicated by a red star with the corresponding
errorbars in the temperature-luminosity plot. The magenta-shaded area depicts the range of the
masses of stars (2.4-2.8M⊙), whose stellar evolution is consistent with the location of the D9 source
at the time of 2.4− 4.6 × 106 yr. The orange-dashed line represents the isochrone corresponding to
2.7 million years. For comparison, we implement known sources of the Galactic center, such as the
putative high-mass YSO X3 [85], the bow-shock source X7 [77, 86], dusty S cluster object G2 [87],
and the massive early-type stars S2 [88] and IRS16NE [89].

one magnitude for the reduced χ2. We estimate χ2
red to be about 10 for the sole

astrometric measurements while we find a robust fit for χ2
red of approximately 2 by

maximizing the parameter space, that is, including the LOS velocity. With a mass of
MSgrA∗ = 4 × 106 M⊙ for Sgr A* [22, 23], we display the resulting Keplerian orbit
in Fig. 6 and list the corresponding orbital elements in Table 1. As is evident from
the plot displayed in Fig. 6, D9 moves on the descending part of its Keplerian orbit,
which results in the mentioned slow velocity. Intriguingly, the relative location and its
intrinsic velocity of D9 with respect to Sgr A* ensure a confusion-free detection of the
binary system. Most likely, detection of the binary would be hindered if it was in its
ascending part of the orbit.

Statistical analysis

The Limited-memory Broyden, Fletcher, Goldfarb, and Shannon box constraints (L-
BFGS-B) algorithm forms the basis of the Keplerian fit [97, 98]. The Keplerian fit
relies on the L-BFGS-B algorithm, which is an iterative method that identifies free
parameters within a given range and aims to minimize the gap between the data
points and the priors (i.e., initial guess). The Keplerian equations of motion describe
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Fig. 6 Keplerian orbit of the D9 system. In subplot (a), the projected on-sky trajectory of the
D9 binary system is shown. Subplot (b) and (c) shows the R.A. and DEC. position as a function
of time. In subplot (b) and (c), the low proper motion is eminent. Every blue-colored data point
in this figure is related to one observational epoch. From this plot and the related inclination of
iorb = (102.55 ± 2.29)◦, it is suggested that the trajectory of the binary system is close to edge-on.
The size of the blue data points are related to the astrometric uncertainty of ±0.006 as.

the model underlying the algorithm. The algorithm iteratively finds the orbital solu-
tion that best fits the data points with high accuracy, i.e., the minimized χ2.
The best-fit parameters are then used as a prior for the Markow-Chain-Monte-Carlo
(MCMC) simulations. The MCMC algorithm was used by the implementation
of the emcee PYTHON package developed by [99]. When inspecting the dis-
tribution of the measured data points, it is evident that the D9 system moves with a
comparable slow velocity in the S cluster, which translates into an almost (projected)
linear motion. Hence, it is not entirely unexpected that the MCMC simulations are
in high agreement with the best-fit results of the Keplerian approximation (Table 2).
We can conclude that the orbital solution presented in Table 2 is robust and should
provide a suitable basis for future high-angular resolution observations.

Uniqueness of the IFU data points

The line maps of the three-dimensional data cubes observed with SINFONI and ERIS
act as a response actor, which is interpreted as a measure of the influence of nearby
sources and the imprint of the background. It is important to note that sporadic
background fluctuations do not result in a line map emission counterpart. In other
words, the line emission with spatially limited origin (i.e. noise) does not produce
a (compact) line map signal comparable to, e.g., G2 [29]. This is due to the flux
required to produce a signal above the sensitivity level of the detector. Vice versa,
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only spatially extended emission with sufficient line emission produces a spectroscopic
signal (Supplementary Fig. 4 and Supplementary Fig. 5). This interplay between line
emission and line maps reduces the chance of detecting false positives of any kind.
Mathematically speaking, the mentioned interplay between the two parameter spaces
(spatial and spectroscopic) of detecting a real signal is a necessary condition. In this
sense, one cannot claim the existence of a source based on one parameter space.
Taking into account the Keplerian orbit of D9 further reduces the probability of a
false positive, which occurs only at the expected orbit position, by several magnitudes.
[100] and [27] calculated the probability of detecting an artificial source on a Keplerian
orbit to be in the range of a fraction of a percent. This can only be considered an
upper limit because the probability relates to a time span of 5 years and covers solely
astrometric data. In Fig. 7, we show an overview of selected epochs to demonstrate the
interplay between the observed Brγ emission line and the line maps. These line maps
are created by selecting a wavelength range of about 0.0015µm, which corresponds
to three channels in total (out of 2172 channels in total). A crucial pillar of the
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Fig. 7 Doppler-shifted Brγ line of D9 and the related line maps representing the
magenta-marked emission. Subplots (a), (c), (e), (g), (i), (k), (m), (o), and (q) show SINFONI
line maps of the binary system D9. In these subplots, D9 is marked with a magenta-colored circle.
In sublots (b), (d), (f), (h), (j), (l), (n), (p), and (q), we apply a local background subtraction of the
surrounding gas to the presented spectra. The successful subtraction of the background is evident in
the absence of the prominent Brγ peak at 2.1661µm [101, 102]. The shown spectra shows the evolu-
tion of the line over one year. The normalized Brγ velocity vnorm in 2013 is approximately 66 km/s
(b), 3 km/s (h), and -72 km/s (n). In 2014, vnorm is about 68 km/s (d), 3 km/s (j), and -71 km/s
(p). In 2015, we estimate vnorm to be around 72 km/s (f), 1 km/s (l), and -67 km/s (r).

binary detection presented in this work is the analysis of individual nights observed
with SINFONI and ERIS. Therefore, it is expected that the quality of the data will
differ not only due to variable weather conditions but also to the number (i.e., on-
source integration time) of observations executed at the telescope (Fig. 7). Of course,
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the impact of these boundary conditions is reduced by stacking individual cubes, as
has been done for the analysis presented, for example, in [20, 29, 103]. Since the RV
signal of the D9 system changes on a daily basis, stacking these single night data
cubes affects the signal-to-noise ratio (SNR) of the Brγ line emission of the D9 system
(Supplementary Fig. 4). For example, the signal-to-noise ratio for the stacked 2019
SINFONI data cube with an on-source integration time of almost 10 hours is 20, while
two cubes from a single night in 2019.43 show an average SNR of about 5. Although
detection of the D9 binary system would benefit from using the data cubes that include
all annual observations, an analysis of the periodic RV signal would be hindered.

ERIS data

The ERIS data analyzed in this work are part of the science verification observations
carried out in 2022 by the PI team. To reduce the data, we use the ESO pipeline [104]
that applies the standard procedure (dark, flat, and distortion correction). Further-
more, the data are part of a preliminary analysis of the Galactic center with ERIS [21].
The authors of [21] report a superior performance compared to SINFONI, which can
be confirmed as shown in Fig. 8. Although the on-source integration time is only 1200
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Fig. 8 Observations of the D9 binary system in 2022 with ERIS. In subplots (a) and (b),
the Brγ line maps observed with ERIS in 2022 are shown. Both subplots display the binary system
D9 and the close-by source D23. For visualization purposes, we apply a 40 mas Gaussian kernel to
these line maps. Subplots (c) and (d) show the related spectrum where we indicate the normalized
RV velocity vnorm. Including the offset measured by Exo-Striker of about 29 km/s, these velocities
are displayed as black data points in Fig. 3.
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seconds for each night, we find an SNR of almost 6 for the Doppler-shifted Brγ emis-
sion line of the D9 binary system. In both data sets shown, we detect D9 close to D23
without confusion comparable to the SINFONI observations displayed in Fig. 1 at the
expected wavelength (Fig. 3). Due to the distance between D9 and D23 in 2022, both
sources will be affected by interference in forthcoming observations of the S cluster.

Radial velocity fit

For the spectrum that is used to extract the related LOS velocity, we subtract the
underlying continuum by fitting a polynomial to the spectroscopic data. Line maps
are constructed in the same way directly from the three-dimensional data cubes (Fig.
1). Using an aperture with a radius of 25 mas, the extracted spectrum of D9 reveals
a velocity range between −67 km/s and −225 km/s (Supplementary Tables 4-6) on
the investigated data baseline with a corresponding average LOS velocity of vLOS =
−153.72 km/s and a measured uncertainty of 16.38 km/s (Table 1). If the source is
isolated, we use an annulus for a local background subtraction [31]. In any other
case, we select an empty region 0.1” west of S59 (Fig. 1). Subtracting the baseline
(vmin+vmax)/2 from the individual velocity values normalizes the distribution. With
this arrangement of the observed RV, we used the tool Exo-Striker [35] to fit the
related velocities, which resulted in the binary orbital parameter listed in Table 1 and
the Keplerian fit of the secondary trajectory displayed in Fig. 3. The model predicts
a secondary on an elliptical orbit around the primary, which further results in an RV
offset of about 29 km/s. This offset is added to the normalized velocities. As shown in
Fig. 3, the final normalized LOS velocity is around −120km/s. The reduced chi-square
is χ2 = 0.31, which implies a significant agreement between the data and the fit. Due to
the extended data baseline of 15 years (Supplementary Tables 7-9), we established an
independent sanity check to reflect the satisfactory agreement of the observed RV and
the fit. For this, we split the data and limit the fit to the epochs between 2013 and 2019.
Hence, the epochs before 2013 represent a noncorrelated parameter to the Keplerian
model provided by Exo-Striker with an average LOS velocity of vLOS∗ = −147 km/s.
The difference between the average vLOS and vLOS∗ is expected due to the phase
coverage and the intrinsic LOS velocity of D9. We note that both averaged velocities
are within the estimated uncertainties. It is also notable that the independent RV data
before 2013 and after 2019 match the derived periodic model of the D9 binary system.

Data availability. The datasets generated during and/or analyzed during the
current study are available from the corresponding author upon request.

Code availability. The code for generating the SED is publicly available at
http://www.hyperion-rt.org/. Stable version 1.4 was used to generate the SED. The
evolutionary tracks PARSEC can be found at http://stev.oapd.inaf.it/cgi-bin/cmd
(version 3.7). The radial fit was performed with Exo-Stricker, version 0.88, and can
be found at https://exo-restart.com/tools/the-exo-striker-tool/. The emcee package
is a pure PYTHON package and can be downloaded from https://emcee.readthedocs.
io/en/stable/. The ESO pipeline can be downloaded from https://www.eso.org/sci/
software/pipelines/.
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Tables

Secondary Keplerian Parameter
PD9b [year] 1.02 ± 0.01

eD9b 0.45 ± 0.01
ωD9b [deg] 311.75 ± 1.65
aD9b [au] 1.59 ± 0.01
iD9b [deg] 90.00

m sin(iD9b) [M⊙] 0.73
RVoff [km s−1] -29.19 ± 3.00

χ2
ν 0.31

rms [km s−1] 16.38
Keplerian Parameter for D9 orbiting Sgr A*

eD9a 0.32 ± 0.01
iD9a [deg] 102.55 ± 2.29
aD9a [mpc] 44.00 ± 2.42
ωD9a [deg] 127.19 ± 7.50
ΩD9a [deg] 257.25 ± 1.61
PD9a [yr] 432.62 ± 0.01

Radiative Transfer Model
iintrinsic [deg] 75.0 ± 19.0

R [R⊙] 2.00 ± 0.13
log(L/L⊙) 1.86 ± 0.14

log(TD9a[K]) 4.07 ± 0.05
MD9a [M⊙] 2.80 ± 0.50

MDisk [10−6 M⊙ ] 1.61 ± 0.02

Table 1 Best-fit parameters of the D9
system. We list the orbital parameters for the
binary of D9 together with the motion of the
system around Sgr A*. In addition, the best-fit
stellar properties based on the SED fitter are
included. The uncertainties of the binary
parameter and the radiation transfer model are
based on the reduced χ2. For the Keplerian
elements, we use MCMC simulations to
estimate the uncertainty range. Since the
inclination of the secondary is assumed to be
iD9b = 90◦, no uncertainty for
m sin(iD9b) = 0.73 M⊙ is given.
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Parameter Best-fit MCMC Standard deviation
aD9a [mpc] 44.00 45.55 1.15

eD9a 0.32 0.31 0.01
iD9a [◦] 102.55 103.30 1.14
ωD9a [◦] 127.19 130.96 8.02
ΩD9a [◦] 257.25 258.40 1.71

tclosest [years] 2309.13 2315.83 7.01

Table 2 Comparison of best-fit Keplerian
approximation and MCMC simulations. Since the
standard deviation does not satisfactorily reflect the astrometric
precision that can be achieved with SINFONI, we will use the
standard deviation of the combined MCMC posteriors. These
orbital elements are related to the outer binary system
D9-Sgr A*. We refer to [29] for a detailed explanation of the
background fluctuations of the SINFONI data.
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Figure captions

Fig. 1 Detection of the D9 system close to Sgr A* in 2019. Subplot (a) shows
the Doppler-shifted Brγ line map extracted from the H+K SINFONI data cube with
a corresponding wavelength of 2.1646µm (vacuum wavelength 2.1661µm). Subplot
(b) and (c) shows the near-infrared H (1.6µm) and K (2.1µm) band data observed
with SINFONI. Subplot (d) denotes the mid-infrared L (3.76µm) band observation
carried out with NIRC2. Sgr A* is marked with a ×, D9 is encircled in every plot. Due
to its main sequence character, the marked close-by star S59 can only be observed in
the H and K bands. On the contrary, the brightest K band source of the S cluster,
S2/S0-2 can be observed in every shown infrared band. To increase contrast, an
image sharpener is applied suppressing expansive point spread function (PSF)
wings. To emphasize the astrometric robustness of the image sharpener, we adapt
the lime-colored contour lines from the non-sharpened data. The contour line levels
in panel b) are at 10%-80% of the peak intensity of S2, increasing in 5% steps. In
panel c), the contour lines are set at 20%-100% of the peak intensity of S2, separated
by 10%. For panel d), the contour lines are set to 85%, 90%, 95%, and 100% of the
peak intensity of S2. The labels of the axis indicate the distance to Sgr A* located at
∆RA=0.00” and ∆DEC=0.00”. In any plot shown, north is up, and east is to the left.

Fig. 2 Spectral Energy Distribution of the D9 system. The extinction cor-
rected data points refer to the flux density values in the H, K, and L band observed
with SINFONI and NIRC2. We use 104 individual models to find the best fit of the
data shown with grey lines. The final best-fit result is depicted with a black line.
Based on the shown fit, the properties of the primary of the D9 binary system are
derived and listed in Table 1. The uncertainties of the data points are estimated from
the photometric variations along the source. Based on the reduced χ2 value of about
2, the displayed best-fit solution was selected.

Fig. 3 Radial velocity of D9 between 2005 and 2022 observed with SIN-
FONI and ERIS. In subplots (a), (b), and (c), we display three selected nights to
show the variable Brγ emission line with respect to the rest wavelength at 2.1661 µm.
The top three plots correspond to the same colored boxes as in the radial velocity
evolution model shown in subplot (d). We have indicated the exact data point using
magenta color. In subplot (d), the SINFONI data is indicated in green, the two ERIS
observations from 2022 are highlighted in black. Due to the decommission, no high-
resolution spectroscopic data are available between 2020 and 2021. In addition, the
usual observation time for the Galactic center at Cerro Paranal (Chile) is between
March and September, which explains the limited phase coverage. All data points
in the radial velocity subplot (d) correspond to a single night of observation. The
velocities in the left y-axis are related to the observed blue-shifted Brγ emission
lines. Due to data processing, these values are shifted and arranged to an estimated
zero-velocity baseline (see the right y-axis). The uncertainties of the individual data
points are calculated from the root-mean-square (RMS) deviation (see Table 1).
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Fig. 4 Distance and age of D9 in the context of basic dynamical
processes and stellar populations in the Galactic center. In terms of the semi-
major axis, D9 is positioned in the outer part of the S cluster, close to the innermost
part of the clockwise (CW) disk of OB/Wolf-Rayet stars. With its estimated age of
2.7+1.9

−0.3 × 106 yr, its orbit around Sgr A* can just be under the influence of the fast
vector resonant relaxation (RR; shaded area stands for the vector resonant relaxation
of a 1M⊙ star and a 10M⊙ star represented by the top and the bottom lines, respec-
tively). However, the scalar resonant relaxation (RR) and the non-coherent two-body
relaxation have not had sufficient time to affect significantly the angular momentum
and the orbital energy of the D9 system yet. Hence, D9 as a binary system is currently
stable against the tidal disruption by Sgr A* (vertical dotted magenta line denotes
the binary tidal radius). A similar conclusion can be drawn with regard to the mini-
mum relaxation time min τrlx resulting from the dark cusp (illustrated by the orange
dotted line). In addition, the von Zeipel-Lidov-Kozai (vZLK) mechanism that involves
the SMBH-D9-CW disk (τdiskvZLK ; dashed purple line) operates on a long timescale to
cause the tidal disruption of the binary. On the other hand, in the hierarchical setup
where the inner D9 binary orbits the SMBH, the corresponding vZLK timescale is
comparable to the age of D9, which implies a likely merger (orange dash-dotted line).

Fig. 5 Hertzsprung-Russel diagram using the evolutionary tracks based
on the PARSEC stellar evolution model. The D9 binary system is indicated
by a red star with the corresponding errorbars in the temperature-luminosity plot.
The magenta-shaded area depicts the range of the masses of stars (2.4-2.8M⊙),
whose stellar evolution is consistent with the location of the D9 source at the time of
2.4 − 4.6 × 106 yr. The orange-dashed line represents the isochrone corresponding to
2.7 million years. For comparison, we implement known sources of the Galactic center,
such as the putative high-mass YSO X3 [85], the bow-shock source X7 [77, 86], dusty
S cluster object G2 [87], and the massive early-type stars S2 [88] and IRS16NE [89].

Fig. 6 Keplerian orbit of the D9 system. In subplot (a), the projected on-sky
trajectory of the D9 binary system is shown. Subplot (b) and (c) shows the R.A. and
DEC. position as a function of time. In subplot (b) and (c), the low proper motion is
eminent. Every blue-colored data point in this figure is related to one observational
epoch. From this plot and the related inclination of i = 102◦, it is suggested that the
trajectory of the binary system is close to edge-on. The size of the blue data points
are related to the astrometric uncertainty of ±0.006 as.

Fig. 7 Doppler-shifted Brγ line of D9 and the related line maps repre-
senting the magenta-marked emission. Subplots (a), (c), (e), (g), (i), (k), (m),
(o), and (q) show SINFONI line maps of the binary system D9. In these subplots,
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D9 is marked with a magenta-colored circle. In sublots (b), (d), (f), (h), (j), (l), (n),
(p), and (q), we apply a local background subtraction of the surrounding gas to the
presented spectra. The successful subtraction of the background is evident in the
absence of the prominent Brγ peak at 2.1661µm [101, 102]. The shown spectra shows
the evolution of the line over one year. The normalized Brγ velocity vnorm in 2013 is
approximately 66 km/s (b), 3 km/s (h), and -72 km/s (n). In 2014, vnorm is about 68
km/s (d), 3 km/s (j), and -71 km/s (p). In 2015, we estimate vnorm to be around 72
km/s (f), 1 km/s (l), and -67 km/s (r).

Fig. 8 Observations of the D9 binary system in 2022 with ERIS. In
subplots (a) and (b), the Brγ line maps observed with ERIS in 2022 are shown. Both
subplots display the binary system D9 and the close-by source D23. For visualization
purposes, we apply a 40 mas Gaussian kernel to these line maps. Subplots (c) and
(d) show the related spectrum where we indicate the normalized RV velocity vnorm.
Including the offset measured by Exo-Striker of about 29 km/s, these velocities are
displayed as black data points in Fig. 3.
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