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First Very Long Baseline Interferometry Detections at 870 µm
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ABSTRACT214

The first very long baseline interferometry (VLBI) detections at 870 µm wavelength (345 GHz frequency) are215

reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth,216

and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple217

sources observed on inter-continental baselines between telescopes in Chile, Hawaii, and Spain, obtained during218

observations in October 2018. The longest-baseline detections approach 11 Gλ corresponding to an angular219

resolution, or fringe spacing, of 19 µas. The Allan deviation of the visibility phase at 870 µm is comparable220

to that at 1.3 mm on the relevant integration time scales between 2 and 100 s. The detections confirm that the221

sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for222

VLBI observations at 870 µm. Operation at this short wavelength, combined with anticipated enhancements of223

the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving224

the event horizons of supermassive black holes in both space and time.225
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1. INTRODUCTION229

The technique of very long baseline interferometry (VLBI)230

involves a network of independently clocked telescopes sep-231

arated by large distances, which simultaneously observe a232

common astronomical source (Thompson et al. 2017). The233

angular resolution, or fringe spacing, in a VLBI observa-234

tion scales inversely with both the distance between stations235

(i.e., the length of the baseline) and the observing frequency.236

The present article reports the first fringe detections made237

at 870 µm wavelength (345 GHz nominal frequency), which238

constitutes the shortest wavelength VLBI observation to date.239

The experiment we describe was intended as a first techni-240

cal demonstration of the 870 µm VLBI capability using fa-241

cilities that are part of the Event Horizon Telescope (EHT)242

array. Figure 1 shows the stations that participated in the243

fringe test along with the usual metric used to characterize244

mm-wavelength observing conditions: the 225 GHz zenith245

opacity (Thompson et al. 2017).246

VLBI observing wavelength has decreased over time.247

The first 3 mm VLBI detections (at 86 GHz) were ob-248

tained through observations performed in 1981 (Readhead249

et al. 1983); the first 3 mm intercontinental detections250

(100 GHz) were obtained through observations performed251

in 1988 (Baath et al. 1991, 1992), and the first successful252

1.3 mm (230 GHz) VLBI was carried out in 1989 (Padin253

et al. 1990). The especially long time since the last signif-254

icant decrease in VLBI wavelength reflects the challenges255

of carrying out such observations, which are detailed be-256

low. Even so, there have been several milestones of note257

since the early 1990s on the path towards developing short258

wavelength VLBI as an important technique for astrophysics.259

Increased sensitivity through the use of larger telescopes260

and advanced receivers led to 1.4 mm (215 GHz) detec-261

tions on a ∼1100 km baseline of multiple active galactic262

nuclei (AGN) and Sagittarius A* (Sgr A*), the Galactic263

Center supermassive black hole (Greve et al. 1995; Krich-264

baum et al. 1997, 1998). A return to the longer-wavelength265

2 mm spectral windows (147 GHz and 129 GHz) allowed266

extension of mm-wavelength VLBI to intercontinental base-267

lines (Greve et al. 2002; Krichbaum et al. 2002; Doeleman268

et al. 2002). Building on this work, Doeleman et al. (2008,269

2012) used purpose-built wideband digital VLBI systems on270

1.3 mm trans-oceanic baselines to report the discovery of271

event-horizon scale structures in Sgr A∗ and the much more272

massive black hole, M87∗. The Event Horizon Telescope273

(EHT) collaboration has now imaged both of these sources274

with a global 1.3 mm VLBI array (Event Horizon Telescope275

Collaboration et al. 2019a, 2022a, 2024).276

∗ Corresponding Author: S. S. Doeleman, sdoeleman@cfa.harvard.edu
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Figure 1. (top) Stations in the 870 µm fringe test. (bottom) Zenith
opacity at 225 GHz, which is the standard frequency used for mon-
itoring mm-wave conditions. The observing window on each day
is indicated by the green shading. Conditions at ALMA were very
good during both days (τ225 ≈ 0.05). The black lines indicate the
opacity at each site calculated using inputs from MERRA-2 reanaly-
sis during the observing windows, which we use to estimate 870 µm
(345 GHz) opacity. Opacities for APEX and NOEMA have been es-
timated by converting precipitable water vapor column amounts.

The EHT is the highest-resolution ground-based VLBI in-277

strument to date (Event Horizon Telescope Collaboration278

et al. 2019b). The EHT fringe spacing is approximately279

25 µas at 1.3 mm wavelength. The finite diameter of the280

Earth limits ground-based 1.3 mm fringe spacing to 21 µas281

corresponding to 9.8 Gλ baseline. In practice, modern282

imaging methods, such as regularized maximum likelihood,283
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achieve a slightly higher angular resolution that exceeds284

the diffraction limit (Event Horizon Telescope Collaboration285

et al. 2019c).286

For future campaigns, the EHT has developed the capabil-287

ity to observe at 870 µm, and enhancing the ability to observe288

at this wavelength through new stations and wider bandwidth289

is an important aspect of long-term enhancements envis-290

aged by the next-generation EHT (ngEHT) project (Doele-291

man et al. 2019; Raymond et al. 2021; Doeleman et al. 2023).292

For a given set of station locations, observing at 870 µm im-293

proves angular resolution by approximately 50% compared294

to observing at 1.3 mm, which will provide a sharper view of295

the black hole shadow and environment; the 870 µm fringe296

spacing limit set by the diameter of the Earth is approxi-297

mately 14 µas corresponding to 14.7 Gλ baseline. Obser-298

vations at 870 µm are also important for polarimetric mea-299

surements. Faraday rotation, which scrambles the imaged300

electric field vector position angle pattern, diminishes with301

the square of the frequency. Therefore, 870 µm observa-302

tions may help distinguish Faraday rotation from the intrin-303

sic field pattern set by the horizon-scale magnetic field and304

plasma properties (Event Horizon Telescope Collaboration305

et al. 2021; Wielgus et al. 2024). For Sgr A∗, the angular size306

of the black hole shadow is larger than that of M87∗ (Event307

Horizon Telescope Collaboration et al. 2022a), but scattering308

in the ionized interstellar medium affects the image angular309

resolution (see, e.g., Johnson et al. 2018). At 1.3 mm, the310

scatter-broadening is comparable to the current EHT resolu-311

tion, but it decreases approximately as the observing wave-312

length squared. Thus, at 870 µm, scattering effects would be313

significantly diminished and would not limit the resolution of314

a VLBI array for studies of Sgr A∗. In particular, extension315

of the EHT to 870 µm wavelengths can target photon ring316

substructure in Sgr A∗, aiming to detect the orbit of light317

that makes a full “u-turn" around the black hole (Johnson318

et al. 2020; Palumbo et al. 2023). For these reasons, 870 µm319

VLBI opens important new directions for advanced horizon-320

resolved studies of the two primary EHT sources. At the321

same time, higher frequency VLBI brings more sources into322

range for horizon-resolved black hole studies (Pesce et al.323

2021; Ramakrishnan et al. 2023; Lo et al. 2023), and the324

increased resolution at 870 µm benefits non-horizon VLBI325

studies of active galactic nuclei (AGN) jets (e.g., Kim et al.326

2020; Janssen et al. 2021; Issaoun et al. 2022; Jorstad et al.327

2023; Paraschos et al. 2024). Additionally, due to reduced328

opacity, shorter wavelengths probe more compact regions of329

jetted AGN sources (an example being the core-shift effect:330

Lobanov 1998; Hada et al. 2011). Hence, 870 µm VLBI has331

the potential to image the jet launching region closer to the332

central black hole, enabling investigations of the physics be-333

hind jet formation, collimation, and acceleration. In partic-334

ular, the poorly understood limb-brightening in transversely335

resolved inner jets (e.g. Janssen et al. 2021) can be studied in336

much greater detail.337

Extension of observing to 870 µm similarly enhances the338

capability of the EHT to capture dynamics near the event339

horizon. In the case of Sgr A∗, the dynamical time scale340

is ∼ 200s (10GM/c3). Simultaneous 1.3 mm and 870 µm341

observing can sample sufficient Fourier spatial frequencies342

within this integration time to allow snapshot imaging us-343

ing the technique of multi-frequency synthesis (MFS; Chael344

et al. 2023). Combining such snapshots will enable recov-345

ery of accretion and jet launching kinematics. For M87∗, the346

dynamical time scale is ∼3 days, and data obtained in both347

1.3 mm and 870 µm on sequential days can be combined to348

form high-fidelity MFS images for time-lapse movie recon-349

struction of the event horizon environment. Realizing the full350

scientific potential of 870 µm VLBI (Johnson et al. 2023)351

will require the planned ngEHT upgrade (Doeleman et al.352

2023).353

While there are clearly many motivating reasons for354

870 µm VLBI observing, a number of factors make the mea-355

surements difficult in this short-wavelength regime. The at-356

mosphere is more opaque at 870 µm than at 1.3 mm (see357

for example Liebe (1985); Matsushita et al. (1999); Mat-358

sushita et al. (2016); Matsushita et al. (2022)), which means359

that sources are more attenuated and noise levels due to at-360

mospheric emission are elevated. Overall, the effective sys-361

tem temperatures of coherent radio receivers are intrinsically362

greater at 870 µm than at 1.3 mm1. The aperture efficiency363

of the collecting optics tends to diminish at high frequency,364

and the source flux density tends to decrease. In addition, co-365

herence losses due to the VLBI frequency standards used at366

each site increase with observing frequency (Doeleman et al.367

2011). The EHT array, conceived as a common, international368

effort of independent observatories working in the short mil-369

limeter range, has directly addressed these challenges and370

provides key enabling infrastructure for extension of VLBI371

to higher frequencies (Event Horizon Telescope Collabora-372

tion et al. 2019b).373

The telescopes comprising the EHT array are precision374

structures sited at high-altitude, low-opacity locations (see375

e.g. Levy et al. (1996), Mangum et al. (2006), Greve &376

Bremer (2010), Chen et al. (2023) and references therein377

on the design and qualification of such instruments). State378

of the art instrumentation underpinning the operation of379

these telescopes, as single-dish facilities and for VLBI,380

includes cryogenic receivers and wideband digital back-381

ends - all refined over many years to optimize performance382

at mm and submm wavelengths. Steady improvements383

in superconductor-insulator-superconductor (SIS) junctions384

have formed the basis for increased bandwidth and sensitiv-385

ity of mm and submm receivers, leading to state-of-the-art386

systems in use at EHT sites (see Maier et al. (2005), Tong387

et al. (2005), Chenu et al. (2007), Carter et al. (2012), Maier388

et al. (2012), Mahieu et al. (2012), Tong et al. (2013), Kerr389

et al. (2014), Chenu et al. (2016), Klein et al. (2014), Han390

et al. (2018), Belitsky et al. (2018)).391

Following the successful 1.3 mm VLBI observations in392

2017, test observations at 870 µm were conducted on the393

1 See, for example, Janssen, M. et al. (2019) or ALMA Cycle 8 2021 Tech-
nical Handbook.
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EHT array in October 2018. Conditions at the ALMA sta-394

tion during this test, including characterization of the system395

used there to phase the array for VLBI, are described in Crew396

et al. (2023). The present paper describes the VLBI test ob-397

servations398

2. METHODS399

2.1. Schedule400

The 870 µm fringe test observations consisted of two401

short scheduling blocks designed for two different subar-402

rays. An eastern subarray, comprising ALMA, the Ata-403

cama Pathfinder EXperiment (APEX), Greenland Telescope404

(GLT), the Institut de Radioastronomie Millimétrique 30 m405

telescope (IRAM30m), and the Northern Extended Millime-406

ter Array (NOEMA), was scheduled to include blazar sources407

that were visible in the nighttime hours at all sites: CTA408

102, 3C 454.3, and BL Lac. A western subarray, comprising409

ALMA, APEX, GLT, and the Submillimeter Array (SMA),410

observed quasars J0423−0120, J0510+1800, J0521+1638,411

and J0522−3627. The eastern subarray scheduling block was412

followed by several scans on BL Lac at 1.3 mm wavelength to413

aid diagnosis in the event of a null result. Schedule blocks for414

both subarrays were optimized for fringe detection at 870 µm415

VLBI, and they spanned a duration of between 1 and 2 hours416

with at least two scans on every source. Most scans lasted417

five minutes.418

The observing window consisted of five nights 2018 Oc-419

tober 17–21 between approximately midnight and 2:00 Co-420

ordinated Universal Time (UTC) for the eastern subarray421

scheduling block and between 9:00 and 11:00 UTC for the422

western subarray scheduling block. Each scheduling block423

was triggered twice within the observing window. We re-424

port herein on successful observations with the eastern array425

on 2018 October 18-19 and with the western array on 2018426

October 21. Details of the scheduling blocks and sources ob-427

served are shown in Fig. 2.428

2.2. Instrumentation and Array429

Several important technologies developed for 1.3 mm430

VLBI are leveraged to address the challenges of 870 µm ob-431

serving, many of which are outlined in Event Horizon Tele-432

scope Collaboration et al. (2019b). The VLBI backends, used433

to condition and digitize signals from the telescope receivers,434

have a cumulative data rate of 64 Gbps (Vertatschitsch et al.435

2015; Tuccari et al. 2017) across four 2-GHz wide bands and436

two polarizations. Each station is outfitted with a hydrogen437

maser time standard, which had previously been found to be438

sufficiently stable for timekeeping in a 1.3 mm VLBI experi-439

ment and were expected to be sufficiently stable for 870 µm.440

Phased array beamforming capability is implemented at441

both the SMA (Young et al. 2016) and ALMA (Matthews442

et al. 2018) array stations. For both these stations beam-443

former phasing efficiency at 870 µm, which directly scales444

the visibility amplitudes measured on baselines to the station,445

varied from just below 50% to as high as about 80%. These446

efficiencies are less than what is typical for 1.3 mm (Event447

Horizon Telescope Collaboration et al. 2019b). Section448

9.0 9.5 10.0 10.5 11.0
time since 00:00 UTC (hr)

ALMA(A)

APEX(X)

GLT(G)

IRAM-30m(P)

NOEMA(N)

SMA(S)

J0423-0120 J0510+1800
J0521+1638

J0522-3627

October 21 (western array)

0.5 0.0 0.5 1.0 1.5

ALMA(A)

APEX(X)

GLT(G)

IRAM-30m(P)

NOEMA(N)

SMA(S)
CTA102 3C454.3 BLLAC

230 GHz
BLLAC

October 18-19 (eastern array)

YR
YL

XL
XR

legend

Figure 2. 870 µm observations that yielded detections were made
during two separate scheduling blocks: October 18/19 and Octo-
ber 21, 2018. The observations on the first night were done with
an eastern array comprising ALMA, APEX, GLT, IRAM30m, and
NOEMA. Observations on the second night were made with a west-
ern array: ALMA, APEX, GLT, and SMA. The scheduling blocks
for both nights are shown along with the one-letter station codes,
which are listed in parenthesis. All detections are on baselines in-
volving ALMA. The scans which yielded detections on baselines
defined by a given station are indicated by the white horizontal
ticks centered in each time block: from the top, ticks correspond
to XL, XR, YL, YR mixed-polarizations per the legend shown up-
per right. The absence of a tick indicates a non-detection. Three
scans at 230 GHz (1.3 mm) were performed at the end of the east-
ern subarray scheduling block using just the IRAM30m and ALMA
facilities.

3.4 has discussion relevant to ALMA, SMA, and also to449

NOEMA2 of phasing efficiency challenges and planned im-450

provements to mitigate these.451

The frequency setup for the 870 µm fringe test is simi-452

lar to that described in Table 4 of Event Horizon Telescope453

Collaboration et al. (2019b). Most stations in the array ob-454

2 NOEMA is also equipped with the phased array though it was not commis-
sioned at the time of this observation.
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served a single 2048 MHz band at a 4–6 GHz intermediate455

frequency (IF) using a 342.6 GHz sky local oscillator (LO)3.456

That frequency setup corresponds to a sky frequency range457

of 346.552 to 348.6 GHz. Each station observed both circu-458

lar polarizations, with the exceptions of APEX (right-circular459

polarization, RCP, only) and ALMA (dual linear, X and Y).460

The recorded station data were correlated using DiFX soft-461

ware (Deller et al. 2011) at the MIT Haystack Observatory.462

Visibility data on baselines to ALMA remained in a mixed-463

polarization basis (i.e., {X,Y} × {L,R}) because the observ-464

ing schedules were not long enough to track polarization cal-465

ibrators over a wide range of parallactic angle, which is nec-466

essary for converting the ALMA data from a linear to cir-467

cular basis (Martí-Vidal et al. 2016; Matthews et al. 2018;468

Goddi et al. 2019). Subsequent fringe fitting was done using469

the Haystack Observatory Post-processing System (HOPS4,470

Whitney et al. (2004); see also Blackburn et al. (2019)).471

2.2.1. ALMA472

ALMA observed in dual linear polarization with IRAM de-473

signed 870 µm (i.e., Band 7) cartridges (Mahieu et al. 2012).474

The ALMA Phasing System (APS) (Matthews et al. 2018)475

was used to aggregate the collecting area of the active dishes476

in the ALMA array. The APS capability had been used previ-477

ously for VLBI science at 3 mm (Issaoun et al. 2019; Okino478

et al. 2022; Zhao et al. 2022) and 1.3 mm (Event Horizon479

Telescope Collaboration et al. 2019a,b) but not at shorter480

wavelengths albeit that setup for 870 µm observations is sim-481

ilar to the longer wavelength bands. In the 870 µm experi-482

ment, the four recorded 2.048 GHz subbands were tuned to483

center frequencies of 335.6, 337.541406, 347.6 and 349.6484

GHz. The choice of the 337.541406 GHz frequency results485

from ALMA-specific tuning restrictions.486

The ALMA phased array included twenty-five 12 m anten-487

nas during the eastern track and twenty-nine 12 m antennas488

during the western track with a maximum antenna spacing of489

600 m in both cases. Wind speeds were greater than 10 m s−1
490

at the ALMA site. During the Eastern track, phasing effi-491

ciency was below 50% for most of the time and at best was492

about 80%. During the October 21 track (western) in better493

weather, phasing efficiency was more stable and greater than494

approximately 90% (Crew et al. 2023).495

2.2.2. APEX496

The APEX and ALMA stations are co-located and con-497

ditions were similar at the two telescopes. APEX observed498

using the 345 GHz FLASH+ linear receiver (Klein et al.499

2014). That receiver may not have been functioning opti-500

mally during the experiment and has since been replaced by501

the Swedish-ESO PI Instrument for APEX (SEPIA) (Belit-502

sky et al. 2018; Meledin, D. et al. 2022). A quarter wave503

3 ALMA and SMA used slightly different frequency setups to match the sky
frequency of the other stations, see sections 2.2.1 and 2.2.6.

4 https://www.haystack.mit.edu/tech/vlbi/hops.html

plate was used to achieve circular polarization. Two back-504

ends, a ROACH2 Digital Backend (R2DBE; Vertatschitsch505

et al. 2015) and a Digital BaseBand Converter 3 (DBBC3;506

Tuccari et al. 2017), were operated in parallel.507

2.2.3. GLT508

The GLT station participated in the observation but at the509

time was still commissioning specific subsystems. The GLT510

antenna has operated at Pituffik Space Base, formerly the511

Thule Airbase site, in Greenland since August 2017 (Inoue512

et al. 2014; Raffin et al. 2016; Matsushita et al. 2018; Koay513

et al. 2020; Chen et al. 2023). The GLT observed in dual514

linear polarization with the IRAM-made 870 µm (i.e., Band515

7) cartridges (Mahieu et al. 2012). The 345 GHz receiver on516

the GLT saw first-light in continuum and spectral-line modes517

in August 2018. Pointing and focus calibration at 345 GHz518

were still in the commissioning phase during the 870 µm ob-519

servation reported here. The GLT pointing system has since520

been fully commissioned for recent and future VLBI observ-521

ing. Similarly, final adjustments to the dish surface had yet522

to be made, and the surface accuracy was estimated to be523

170µm rms during the observations reported here. Subse-524

quent improvements have led to rms surface accuracy in525

the 17-40µm range (see Table 7 in Chen et al. (2023)).526

2.2.4. IRAM30m527

The IRAM30m telescope used the heterodyne Eight MIxer528

Receiver (Carter et al. 2012) in the 870 µm band also known529

as E330. The setup and pre-observing checks were analogous530

to a regular Global Millimeter VLBI Array or EHT session.531

The opacity at 870 µm during the scheduled VLBI observa-532

tions was high and would not typically have triggered single-533

dish science operation at this wavelength.534

2.2.5. NOEMA535

Portions of the NOEMA station were still being com-536

missioned during the 870 µm experiment. NOEMA ob-537

served in dual polarization as a single-antenna station not as a538

phased array. The NOEMA receiver was a dual-polarization539

single-sideband unit (Chenu et al. 2016) with a 4 GHz band-540

pass. Recording was with a 16 Gbps R2DBE backend.541

The NOEMA phased array has since been commissioned for542

VLBI observing.543

2.2.6. SMA544

The SMA station observed with seven antennas arranged545

in the compact configuration with a maximum baseline of546

69.1 m. The SMA Wideband Astronomical ROACH2 Ma-547

chine (SWARM) (Primiani et al. 2016; Young et al. 2016)548

was run with the VLBI beamformer mode activated produc-549

ing a coherent phased array sum of the seven antennas, for-550

matted for VLBI recording. As expected the phasing ef-551

ficiency was lower than for 1.3 mm operations. The sky552

LO was set to 341.6 GHz, not 342.6 GHz, to match the553

SWARM sky coverage with the other stations, compensat-554

ing for a different IF to baseband local oscillator because555

https://www.haystack.mit.edu/tech/vlbi/hops.html
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SWARM uses its own block downconverter rather than the556

standard EHT single dish equipment. The data were recorded557

in the frequency domain at the standard SMA clock rate558

(4.576 Gsps) which differs from the standard EHT single559

dish sample rate of 4.096 Gsps (Vertatschitsch et al. 2015).560

APHIDS (Adaptive Phased Array Interpolating Downsam-561

pler for SWARM) post-processing was completed to in-562

terpolate and invert (from frequency- to time-domain) the563

SWARM data sets in preparation for VLBI correlation. Af-564

ter APHIDS processing the SMA EHT data product matches565

that produced by standard SMA single dish station in sam-566

ple rate, and is also a time series matching the standard EHT567

single dish data product.568

3. RESULTS AND DISCUSSION569

Figure 1 shows that the conditions during the experiment570

were mixed across the array. While the observatories do571

not measure 870 µm (345 GHz) opacity directly, we use572

MERRA-2 reanalysis and radiative transfer (Paine 2022) that573

is validated by measurements at 225 GHz (Fig. 1 black lines)574

to estimate τ345. For the eastern subarray on October 18/19,575

τ345 was 0.2 at the ALMA and APEX sites, and 0.8 at576

IRAM30m. For the western subarray on October 21, τ345577

was approximately 0.17 at the ALMA and APEX sites and578

0.7 at SMA. During the experiment, the opacities at GLT579

and NOEMA were unfavorable and detections on baselines580

to those stations were not achieved; however, both stations581

have weather that is compatible with 870 µm observing and582

will likely yield high-frequency detections in the future (see583

e.g., Raymond et al. (2021); Matsushita et al. (2022)). At-584

mospheric conditions can change rapidly: τ225 at the SMA585

decreased by nearly a factor of four in the hours following586

the experiment.587

3.1. 870µm (345 GHz) Fringes588

In VLBI, recorded data from all sites are brought to a589

central processing facility where data streams from each590

pair of sites are cross-correlated. The resulting complex591

correlation quantities provide a dimensionless measure of592

the electric field coherence between the two sites, which593

is proportional to a Fourier component of the brightness594

distribution of the target source. The correlation proces-595

sor uses an apriori model to align the site data streams,596

recreating the exact geometry of the physical baseline597

connecting the two sites at the time of observation. Be-598

cause the apriori model is imperfect, after processing the599

cross correlation phase typically varies as a function of600

time and frequency due to residual delay and delay-rate601

respectively. To average the correlation signal over fre-602

quency and time, the correlator output is thus searched over603

a range of delay and delay-rate to find a peak in correlator604

power - a process also known as ’fringe-fitting’ (Thomp-605

son et al. 2017). In this experiment, the correlator output606

was searched by dividing each scan into short segments and607

incoherently averaging them. The incoherent averaging608

technique (Rogers et al. 1995) estimates noise-debiased609

VLBI quantities, and it is well suited to processing low-610

S/N VLBI data on sparse arrays as it allows integration611

beyond the nominal atmospheric coherence time. Fig-612

ure 3 shows the dependence of amplitude in units of 104 and613

signal-to-noise ratio (S/N) on the duration of the segments614

for a sample scan on source J0423−0120 for the baseline615

comprising the ALMA and SMA stations. All four cross-616

hand polarizations are plotted. The scan identifier 294-0938617

in Fig. 3 corresponds to the day-UTC for the beginning of618

the scan, where the day is the number of days since January619

1, 2018 (294 is October 21) and UTC is the scan start time.620

The noise-debiased amplitude (Rogers et al. 1995) in Fig. 3621

is indicated by the dashed horizontal line. As the segment622

duration decreases, the effect of decoherence is reduced so623

the S/N increases.624

Compared to a single coherent integration over a full scan625

(approximately 300 s in most of the measurements), inco-626

herently averaging the parts of a segmented scan increases627

the S/N by up to a factor of two on many of the measure-628

ments, yielding higher confidence in the detections. For most629

of the measurements, S/N values asymptote at the shortest630

segment durations. Ordinarily, we would expect the S/N val-631

ues to decrease as the segments are shortened below the co-632

herence time. The behavior we observe could be indicative633

of a changing coherence during the scan consistent with the634

windy conditions at ALMA (Crew et al. 2023).635

Contours of fringe power versus multi-band delay and rate636

are plotted in Fig. 4 for a single scan of J0423−0120 on the637

ALMA-SMA baseline. The measurement exhibits a defini-638

tive peak in fringe power for each of the cross-hand polar-639

izations. The rates are all centered near zero. Multi-band640

delays fall within an ambiguity search window of (-8.53 ns,641

8.53 ns) as they are derived from measurements spaced at642

ALMA’s channel separation of 58.592375 MHz Matthews643

et al. (2018); Event Horizon Telescope Collaboration et al.644

(2019d)).645

The fringe detection threshold was conservatively set at646

S/N>7 to prevent false detections, and all resulting detec-647

tions are summarized in Table 1 ordered by target source.648

The maximum spatial frequencies sampled are greater than649

10.9 Gλ between ALMA and the SMA, which significantly650

exceeds the largest spatial frequencies sampled by the EHT651

for M87∗ at 1.3 mm on the longest baseline between Hawaii652

and Europe (approximately 8 Gλ). The highest S/N detec-653

tions exceed 70. Simultaneous detections in all four polar-654

ization products were achieved on the ALMA-SMA baseline655

for J0423−0120. The zero-baseline flux densities at 870 µm656

were obtained from the ALMA local interferometry (Crew657

et al. 2023). The flux densities were 1.4, 1.0, 2.4, 1.2, and658

4.9 Jy on CTA 102, BL Lac, J0423−0120, J0510+1800, and659

J0522−3627, respectively. The source structure of the targets660

in this work is not known apriori, so it is not possible to say661

with precision how the correlated amplitudes should vary as a662

function of baseline length. Furthermore, these observations663

were designed to be a detection experiment, and not carried664

out with all procedures that would allow robust VLBI flux665

density calibration. Nevertheless, the SNR on the ALMA-666

APEX baselines appears to be anomalously low given the667
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Figure 3. Scan averaged and noise-debiased 870 µm fringe ampli-
tude (open blue circles, left axes) and S/N (closed red squares, right
axes). Amplitudes and S/N are computed by first dividing each ob-
serving scan into short coherently integrated segments, which are
then combined incoherently following the procedure in Rogers et al.
(1995). Segment length is shown on the horizontal axis. Each sub-
plot shows a different polarization on the ALMA-SMA baseline for
a single scan on J0423−0120 (October 21, 09:38 UTC). Other de-
tections listed in Table 1 have similar dependence on segment du-
ration though generally lower S/N. The noise-debiased amplitude
and coherence time were derived using HOPS and are indicated by
the horizontal blue dashed line and the vertical solid black line, re-
spectively.

short baseline length, which would ordinarily be sensitive to668

both small scale structure (10-100µas) and larger scale struc-669

ture (10-100mas). This is likely attributable to phase insta-670

bilities suspected in the APEX receiver (see Section 2.2.2),671

which has since been retired. Follow-on experiments, already672

scheduled, will focus on calibration and robust flux density673

measurements vs. baseline length.674

HOPS reports two coherence times: one corresponding to675

the point below which there is only a small amount of coher-676

ence loss within the uncertainty of amplitudes and another677

corresponding to the maximum S/N. For most of the scans678

in Table 1, we report the former. In a few low-S/N cases679

where the routine was unable to fit the coherence, the coher-680

ence time based on S/N is reported instead. The coherence681

times across baselines range from approximately ten to thirty682

seconds for most cases. For BL Lac, the longer coherence683

times may be an artifact of the moderate S/N.684

3.2. 1.3 mm (230 GHz) Comparison685

Presently, the EHT observes at 1.3 mm (Event Horizon686

Telescope Collaboration et al. 2019b). Figure 5 compares687

the Fourier components of the 870 µm detections on vari-688

ous sources to the 1.3 mm coverage of the 2017 EHT ar-689

ray on M87∗ (Event Horizon Telescope Collaboration et al.690

2019d). The 870 µm detections on ALMA-IRAM30m and691
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Figure 4. 870 µm contours of incoherently-averaged fringe power
in 5% increments versus delay and rate for a single scan on
J0423−0120 for the ALMA-SMA baseline (October 21, 09:38
UTC). Other detections reported in Table 1 also exhibit clear peaks
versus delay/rate.

ALMA-SMA baselines have a higher nominal angular reso-692

lution (19 µas) than the highest-resolution M87∗ detections693

(nominally 25 µas).694

For a source-specific comparison of the 1.3 mm and695

870 µm bands, ALMA and IRAM30m observed BL Lac at696

1.3 mm during three scans at the end of the eastern subarray697

scheduling block of the October 2018 session. Those data698

were searched using the same HOPS incoherent averaging699

method as was used for the 870 µm observations and pro-700

vide an independent application of the approach. The 1.3 mm701

scans provide a check of the 870 µm processing and a point702

of comparison for the 870 µm detections.703

The amplitude and S/N values for one of the 1.3 mm scans704

are plotted in Fig. 6 versus the duration of incoherently-705

averaged segments. The S/N values are approximately 10-706

fold greater at 1.3 mm than at 870 µm (see Figure 3), which707

likely results from a combination of factors that boost sensi-708

tivity at the longer wavelength: lower opacity, lower receiver709

noise, greater aperture efficiency, a wider beam, greater co-710

herence, and greater source flux density. The coherence time711

determined using HOPS was comparable for the three scans712

to what was found at 870 µm: on the order of 6 to 30 seconds.713

As with the 870 µm measurements, the S/N values asymp-714

tote as the segment duration decreases below the coherence715

time. The consistency of the S/N trends in the 870 µm and716

1.3 mm scans suggests that the behavior is a real feature of717

the data and not an artifact of the analysis.718

Comparison of the 1.3 mm and 870 µm wavelengths ob-719

serving BL Lac also shows that the latter is a much more720

difficult regime in which to operate. The atmospheric con-721

ditions at the IRAM30m site (see Fig. 1; τ345 ∼ 0.8) were722
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Table 1. 870 µm detections on the indicated baselines, sources, and polarizations.

Baseline† Pol. Day∗ Time (hh:ss) El. 1 (◦) El. 2 (◦) |ũ-ṽ| (Gλ) τc (s) Delay (ns) Rate (fs s−1) Amp. (×10−4) S/N

3C 454.3
AX XR 292 00:07 44.9 45.0 0.0026 8 4.4 -1 0.50 43.7
AX YR 292 00:07 44.9 45.0 0.0026 8 5.2 -1 0.47 41.4

BL Lac
AP XL 292 00:38 24.6 42.6 9.7913 31 -4.6 4 0.15 12.2
AP YR 292 00:38 24.6 42.6 9.7913 46 -8.5 0 0.13 10.8

CTA 102
AP YL 291 23:52 49.7 43.5 9.9581 21 0.9 -38 0.18 13.6
AX XR 291 23:44 48.6 48.7 0.0027 24 5.6 -38 0.23 19.2
AX XR 291 23:52 49.7 49.7 0.0027 10 5.2 -85 0.23 20.8
AX YR 291 23:44 48.6 48.7 0.0027 22 6.3 -51 0.21 17.6
AX YR 291 23:52 49.7 49.7 0.0027 11 6.0 -84 0.22 18.0

J0423−0120
AS XL 294 09:22 48.5 35.5 10.8547 14 -7.6 6 0.54 47.8
AS XL 294 09:30 46.8 37.3 10.8874 14 -8.0 0 0.70 62.4
AS XL 294 09:38 45.1 39.1 10.9100 13 -7.7 -2 0.82 73.1
AS XR 294 09:22 48.5 35.5 10.8547 9 -7.5 19 0.60 53.4
AS XR 294 09:30 46.8 37.3 10.8874 34 -7.9 -0 0.64 56.6
AS XR 294 09:38 45.1 39.1 10.9100 9 -7.5 -2 0.79 70.8
AS YL 294 09:22 48.5 35.5 10.8547 13 0.8 19 0.34 29.6
AS YL 294 09:30 46.8 37.3 10.8874 17 0.4 0 0.47 41.3
AS YL 294 09:38 45.1 39.1 10.9100 15 0.7 -2 0.51 45.2
AS YR 294 09:22 48.5 35.5 10.8547 10 -5.9 19 0.46 40.7
AS YR 294 09:30 46.8 37.3 10.8874 14 -6.3 0 0.50 44.2
AS YR 294 09:38 45.1 39.1 10.9100 10 -5.9 -3 0.62 54.9
AX XR 294 09:22 48.5 48.5 0.0028 27 -1.0 -8 0.14 12.6
AX XR 294 09:30 46.8 46.8 0.0028 39 -0.9 -9 0.16 13.0
AX XR 294 09:38 45.1 45.1 0.0028 32 -0.9 -11 0.15 12.9
AX YR 294 09:22 48.5 48.5 0.0028 30 0.6 -7 0.14 10.9
AX YR 294 09:30 46.8 46.8 0.0028 29 0.7 -9 0.14 10.8

J0510+1800
AS XL 294 10:01 37.0 39.6 10.9218 30 -8.0 -12 0.10 8.5
AS XR 294 10:01 37.0 39.6 10.9218 28 -8.0 -12 0.25 22.3
AS XR 294 10:17 34.5 43.4 10.8891 8 -8.1 -0 0.27 22.4
AS XR 294 10:22 33.5 44.8 10.8682 22 2.2 20 0.20 16.6
AS YL 294 10:01 37.0 39.6 10.9218 10 0.3 -12 0.20 18.1
AS YL 294 10:17 34.5 43.4 10.8891 23 0.2 11 0.25 21.3
AS YL 294 10:22 33.5 44.8 10.8682 29 -6.6 2 0.17 14.2
AS YR 294 10:01 37.0 39.6 10.9218 28 -6.3 -14 0.12 10.1
AS YR 294 10:17 34.5 43.4 10.8891 6∗∗ -6.5 0 0.14 11.5
AS YR 294 10:22 33.5 44.8 10.8682 10∗∗ 3.8 81 0.11 9.7

J0522−3627
AS XR 294 10:37 53.0 18.0 10.3188 12∗∗ -4.7 38 0.12 10.1
AS XR 294 10:45 51.4 19.2 10.4084 24 -4.9 8 0.20 12.1
AS YL 294 10:37 53.0 18.0 10.3188 29 3.5 -4 0.12 10.3
AS YL 294 10:45 51.4 19.2 10.4084 22 3.4 -4 0.16 14.1
AX XR 294 10:37 53.0 52.9 0.0030 31 0.8 -1 0.31 26.9
AX XR 294 10:45 51.4 51.4 0.0030 39 0.8 25 0.25 15.3
AX YR 294 10:37 53.0 52.9 0.0030 31 2.3 1 0.31 27.0
AX YR 294 10:45 51.4 51.4 0.0030 31 2.4 25 0.29 24.6

† Baselines: AX (ALMA-APEX), AP (ALMA-IRAM30m), AS (ALMA-SMA)

∗Day of Year in 2018.

∗∗The S/N was insufficient to fit the coherence time. The reported value is the segmentation time that achieves the greatest S/N for the scan.
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Figure 5. Detections on various targets at 345 GHz (see Table 1).
The u–v locations of 230 GHz detections on M87∗ during the EHT
April 2017 campaign are shown in gray including low-S/N scans at
(25µas)−−1.

not ideal for 870 µm observing during the test. At 1.3 mm,723

strong detections were obtained on all polarizations for each724

of the three attempted scans. At 870 µm, detections were725

made on just two of four polarizations for a single ALMA-726

IRAM30m scan, and none were made on other BL Lac base-727

lines. The 10-fold greater S/N values at 1.3 mm are con-728

sistent with the system equivalent flux density (SEFD). The729

SEFD on BL Lac scans at ALMA were approximately 150 Jy730

at 1.3 mm versus 580 Jy at 870 µm (factor of 3.9 change). At731

IRAM30m, SEFDs during the BL Lac scans were 3800 Jy732

at 1.3 mm versus 105 Jy at 870 µm (factor of approximately733

25 change). The S/N is inversely proportional to the root734

product of the SEFDs, or
√

3.9×25 ≈ 10, which explains735

the behavior across observing wavelengths. The significantly736

greater noise at 870 µm as well as the other losses associated737

with narrower beam width or coherence is the likely reason738

for non-detections to some stations and on certain scans.739

Fringe power contours at 1.3 mm are plotted as a func-740

tion of multi-band delay and rate in Fig. 7, exhibiting obvi-741

ous peaks. The delays for each of the four polarization cross742

products is consistent across scans, and the 1.3 mm fringes743

are summarized in Table 2. All four polarization cross-hands744

are detected in each of the three 1.3 mm scans. The 6.4 Gλ745

spatial frequencies are 50% smaller than the 870 µm scans746

on the AP baseline, which corresponds to the frequency scal-747

ing between the two bands. The 1.3 mm zero-baseline flux748

density of BL Lac deduced from the ALMA local interfer-749

ometry (Crew et al. 2023) was 1.2 Jy.750

3.3. Coherence and Allan Deviation751
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Figure 6. 1.3 mm amplitude (open blue circles, left axes) and S/N
(closed red squares, right axes) versus the duration of coherently
integrated segments, which are incoherently averaged. Each subplot
shows a different polarization on the baseline between ALMA and
IRAM30m for a single scan on BL Lac on October 19, 01:13 UTC.
Other BL Lac detections listed in Table 2 have similar dependence
on segment duration. The noise-debiased amplitude and coherence
time were derived using HOPS and are indicated by the horizontal
blue dashed line and the vertical solid black line, respectively. These
data were calibrated in the same manner as the 870 µm detections.
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Figure 7. 1.3 mm contours of incoherently-averaged fringe power
in 5% increments versus delay and rate for the baseline between
ALMA and IRAM30m. This example is for a single scan on BL Lac
taken on October 19, 01:13 UTC. Other detections reported in Ta-
ble 2 also exhibit clear peaks versus in delay-delay rate search space.

It is convenient to characterize the phase noise of an in-752

terferometer by its Allan deviation, which is a measure of753
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Table 2. 1.3 mm detections on the ALMA – IRAM-30 m baseline toward
BL Lac for indicated polarizations. Scans listed top to bottom on October
19 begin at 01:03, 01:09, and 01:13 UTC.

Elevation Baseline τc Delay Rate Amp. S/N

(ALMA/IRAM30m) Length

(◦) (Gλ) (s) (ns) (fs s−1) (×10−4)

XL
24.5 / 38.3 6.4327 5 -5.3 -98 1.66 134.0
24.4 / 37.3 6.4422 7 -5.3 -66 1.49 120.0
24.3 / 36.6 6.4476 32 -5.3 -14 1.47 187.3

YR
24.5 / 38.3 6.4327 6 -0.8 -99 1.77 143.0
24.4 / 37.3 6.4422 7 -0.8 -66 1.52 122.4
24.3 / 36.6 6.4476 32 -0.8 -14 1.49 189.8

XR
24.5 / 38.3 6.4327 6 -0.7 -98 1.56 125.4
24.4 / 37.3 6.4422 7 -0.7 -66 1.37 110.4
24.3 / 36.6 6.4476 32 -0.7 -13 1.38 176.1

YL
24.5 / 38.3 6.4327 6 -5.4 -98 1.42 114.4
24.4 / 37.3 6.4422 7 -5.4 -66 1.24 100.1
24.3 / 36.6 6.4476 32 -5.4 -14 1.21 153.5

fractional stability for an oscillator, time standard or any754

time variable process. When computing the Allan devia-755

tion of observed VLBI interferometer phase one normal-756

izes by the frequency of observation to produce a dimen-757

sionless quantity. The relationships of Allan deviation to758

the statistical variance, coherence, and phase power spectrum759

can be found in Thompson et al. (2017). Examples of the Al-760

lan deviation of VLBI systems referenced to hydrogen maser761

time standards and operating at 1.3 cm and 3 mm wavelength762

are can be found in Rogers & Moran (1981) and Rogers et al.763

(1984) respectively, and show that at short wavelengths de-764

coherence is a potential concern. Alternatives to hydrogen765

masers for short-wavelength VLBI work have been explored766

(e.g., Doeleman et al. (2011)). In this section we compare767

the observed Allan deviation of the VLBI interferomet-768

ric phase to limiting factors including the stability of time769

and frequency standards used in the experiment as well770

as instabilities due to atmospheric turbulence.771

Figure 8 shows the Allan deviation for 870 µm scans on772

the ALMA-SMA baseline. Over most integration times, the773

870 µm Allan deviation is comparable to but greater than the774

maser-maser reference. The 870 µm traces exhibit relatively775

small scan-to-scan variation during the course of the brief776

fringe test when conditions were relatively stable. For com-777

parison, Fig. 8 also shows the Allan deviations for a large778

number of high-S/N 1.3 mm scans from the 2017 EHT cam-779

paign (Event Horizon Telescope Collaboration et al. 2019d).780

At times less than about 5 s, the red 1.3 mm traces all ap-781

proach the limit set by the maser references. At times longer782

maser-maser

1.3 mm, ALMA-SMA
(SNR > 200)
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Figure 8. Allan deviation for 870 µm (345 GHz) scans observed on
the ALMA-SMA baseline (blue traces). For comparison, red traces
show the Allan deviation for high-S/N scans (nominally 5 minutes
long) during the 1.3 mm (230 GHz) 2017 EHT campaign (Event
Horizon Telescope Collaboration et al. 2019b). Weather variabil-
ity during the 2017 campaign is responsible for the spread in those
scans. The means of the individual Allan deviation traces are shown
in bold for the two frequencies. The 870 µm and 1.3 mm mean
traces approach the nominal Allan deviation for a pair of T4 Sci-
ence brand iMaser 3000 model masers (Thompson et al. 2017) at
short timescales. At intermediate timescales, atmospheric turbu-
lence can become important. The Allan deviation associated with
Kolmogorov turbulence is plotted for a set of nominal parame-
ters (Treuhaft & Lanyi 1987).

than 5 s, the red traces are noticeably scattered. The scatter783

exists because of the variability of atmospheric conditions784

during the course of an observing campaign.785

The tropospheric delay is essentially independent of wave-786

length for wavelengths longer than about 600 µm as de-787

scribed by the Smith-Weintraub equation (see Thompson788

et al. (2017), chapter 13). Thus the Allan deviation is ex-789

pected to be independent of wavelength for our observations.790

When the atmospheric conditions are stable the 1.3 mm Allan791

deviation for individual scans approaches the maser-maser792

limit across all integration times. The mean of the 1.3 mm793

scans is within a factor of approximately two of the mean of794

the 870 µm traces. The 870 µm mean Allan deviation on795

the plot happens to be lower than the 1.3 mm mean for most796

integration times. However we do not consider this differ-797

ence to be significant give the extremely small 870 µm data798

set. Further, the observations in 2017 April and 2018 Oc-799

tober observations were of course made in differing weather800

conditions.801

To assess the impact of atmospheric turbulence at longer802

times, the Allan deviation associated with atmospheric Kol-803

mogorov turbulence is plotted for a set of nominal condi-804

tions following the approach outlined by Treuhaft & Lanyi805
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(1987): 10 m s−1 wind speed, 2 km troposphere scale height,806

1.99×10−7 m−1/3 Kolmogorov coefficient, and independent807

distant sites. The nominal Kolmogorov trace exceeds the808

maser-maser Allan deviation at longer times where we ex-809

pect atmospheric effects to dominate. Beyond 10 s, the nom-810

inal Kolmogorov trace matches the shape of the 1.3 mm811

mean. Although the 870 µm mean falls somewhere between812

the maser-maser and nominal Kolmogorov limits, the atmo-813

spheric contribution may become more apparent the future814

with scans spanning more variable weather conditions.815

3.4. Phasing Efficiency816

An important figure of merit when used to monitor the per-817

formance of phased array beamformers is phasing efficiency.818

This is a measure of how effectively outputs of the dishes in819

the local array are coherently summed to synthesize a single820

IF output from the array’s aggregated collecting area. For821

each array site periodic estimates of phasing efficiency over822

time are stored with other essential metadata for use in cali-823

bration.824

The ALMA and SMA phased arrays experienced lower825

and more variable phasing efficiency during the 870 µm test826

than is typical for 1.3 mm observing in similar conditions. At827

870 µm atmospheric opacity is between 3 and 3.5 times that828

for 1.3 mm given the same precipitable water vapor (PWV).829

Further source fluxes decline with increasing frequency or830

shorter wavelength. Both of these factors result in lower local831

array fringe signal-to-noise-ratio (SNR). There is thus greater832

error in the fits of the antenna phase corrections. Tuning833

within the band avoids the deep absorption lines due to atmo-834

spheric water resonances at 325 and 385 GHz which would835

reduce the SNR still further. Also, the atmospheric phase836

fluctuations tracked by the adaptive phased array system have837

a greater amplitude for observations in the higher frequency838

band. Crew et al. (2023) note that that moist, windy con-839

ditions tend to diminish phasing efficiency, and the winds840

were quite high at ALMA during the test. At dry less windy841

times ALMA obtained higher phasing efficiencies approach-842

ing 100%. While NOEMA participated in this test with a843

single dish, not as a phased array, all of these factors are ex-844

pected to apply as well to NOEMA which is now equipped845

with a phased array back end capable of beamforming in both846

the 1.3 mm and 870 µm bands.847

Water vapor radiometer (WVR) based phasing corrections848

were not in use during the 2018 test. Independent testing849

at ALMA show that fast WVR corrections are effective at850

improving the efficiency when phase fluctuations are pri-851

marily due to water vapor. Phasing control loop algorithms852

are constantly being improved and in future will be better853

tuned to the 870 µm waveband. These improvements will854

expand the opportunities for 870 µm observing in a wider855

range of weather conditions and on weaker sources. Despite856

these challenges VLBI detections at 870 µm can be readily857

achieved even when phasing efficiencies are relatively low858

and in non-ideal weather conditions.859

4. FUTURE DIRECTIONS860

Achieving 870 µm VLBI fringes has strong implications861

for science directions that future global arrays operating at862

this wavelength can explore. As angular resolution scales863

with wavelength, we anticipate improving resolution from864

∼ 23 µas to ∼ 15 µas on the longest EHT baselines (Figure865

5). Plasma propagation processes typically scale as wave-866

length squared, so at 870 µm scatter broadening of Sgr A∗
867

reduces to ∼ 5µas, further sharpening resolution and increas-868

ing signal-to-noise on the longest VLBI baselines. Similarly,869

Faraday Rotation measured across the bandpass of EHT re-870

ceivers at 870 µm can be used to improve estimates of ac-871

cretion plasma densities and magnetic field geometries close872

to EHT targets. For both Sgr A* and M87* the images at873

870 µm and 1.3 mm are determined predominantly by the874

achromatic gravitational lensing, and hence should exhibit875

similar characteristics, implying that the aggregate Fourier876

coverage of VLBI observations at different frequencies can877

be used to improve modeling of the gravitationally lensed878

emission, and imaging fidelity generally (Chael et al. 2023).879

Figure 9 shows Fourier amplitudes as a function of radius880

for GRMHD5 models of M87∗ and Sgr A∗. Inclusion of881

345 GHz observations adds coverage in the visibility plane882

regions not sampled at 230 GHz, and it extends baseline883

lengths for higher angular resolution as well as enhanced884

overall sampling of Fourier spatial frequencies to allow dy-885

namical reconstructions of accretion and jet launch close to886

the event horizon.887

There are several developments that will increase the sen-888

sitivity and flexibility of 870νm VLBI in the near future.889

Next-generation VLBI backends (Doeleman et al. 2023) will890

allow an increase in data capture rates from 64 to 128 Gb/s891

(per observing frequency band), lowering detection thresh-892

olds by
√

2. Additional use of the Frequency Phase Transfer893

technique (FPT; Rioja et al. 2023) through simultaneous ob-894

servations at 86, 230 and 345GHz will extend coherent inte-895

gration times at higher frequencies, further increasing sen-896

sitivity. In optimal cases this increase will be the square897

root of the ratio of coherence times at 86GHz and 345GHz898

(
√
τc(86)/τc(345)). And the participation of more telescopes899

at high altitude sites will make the EHT array more robust900

against adverse weather conditions, increasing the opportuni-901

ties for staging 870 µm VLBI observations (Raymond et al.902

2021; Doeleman et al. 2023). Anticipated upgrades to the903

ALMA array will be exceptionally useful to advance 870 µm904

VLBI, and are planned on a similar timeline (∼2030) as the905

ngEHT upgrade (Carpenter et al. 2023). In particular, the906

projected doubling of continuum bandwidth of ALMA will907

match the ngEHT specifications, and a sub-array capability908

at ALMA will enable simultaneous multi-band observations909

that benefit from FPT as noted above. In sum, the prospects910

for routine 870 µm VLBI in the near future are excellent.911

5. CONCLUSIONS912

5 General Relativistic Magnetohydrodynamic
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Figure 9. Left: Visibility amplitudes for simulated observations of M87∗ (top) and Sgr A∗ (bottom) at observing wavelengths of 1.3 mm (gray)
and 0.87 mm (red). The synthetic data have been generated using the ngehtsim package assuming array specifications appropriate for the
Phase 2 next-generation EHT array from Doeleman et al. (2023), including simultaneous dual-band observations, the use of the frequency phase
transfer calibration technique, and 16 GHz of bandwidth at both frequencies. Data points are colored by their S/N on an integration time of 5
minutes, and data points with S/N < 3 have been flagged. Right: Images produced from GRMHD simulations of the M87∗ (top two panels;
Event Horizon Telescope Collaboration et al. 2019e) and Sgr A∗ (bottom two panels; Event Horizon Telescope Collaboration et al. 2022b)
accretion flows, used to generate the synthetic data shown in the left panels. Both simulations have been ray-traced at observing wavelengths
of 1.3 mm (gray) and 0.87 mm (red), and the frequency-dependent effects of interstellar scattering have been applied to the Sgr A∗ images
(Johnson 2016; Johnson et al. 2018).
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VLBI fringe detections on baselines between ALMA-913

APEX, ALMA-IRAM30m, and ALMA-SMA have been914

achieved at 870 µm for multiple AGN sources. Signal-to-915

noise ratios were between approximately 10 and 70. De-916

spite marginal weather conditions across the array, detec-917

tions to multiple stations and sources were obtained. This918

work demonstrates that the EHT instrumentation is viable at919

870 µm (345 GHz) and will provide a critical advance in920

array capability. EHT-wide observations at 870 µm would921

yield a fringe spacing of about 15 µas, and with a full-track922

of coverage, would significantly enhance the fine details of923

the EHT images of AGN and horizon-scale targets (Doele-924

man et al. 2019, 2023; Johnson et al. 2023).925
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