Lecture 6

23 Stochastic processes

23.1 Some basics from probability theory

Probability space:
Let

Q: Sample space (set of events)
A: o-algebra of Q
P: Probability measure P : A — [0, 1]

The set (Q,.A, P) is called probability space
w € Q is called elementary event

E € A is called event

P(F) is the probability of event E

Conditions on probability measure:

i) 0<PE)<1 VEeA

)
(ii) P(Q2) =
(iii) Let Fy, Es,... be disjoint events < E,NE; =0 Vi#j
(iv) E:=Q\E ’not E” event = P(E)=1- P(E)
)

P)=0 () = impossible event

(v

Random variable:
A measurable function
X: Q-

is called random variable. It induces a probability measure (push forward measure)
Px(E')=P({w € QX (w) € E'}, VE €.

Px is called distribution of X.

23.2 Stochastic processes
Let T be an index set with 7 € T" and

Q- RE=q
XT‘w'—>XT() VreT

be a family of R%-valued random variables with (w, A, P) as probability space.
Then (w, A, P,{X;}rer) is called a stochastic process with index set T' and state (or sample)
space R?,

Example: Brownian motion

Here Q = Q' = R?

w € Q denotes an elementary path taken by the particle during time 0 < 7 < T.

X;(w) = w(7) position of Brownian particle at time 7 = random variable for each 7
X.(w) for fixed w € Q is called path or realisation of the stochastic process
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23.3 Finite-dimensional marginal distribution

The joint probability density

Pn(x'n,tm Tp—1ln—1,... 7$1t1) = <5(th - wn)d(thfl - 551:,71) te 5(Xt1) - xl)>PX—r

of the random variables X;, with ¢; € T, ¢ =1,2,3,...,n, n € N are called marginal distri-
butions.

Properties:

- Positivity: P, (zptn, Tn—1tn—1,...,21t1) >0

- Symmetry: Pn(xﬂ(n)tﬂ(n), xﬂ'(n—l)tﬂ'(n—l)v SN ,1‘77(1)t77(1)) = Pn(itntn, l‘n_ltn_l, NN ,mltl)

for all permutati PR S AR
or all permutations (1) 7(2) 7(3) - 7(n)

- Compatability: / d?z, Py (zptn, Tp—1tn—1,...,21t1) = Pr_1(Tp_1tp_1,...,21t1)
Rd

- Normalisation: d%, Py (x1t1) =1
Rd

Kolmogorov’s fundamental (or extension) theorem:

For each family {P,(---)}nen of finite dimensional distributions, obeying above proper-
ties, exists a stochastic process (w, A, P, {X;};er) with these marginal distributions. The
stochastic process is in essence unique.

In other words, a stochastic process is in essence uniquely defined via its family of marginal
distributions.

23.4 Brownian motion

1827 Robert Brown: Observed irregular motion of pollen on a static liquid originating from
random hits of pollen by molecules of the liquid.

1905 Albert Finstein: Provided first correct theoretical description:

e Assume motions within two successive time intervals 7 (small) are independent (no
correlation of hits)

e Within 7 position z varies by amount A

e A is arandom variable with a probability distribution ®(A) such that ®(—A) = &(A)
and (A?) ~ 7.

Let f(z,t) be the probability distribution density to find particle at position x at time t.
Then

fle,t+71)= /dA O(A)f(z+ A,t)
and for small 7 and A we have
flx t+7)~ f(z,t)+ 7f(x,t)
/dA O(A)f(r+ A t) =~ f(m,t)/dA O(A) —|—f’(x,t)/dA AD(A) —i—f”(m,t)/dA IA29(A)
—_—
=1 =0 =:Dt
Comparing both sides results in the diffusion equation

o s
ot 0%
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Finstein: D = gfﬂ with T" temperature, n viscosity and a radius of pollen.

Obviously (A?) = 2D and with initial condition f(x,0) = §(x) the solution of the diffusion
equation is given by the Gaussian distribution

1 &
e T
vVar DT

characterising the probability distribution of X;.

f(l"t):

1907 Paul Langevin: Starts with Newton’s eq. for X;

mX; + GﬂnaXt =F <+ random force
N——
=friction

Multiply by X; ) )
thXt + 67777aXtXt = FXt

Formally we have %%:;XE = XtQ + X'tXt resulting in

m d?

) d
EWX’? —mX; +3ma—X} = FX;

dt

Now we take the mean value, assume thermodyn. equilibrium %(Xf) = 1kpT (1-dim.) and
set 22(t) := (X?)

m d2 2 d 2 independent
——2°(t) — kT + 3mna—a“(t) = (FX = F)(Xy) =
=0
Solution is same as Einstein’s: 22(t) = (XP) = g%nj;t =2Dt

23.5 Stationary Markov processes
Conditional probability density: Let 1 < <..- <7, <t; <--- <, then

Pn+m(1'ntnv oy Zntn, EmTm, yngl)
P’m(ﬁanu te 7§17-1)

is the conditional probability density for X, taking values x; at times ¢; under condition that
the values §; at 7; were realised by X;.
Obvious relations:

Pojm (@ntn, - o1t |§mTm, -, &m1) =

Pl(CL’QtQ) = /d"l;‘l Pg(xgtg,mltl) = /d"l;‘l P1|1(1172t2|1?1t1)P1(171t1)

Py (zsts|zity) = /dl’Q Py (z3ts, mata|r1ty) = /dl“Q Pyjp(w3ts|aats, x1t1) Py (w2t2]21t1)
Markov assumption: If
Pn|m(xntn> o TptnlEnTm, 5 61T) = Pn\l(l'ntna o TptnlémTm)

depends only on the last condition <=: Markov process

Chapman-Kolmogorov equation:

Py (zstsloity) = /d$2 Prj1(wsts|ats) Py (w2tz|21th)

Note:

Po(zntn, Tn-1tn-1,...,71t1) = Py (@ntn|Tn-1tn-1) P (Tn-1tn—1|Tn—2tn-2) - Py (zataleits)

48



Py is called the transition probability density of the Markov process.
If it depends only of the time difference then it is called a stationary Markov process with

Mity—t, (¥2, 1) 1= Py (w2t2]|21t1)
Stationary Markov process: Is uniquely defined by
e State space: Q C R?
e Initial distribution: Py(z), z € Q,att =0
e Transition probability density: my(z2, 1), t > 0, obeying below requirements
— my(z2,21) >0
- / dzo my(ze, 1) =1
Q

t{%mt(w’ll) (g — 1)
- / dzg my(xs3, x2)my (a2, £1) = my(xs, 1)
Q

e If, in addition, the Lindeberg condition holds, i.e.,

1
lim ~ dzg my(zg,21) =0 Ve>0,z1 €Q
AN |xo—z1|>€

then this is a continuous Markov process who’s paths (realisations) are almost sure
continuous (no jumps)

Realisations of a continuous stationary markov process, with initial distribution Py(x) =
0(x — qq) are all continuous open-end paths living in @ and starting in ¢, € Q.

We denote this set of paths by the path space C(Q, qq).

From now on we use the notation M;(w) = X;(w) € C(Q, q,) for such Markov prcesses.

23.6 Path integral representation of stationary Markov processes

Ingredients:
¢ Continuous stationary markov process M;(w), w € Q, t >0
e State (or confinguration) space Q C RY
e Initial distribution Py(q) = 6(q — qa)

e Path space C(Q, q4), all open-end paths M.(w) starting at g,

B,

49



Path: for fixed w € Q with My(w) = gq

RS = @

T s My(w)

Probability measure: P
e Initial condition: P({w € Q|Mp(w) =¢q}) =1
e Continuity: P({w € Q| tl/iinﬁ My(w) = My(w)}) =1
e Marginal distribution:

P({UJ € Q|Mtn ((/J) =dny--- 7Mt1 (w) = Ch}) = mtn—tn71(Qn7Qn—1) e mtl—to(QI»Qa)
with
O=th<ty1 <-- - <tp, GEeER, 1=12....n, VneN.

e Induced mapping:

Q - C(Q>‘]a)
w +— x Realisation

@
induces a probability measure on C(Q,qq): M := Po ¢!

The M-path integral:
Consider arbitrary real-valued functional F’

. €(@,q) — R
F x —  Flz]

Then the expectation value is given by the M-path integral

(FIM) = /C o, U111 Pl

The measure can explicitly be defined via so-called cylinder functionals
Flz] = fu(z(tn),...,z(t1)) 0<ty < <typ, neN

as follows

/ dM[:I:] f?l,(x(tn),...,l’(tl))
C(Qv‘]a)
= /qun .. ./Qd(h My —tn_1 (@ @n=1) -+ Mty —10(q15 9a) frl@n, - - -q1)

This is similar to the definition of a Riemann or Lebesque integral.
Extension to general functional is then via approximation by suitable cylinder functions,

F = lim f,, i.e. via a time-lattice approximation
n—oo

/ dM(z] Fla] = lim AM (2] fu(z(tn), . .. (1))
C(Q.4a) C(Q,4qa)

Properties:
. / AMz] = 1
C(Q,qa)
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L / dM[T} (5(T(fn) - Qn) o (s(T(tl) - (J1) =Mty —ty_1 ((bu (Jn—l) Mgy —tg ((J17 Qa)
C(Q,qa)
Generator T};: Is local operator on dense subset of L?(Q) defined by its ¢’-representation

T%(q) = (| Tule)  via  (¢]e ™ g) := mu(d, q)

It obeys the
Fokker-Planck equation:

_atmt(qla Q) = T]&] )mt(q,7 Q)

Typically structure:
P2 o
Ty = 5 +iP - ﬁl(Q)

Diffusion constant D = %

—

Drift m(Q) due to external force

Feynman-Kac formula: Let H := Ty + V(Q) then

e Mo = [ el o) - m e [ [ervam]

Conclusion: There are at least three equivalent ways (generator, transition density, path
integral) to characterise a Markov process, they are related by

(dleM|g) = mi(d,q) = / dM(2] 3(x(t) — ¢)
JC(Q,q)

Examples:
Wiener process
Bessel process
Legendre process
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