Lecture 6

23 Stochastic processes

23.1 Some basics from probability theory

Probability space:

Let

 Ω : Sample space (set of events)

 \mathcal{A} : σ -algebra of Ω

P: Probability measure $P: \mathcal{A} \to [0,1]$

The set (Ω, \mathcal{A}, P) is called *probability space*

 $\omega \in \Omega$ is called elementary event

 $E \in \mathcal{A}$ is called *event*

P(E) is the probability of event E

Conditions on probability measure:

(i)
$$0 \le P(E) \le 1$$
 $\forall E \in \mathcal{A}$

(ii)
$$P(\Omega) = 1$$

(iii) Let
$$E_1, E_2, \ldots$$
 be disjoint events $\Leftrightarrow E_i \cap E_j = \emptyset \ \forall i \neq j$

(iv)
$$\overline{E} := \Omega \setminus E$$
 "not E " event $\Longrightarrow P(\overline{E}) = 1 - P(E)$

(v)
$$P(\emptyset) = 0$$
 $\emptyset = \text{impossible event}$

Random variable:

A measurable function

$$X:\Omega\to\Omega'$$

is called random variable. It induces a probability measure (push forward measure)

$$P_X(E') = P(\{\omega \in \Omega | X(\omega) \in E'\}, \quad \forall E' \in \Omega'.$$

 P_X is called distribution of X.

23.2 Stochastic processes

Let T be an index set with $\tau \in T$ and

$$X_{\tau}: \begin{array}{l} \Omega \to \mathbb{R}^d = \Omega' \\ \omega \mapsto X_{\tau}(\omega) \end{array} \quad \forall \, \tau \in T$$

be a family of \mathbb{R}^d -valued random variables with (ω, \mathcal{A}, P) as probability space.

Then $(\omega, \mathcal{A}, P, \{X_{\tau}\}_{{\tau} \in T})$ is called a *stochastic process* with index set T and state (or sample) space \mathbb{R}^d .

Example: Brownian motion

Here
$$\Omega = \Omega' = \mathbb{R}^d$$

 $\omega \in \Omega$ denotes an elementary path taken by the particle during time $0 \le \tau \le T$.

 $X_{\tau}(\omega) = \omega(\tau)$ position of Brownian particle at time τ = random variable for each τ

 $X_{\cdot}(\omega)$ for fixed $\omega \in \Omega$ is called path or realisation of the stochastic process

Finite-dimensional marginal distribution 23.3

The joint probability density

$$P_n(x_n t_n, x_{n-1} t_{n-1}, \dots, x_1 t_1) := \left\langle \delta(X_{t_n} - x_n) \delta(X_{t_{n-1}} - x_{n-1}) \cdots \delta(X_{t_1}) - x_1 \right\rangle_{P_{X_n}}$$

of the random variables X_{t_i} with $t_i \in T$, $i = 1, 2, 3, \ldots, n$, $n \in \mathbb{N}$ are called marginal distribut ions.

Properties:

- Positivity: $P_n(x_n t_n, x_{n-1} t_{n-1}, \dots, x_1 t_1) \ge 0$
- Symmetry: $P_n(x_{\pi(n)}t_{\pi(n)}, x_{\pi(n-1)}t_{\pi(n-1)}, \dots, x_{\pi(1)}t_{\pi(1)}) = P_n(x_nt_n, x_{n-1}t_{n-1}, \dots, x_1t_1)$

for all permutations
$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \pi(1) & \pi(2) & \pi(3) & \cdots & \pi(n) \end{pmatrix}$$

- Compatability:
$$\int_{\mathbb{R}^d} d^d x_n P_n(x_n t_n, x_{n-1} t_{n-1}, \dots, x_1 t_1) = P_{n-1}(x_{n-1} t_{n-1}, \dots, x_1 t_1)$$
- Normalisation:
$$\int_{\mathbb{R}^d} d^d x_1 P_1(x_1 t_1) = 1$$

- Normalisation:
$$\int_{\mathbb{R}^d} d^d x_1 P_1(x_1 t_1) = 1$$

Kolmogorov's fundamental (or extension) theorem:

For each family $\{P_n(\cdots)\}_{n\in\mathbb{N}}$ of finite dimensional distributions, obeying above properties, exists a stochastic process $(\omega, \mathcal{A}, P, \{X_{\tau}\}_{\tau \in T})$ with these marginal distributions. The stochastic process is in essence unique.

In other words, a stochastic process is in essence uniquely defined via its family of marginal distributions.

23.4 Brownian motion

1827 Robert Brown: Observed irregular motion of pollen on a static liquid originating from random hits of pollen by molecules of the liquid.

1905 Albert Einstein: Provided first correct theoretical description:

- Assume motions within two successive time intervals τ (small) are independent (no correlation of hits)
- Within τ position x varies by amount Δ
- Δ is a random variable with a probability distribution $\Phi(\Delta)$ such that $\Phi(-\Delta) = \Phi(\Delta)$ and $\langle \Delta^2 \rangle \sim \tau$.

Let f(x,t) be the probability distribution density to find particle at position x at time t. Then

$$f(x, t + \tau) = \int d\Delta \Phi(\Delta) f(x + \Delta, t)$$

and for small τ and Δ we have

$$\int d\Delta \Phi(\Delta) f(x+\Delta,t) \approx f(x,t) \underbrace{\int d\Delta \Phi(\Delta)}_{=1} + f'(x,t) \underbrace{\int d\Delta \Delta \Phi(\Delta)}_{=0} + f''(x,t) \underbrace{\int d\Delta \Delta \Phi(\Delta)}_{=:D\tau} + f''(x,t) \underbrace{\int d\Delta \Delta \Phi(\Delta)}_{=:D\tau}$$

Comparing both sides results in the diffusion equation

$$\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial^2 x}$$

Einstein: $D = \frac{k_B T}{6\pi \eta a}$ with T temperature, η viscosity and a radius of pollen. Obviously $\langle \Delta^2 \rangle = 2D\tau$ and with initial condition $f(x,0) = \delta(x)$ the solution of the diffusion equation is given by the Gaussian distribution

$$f(x,t) = \frac{1}{\sqrt{4\pi D\tau}} e^{-\frac{x^2}{4D\tau}}$$

characterising the probability distribution of X_t .

1907 Paul Langevin: Starts with Newton's eq. for X_t

$$m\ddot{X}_t + \underbrace{6\pi\eta a\dot{X}_t}_{\text{=friction}} = F \quad \leftarrow \quad \text{random force}$$

Multiply by X_t

$$m\ddot{X}_t X_t + 6\pi \eta a \dot{X}_t X_t = F X_t$$

Formally we have $\frac{1}{2} \frac{d^2}{dt^2} X_t^2 = \dot{X}_t^2 + \ddot{X}_t X_t$ resulting in

$$\frac{m}{2}\frac{d^{2}}{dt^{2}}X_{t}^{2} - m\dot{X}_{t}^{2} + 3\pi\eta a \frac{d}{dt}X_{t}^{2} = FX_{t}$$

Now we take the mean value, assume thermodyn. equilibrium $\frac{m}{2}\langle \dot{X}_t^2 \rangle = \frac{1}{2}k_BT$ (1-dim.) and set $x^2(t) := \langle X_t^2 \rangle$

$$\frac{m}{2} \frac{\mathrm{d}^2}{\mathrm{d}t^2} x^2(t) - k_B T + 3\pi \eta a \frac{\mathrm{d}}{\mathrm{d}t} x^2(t) = \langle F X_t \rangle \stackrel{\mathrm{independent}}{=} \langle F \rangle \underbrace{\langle X_t \rangle}_{=0} = 0$$

Solution is same as Einstein's:

$$x^2(t) = \langle X_t^2 \rangle = \frac{k_B T}{3\pi \eta a} t = 2Dt$$

23.5 Stationary Markov processes

Conditional probability density: Let $\tau_1 \le \tau_2 \le \cdots \le \tau_m \le t_1 \le \cdots \le t_n$ then

$$P_{n|m}(x_n t_n, \cdots, x_1 t_1 | \xi_m \tau_m, \cdots, \xi_1 \tau_1) := \frac{P_{n+m}(x_n t_n, \cdots, x_n t_n, \xi_m \tau_m, \cdots, \xi_1 \tau_1)}{P_m(\xi_m \tau_m, \cdots, \xi_1 \tau_1)}$$

is the conditional probability density for X_t taking values x_i at times t_i under condition that the values ξ_j at τ_j were realised by X_t .

Obvious relations:

$$P_1(x_2t_2) = \int dx_1 P_2(x_2t_2, x_1t_1) = \int dx_1 P_{1|1}(x_2t_2|x_1t_1) P_1(x_1t_1)$$

$$P_{1|1}(x_3t_3|x_1t_1) = \int dx_2 P_{2|1}(x_3t_3, x_2t_2|x_1t_1) = \int dx_2 P_{1|2}(x_3t_3|x_2t_2, x_1t_1) P_{1|1}(x_2t_2|x_1t_1)$$

Markov assumption: If

$$P_{n|m}(x_nt_n,\cdots,x_nt_n|\xi_m\tau_m,\cdots,\xi_1\tau_1) = P_{n|1}(x_nt_n,\cdots,x_nt_n|\xi_m\tau_m)$$

depends only on the last condition \iff : Markov process

Chapman-Kolmogorov equation:

$$P_{1|1}(x_3t_3|x_1t_1) = \int dx_2 P_{1|1}(x_3t_3|x_2t_2) P_{1|1}(x_2t_2|x_1t_1)$$

Note:

$$P_n(x_nt_n, x_{n-1}t_{n-1}, \dots, x_1t_1) = P_{1|1}(x_nt_n|x_{n-1}t_{n-1})P_{1|1}(x_{n-1}t_{n-1}|x_{n-2}t_{n-2}) \cdots P_{1|1}(x_2t_2|x_1t_1)$$

 $P_{1|1}$ is called the transition probability density of the Markov process. If it depends only of the time difference then it is called a stationary Markov process with

$$m_{t_2-t_1}(x_2,x_1) := P_{1|1}(x_2t_2|x_1t_1)$$

Stationary Markov process: Is uniquely defined by

- State space: $Q \subseteq \mathbb{R}^d$
- Initial distribution: $P_0(x)$, $x \in Q$, at t = 0
- Transition probability density: $m_t(x_2, x_1), t > 0$, obeying below requirements

$$- m_t(x_2, x_1) \ge 0$$

$$- \int_Q dx_2 m_t(x_2, x_1) = 1$$

$$- \lim_{t \searrow 0} m_t(x_2, x_1) = \delta(x_2 - x_1)$$

$$- \int_Q dx_2 m_t(x_3, x_2) m_t(x_2, x_1) = m_t(x_3, x_1)$$

• If, in addition, the Lindeberg condition holds, i.e.,

$$\lim_{t \searrow 0} \frac{1}{t} \int_{|x_2 - x_1| > \varepsilon} dx_2 \, m_t(x_2, x_1) = 0 \qquad \forall \, \varepsilon > 0 \,, x_1 \in Q$$

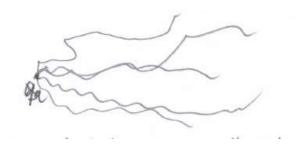
then this is a *continuous Markov process* who's paths (realisations) are almost sure continuous (no jumps)

Realisations of a continuous stationary markov process, with initial distribution $P_0(x) = \delta(x - q_a)$ are all continuous open-end paths living in Q and starting in $q_a \in Q$. We denote this set of paths by the path space $\mathcal{C}(Q, q_a)$.

From now on we use the notation $M_t(\omega) \equiv X_t(\omega) \in \mathcal{C}(Q, q_a)$ for such Markov presses.

23.6 Path integral representation of stationary Markov processes Ingredients:

- Continuous stationary markov process $M_t(\omega)$, $\omega \in \Omega$, $t \geq 0$
- State (or confinguration) space $Q \subseteq \mathbb{R}^d$
- Initial distribution $P_0(q) = \delta(q q_a)$
- Path space $C(Q, q_a)$, all open-end paths $M(\omega)$ starting at q_a



Path: for fixed $\omega \in \Omega$ with $M_0(\omega) = q_a$

$$x: \begin{array}{ccc} \mathbb{R}^0_+ & \to & Q \\ t & \mapsto & M_t(\omega) \end{array}$$

Probability measure: P

• Initial condition: $P(\{\omega \in \Omega | M_0(\omega) = q_a\}) = 1$

• Continuity: $P(\{\omega \in \Omega | \lim_{t' \to t} M_{t'}(\omega) = M_t(\omega)\}) = 1$

• Marginal distribution:

$$P(\{\omega \in \Omega | M_{t_n}(\omega) = q_n, \dots, M_{t_1}(\omega) = q_1\}) = m_{t_n - t_{n-1}}(q_n, q_{n-1}) \cdots m_{t_1 - t_0}(q_1, q_a)$$

with

$$0 = t_0 < t_1 < \dots < t_n$$
, $q_i \in Q$, $i = 1, 2, \dots, n$, $\forall n \in \mathbb{N}$.

• Induced mapping:

$$\phi: \begin{array}{ccc} \Omega & \to & \mathcal{C}(Q, q_a) \\ \omega & \mapsto & x & \text{Realisation} \end{array}$$

induces a probability measure on $\mathcal{C}(Q,q_a)$: $M:=P\circ\phi^{-1}$

The M-path integral:

Consider arbitrary real-valued functional F

$$F: \begin{array}{ccc} \mathcal{C}(Q, q_a) & \to & \mathbb{R} \\ x & \mapsto & F[x] \end{array}$$

Then the expectation value is given by the *M-path integral*

$$\langle F[M_t] \rangle = \int_{\mathcal{C}(Q,q_a)} \mathrm{d}M[x] F[x]$$

The measure can explicitly be defined via so-called cylinder functionals

$$F[x] = f_n(x(t_n), \dots, x(t_1)) \qquad 0 < t_1 < \dots < t_n, \qquad n \in \mathbb{N}$$

as follows

$$\int_{\mathcal{C}(Q,q_a)} dM[x] f_n(x(t_n), \dots, x(t_1))$$

$$:= \int_Q dq_n \dots \int_Q dq_1 m_{t_n - t_{n-1}}(q_n, q_{n-1}) \dots m_{t_1 - t_0}(q_1, q_a) f_n(q_n, \dots, q_1)$$

This is similar to the definition of a Riemann or Lebesque integral.

Extension to general functional is then via approximation by suitable cylinder functions, $F = \lim_{n \to \infty} f_n$, i.e. via a time-lattice approximation

$$\int_{\mathcal{C}(Q,q_a)} dM[x] F[x] = \lim_{n \to \infty} \int_{\mathcal{C}(Q,q_a)} dM[x] f_n(x(t_n), \dots, x(t_1))$$

Properties:

$$\bullet \int_{\mathcal{C}(Q,q_a)} \mathrm{d}M[x] = 1$$

•
$$\int_{\mathcal{C}(Q,q_a)} dM[x] \, \delta(x(t_n) - q_n) \cdots \delta(x(t_1) - q_1) = m_{t_n - t_{n-1}}(q_n, q_{n-1}) \cdots m_{t_1 - t_0}(q_1, q_a)$$

Generator T_M : Is local operator on dense subset of $L^2(Q)$ defined by its q'-representation

$$T_M^{(q')}\psi(q') = \langle q'|T_M|\psi\rangle$$
 via $\langle q'|e^{-tT_M}|q\rangle := m_t(q',q)$

It obeys the

Fokker-Planck equation:

$$-\partial_t m_t(q',q) = T_M^{(q')} m_t(q',q)$$

Typically structure:

$$T_M = rac{ec{P}^{\,2}}{2} + \mathrm{i}ec{P} \cdot ec{m}(ec{Q})$$

Diffusion constant $D = \frac{1}{2}$.

Drift $\vec{m}(\vec{Q})$ due to external force

Feynman-Kac formula: Let $H := T_M + V(Q)$ then

$$\boxed{\langle q_b | e^{-tH} | q_a \rangle = \int_{\mathcal{C}(Q, q_a)} dM[x] \, \delta(x(t) - q_b) \exp\left\{ -\int_0^t d\tau \, V(x(\tau)) \right\}}$$

Conclusion: There are at least three equivalent ways (generator, transition density, path integral) to characterise a Markov process, they are related by

$$\langle q'|e^{-tT_M}|q\rangle = m_t(q',q) = \int_{\mathcal{C}(Q,q)} dM[x] \,\delta(x(t) - q')$$

Examples:

Wiener process

Bessel process

Legendre process