Lecture 4

15 Statistical mechanics revisited

The partition function being the central object

2(8) =T (7)), Bi= L

kpT
e Free energy: F = —% InZ
e Mean energy: E = % Tr (ﬁe_ﬁﬁ)
e Entropy: S = —g—l;:k’Ban—l—Tr (ﬁ[e_ﬁH) =4(E—F)

e Euclidean propagator: Kp(d",q;7) = (q”|e_THh|q'>

is related to quantum propagator K(q”,q’;t) = <q”|e_itﬁh|q’>
via Wick rotation t— —ir
FEuclidean time: T=it

= Kp(".¢i7)=K({".q;—ir)
e Partion function: Z(B) = / dq Kg(q,q;hB), T =hg
o Density matrix:  pg(q”,¢') = (¢"|e *""¢) = Ki(q",q's hB)

16 Path integral representation of partition function
Remember Lie-Trotter formula for potentials bounded from below
3 P2 5o\ Y
e P = lim <e_2mN e_V(Q)N)
N—o0
We again insert (N — 1)-times resolution of unity and observe that

_P2p _n:s
(wjleIm R]z;) = / dp (x;1p) (plej_1) e B ¥

_22

dperP® =% 1) ¢~ 2m

zfw

" 27k

mN m (Azj)?
=557 - N
o2 eXp{ o2 B
Hence we arrive at

N-1 N N\ L2 Az)2
pp(a” @) = /dxj II (27:7/5) exp{—z%( ;") N — V(ffj)]ﬁv}
j=1

Taking the limit N — oo provides us with a path integral representation of the density
matrix / Euclidean propagator
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e Euclidean propagator: B=1/h ei=F =%

Ke(@",a57) = pop(a”,)
N-1 N
L . m \1/2 (A’I‘J) 1 _
- Nlﬂnoojl:[l /dxfjlill(%hg) eXp{ o= h W)
" =x(T) 1
- D - M2y
-/x’—;v(O) [z(7)] exp{ h/ do ( 5 P2+ V(z ))}

e Buclidean action
sl = [ do (34 + V()
0
Is formally the classical action for a particle in inverted potential U(x) = =V (z) !

e Partition function
Z(ﬁ) = /dxpﬁ(xvx)

— §  Dla(r)et e
z(0)=z(r)

Here integrate over all periodic paths with period 7 = hf

m \1/2 (Aa:j) 1
:Nlﬂnoon/dxjn hg) exp{ TP A

Recall 8 =Ne/h
Note: Here we have N integrations due to the trace !!!

17 The free particle partition function

The Euclidean propagator trivially follows from the quantum propagator through Wick

rotation . -
KE(IE//,CL'I;T) _ <l'//|e_TH/h|£L'I> _ /277:27— exp {_% (J»’ ;Il?) }

For partition function confine to a finite volume V in R3

3/2 3/2

18 The harmonic oscillator

2

g 4T M98
H—2m+2wQ, w>0.

Recall quantum result for 0 < wt < 7

M o—itH /Ry 0\ _ mw i mw [ "2 2 £ — 2" /}
(e [ 2mih sin(wt) P { h2sin(wt) (27" +a™") cos(wt) - 22
Wick rotation: ¢t = —ir = isin(wt) = isin(—iw7) = sinh(wT), cos(wt) = cosh(wT).
"o mw . mw [ "2 h 24" /}
ppa’, ) 27h sinh(wT) exp{ 2h sinh(wT) (@ + )COS (wr) - 22
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Partition function:

= / da pg(z, x)
—00
22
\/ 2rh sinh(wr) smh (wT) hsmh hsinh(wT) Lcos—h(wjﬁl

2sinh? &7
1/2
_ mw mhsinh(wr) _ 1
—\ 27k sinh(wT) 2mw sinh? % " 2sinh w_27'
_ 1 _ e_%‘r
C 2sinh g T —eer
- 1
Remember: Z e T — e
oo oo} 00 )
Zw(ﬁ) — e—% e~ TWT — Z e—(n—i—%)wT _ Z e—(n—«—%)hwﬁ _ Tre_[aH
n=0 n=0 n=0

19 The Wigner-Kirkwood expansion
Consider the quasi-classical limit 7 — 0 of partition function

%D exp{ 7 /Ohﬁ do (%iQ(O’) + V(m(U)))}

o = hs

fp[x( )]exp{ }11/0 dsh (g8° + Via ))}
j{D exp{—/o/j ds (%:&2(3) +V(w(8)))}

As only A% shows up we expect
Z(B) = Za(B) + O(h?)

e Classical partition function

Let h(p,q) := % + V(gq) be the classical Hamilton function representing Hamiltonian F

Za(8) = [ e exp (~5hip.0))

1
_ —pp?/2m BV (q)
27h / dpe / dge

_/m —BV (x)
SEr /dme

Classical parts contributing to path integral appear to come from constant paths z(s) = .

Suggests expansion: z(s) =z + hq(s)
Euclidean action: Sp = / (%q2 +V(z+ hq)
0

Partition function:
¢"'=0
2¢)= [arf Ply(s)exp { - /0 s (4 Vet o) |
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Expansion of potential:

V(z+hq) =V(x)+hqV'(z)+ 1h2 V" (x) + O(h?)

12 X e 2
=V(2) - ‘1//"((9[:)) V”( ) <hq + 1‘//"—((3:))> +O(n*) (%)
e The lowest order: V(z+ hq) = V(x)

I

q —0
Za(8) = /dxe_ﬁv(w)f . exp{ % }
q'=

free particle =

m
27h23

= expected and known result

- m —BV (x)
D=\ a5 /d‘”e

14
e Next order: Set n := hqg + v as suggested by (*)
All V’s are now taken at x

_ Vv IV’“ n//:LN
2(9) = [ dze (o )jﬁ ' D[n(S)]exp{—/ ds g + 5V
7' v/ 0 2h 2

=7

. . . 71
harmonic oscillator with wzz%

e ~2

-8 (V—% v ) mw mw
Z(6) /dxe 27h sinh(wT) P hsinh(wT) (cosh{wr) —1)
where T := “//—//, and wr = hwp.

Homework problem 13:

h2 2
palea) = g 1 22 (3172(0) —2v7(2) + o)

Z(B) = /dwp/g(x,a:) ~ \/% /dxe_m/eﬁ(@

with effective potential

and

h252
24m

2
Ve (z) = V(z) — 245 V" (z) +O(h*) = V(z) — V2 (x) + O(hY)

Similar in form to classical result but potential receives a quantum correction.

E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium,
Phys. Rev. 40 (1932) 749.

J.G. Kirkwood, Quantum Statistics of Almost Classical Assemblies,
Phys. Rev. 44 (1933) 31.
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20 The large ™ behaviour
Or the low temperature limit B=71/h—

20.1 Single-well potential

Let us assume a single well potential V' with minimum at zg, V(x¢) = 0 for convenience

- | -
A L

We consider the diagonal element of the Euclidean propagator

Kp(xo, 20, T) /De;LE]

Sila] :/_T/sz 54+ Vi)

e Classical path: T(0) obeys Newton’s equation for U(x) = —V(x)
mzZ=V'(z)  with  ZT(+]) =m0, 7 large

Hence it stays at g forever at unstable balance Z(o) = g and S[z] = Sy = 0.

. . . s 2 _ 1y
e Quasi-classical approximation: w® = V" (o)

TH/K ~F, ~So/h _ [ MW /mw —m —-1/2
{wole™ [o) 2 ¢ 27rhsinh(wr) smh (wT) 7rh
er —owry —1/2

=y TR ey

wr>1 mw _w, 1 —2wT —4wT
= — 14 = O
e’ < +3e + O(e™7)

e Spectral representation: H= Y on Enlon)(enl

—rH wr>1
(wole ! Mwg) TR e/ (o o) ) ,
XQ+€wr%wﬂﬁﬁﬁL+gwr%wﬂﬁﬁﬁL ”>
[(2olo)|? [(2oleo)|?
Note: In harmonic approximation V(zg + z) = V(zo — x) and hence ¢; is antisymmetric
- v1(z0) =0 first correction term above vanishes
Conclusion:
hw 9 mw
Fy~ — =4 —
0 5 [(zolsp0)] h
1 /mw
Ey — Eg = 2h x 2o —
2 0 W [(zol4p2)] o\ 7
Remarks:

e Zero order approximation for anharmonic oscillator is harmonic
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e For 2" = x¢ = 7/, i.e. the classical ground state, no info is obtained on 1. exited state.
One may consider z” # 2’ but that is difficult to handle

e No non-perturbative effects are considered in this approach as Sy = 0. There may be
local minima of action with 0 < Sy < oo being of order e=%/" (Instantons !!!)

20.2 Double-well potential

Now we assume a symmetric double-well potential of the typical form like

V(z) = °§TT(:1:2 — a?)? with two local minima V' (+a) = 0.

Idea: Consider Euclidean propagator in quasi-classical approximation and extract info on

ground state and first excited state from the asymptotic behaviour for large 7 with 2’ = —a
and 2”7 = a.
e Classical paths: Z(+3) = +a for T =00

) S— /j, -

To move from —a to +a in a very long time 7 — oo particle must have an energy E = 0

E =

m_.2 _ m_2 . = 2V(T)
5% + U(x) 57 (Z)=0 = T -

Instanton (4) moves from left to right
Anti-Instanton (-) moves from right to left

e Instanton: For most of the time particle sits at —a, at some instants ¢; it rolls from —a
to +a and stays there for rest of time
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- 1§
— : -
\ _[hg.»‘a, ‘e
- ty
D i -
| ] " \
e A W St fon
— -T--— — — -
- i (“‘._‘7'7 N > i \ 1)
\ { \
\_ f - - 1 -
I "'L (l \‘_'}1 li -
In our example:
T = :I:zi(a?2 —a?) = %y, (0) = fatanh [%(0’ - tl)}
a

Translation invariance in time
7, (0) = atanh [%(a - tl)] = To(£(0 — t1))

e Classical action:

T/2 . T/2 . a .
So :_/ do (T52+V(a:)) _/ dame—/ dz mz
T/2 2 /2

- - —a

%—f@%ﬁ%}

—a

Potential barrier strength is independent of #;!

e Multi instantons:
Single (anti-) instanton solution is approximate solution for large T becoming exact only in
the limit 7 — oc.

Further approximate solutions exist and consist of several instantons and anti-instantons.
These are local minima of action.

e The n-instanton solution:
Let

Loty <ty <<ty <=
2 1 2 n 2

then the n-instanton solution is given by

jjtl,tz,...,tn = fo(U — tl) + fo(lfg — 0) —i—To(O’ — t3) + - —l—f()(O' — tn)
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n-Instanton action:

S[z] = nSy + exponentially small corrections

Contributes factor e=™%/" to Euclidean propagator.
Is exponentially small but there is an infinite number of them as n — oo.

e Contribution of one instanton:

(ale ™1/ — a) x Fyna (1) e 50/ = K (1) Fa(r) e 50/

where

(r) Fyn (1) det (=82 + w?)
K(r):=—2 = z
Fall | det (-2 + 202)

Classical dynamics:

—3 < 0 < 11: Particle oscillates in left /right well with frequency w
o~ ty: Particle jumps to other well (tunneling)
ty <o < §: Particle oscillates in right/left well with frequency w

\

X, [a
— —
\__(_J i |
A .
Y \ >\
WA 'LL
e E—— \?— — = + b
A
G
g
=W

Lemma: (see tutorial)

Koy := lim K(r) does not dependent on t;

T—00

In addition, instanton and anti-instanton have same contribution.
For large 7 the contribution of one (anti-) instanton is given by

F2(1)Koe %0/ = \/ % e~ 2 Kge S0/h

e Contributions of n instantons

at fixed t,’
% e_% (KO e_SO/h)n
' 7h
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e Dilute instanton gas approximation

We assume that w|t; — t;| > 1. That is, instantons are well separated.
We give up the ordering of the t;’s by permuting them and correct by the factor 1/n!.

So now t; € [-F, 7]

Integration over all instances then provides the factor

1 3 n
il dt1 / dt, = -
n! | = T n!

2 2

e Collecting the result:
To (ia|e_"ﬁh| F a) contribute all odd n’s.

To (ia|e_”€m| + a) contribute all even n’s.

o
(£ale ™M Fa) = \ / TKO e_SO/h)
1,3,5,.

n= I8

Explicitly

—e_ 2 sinh (TK()G SO/h)

mh
” wf{i TK()e So/h)
TL

= e_wTT cosh (TKO e So/h)
7rh

(tale ™Hh| La) =

Il
! ﬁ

n=0, 27

,:;

20.3 The tunneling splitting

Let us consider

—rHh — jiteed
e M) = 5

1
2
= 1/ exp{——+TKoe SO/h}( :Fe_QTKO‘fSO/h)

Compare with spectral representation

mw —% ( TKoe S0/h T e~ Ko c*SO/h)

ale=Hh = o) = (q a)e—TEo/h (alp1)(e1] F a) o T(Bi-Eo/h | .
(e ) = (alga)pal 5 a)e 0/ (14 (LA T wor)

e Ground state:
1 /mw
2 _/_ 2,1
(alpol? = [—algo)l? ~ 54/ ==

Half of the probability of the single well ground state as expected, symmetric in +a

e Ground state energy:

Ficw
By~ — hE e S0/h

Non-perturbative correction to ground-state energy of single well!
There are perturbative corrections of O(h?) being larger but they cannot characterize the
tunneling splitting
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e Hirst exited state:

mw

1
(ale1)(p1] Fa) = :F§ h

Similar to ground state but anti-symmetric in a

e The tunneling splitting:

| By — Ey = 2hKoe=50/" |

a

Recall: So = / dxz v/2mV (x)
—a

e

Tutorial: Ky = im e T (7)

T—00
Obviously non-perturbative (in /) correction to energy splitting.
Any perturbative corrections would cancel each other in this difference

\ /;\\//x\

\ ~ f-

\\ - ‘;r\\\ | | /
Ea \ / | L /
y
b A\i__ - ] r \\ ;f
) /
\ ol |
\\\ Wl “i | {\1 /
\ i‘* / 1 \\_1 / 5\
~— 0\ 4 a b
1 mw mw
900/1(.’13) = 5 % (eﬁ(x—aﬂ + eﬁ(m_‘_a)z)
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