Lecture 4

15 Statistical mechanics revisited

The partition function being the central object

$$Z(\beta) := \operatorname{Tr}\left(e^{-\beta \hat{H}}\right), \qquad \beta := \frac{1}{k_B T}$$

- Free energy: $F := -\frac{1}{\beta} \ln Z$
- Mean energy: $E := \frac{1}{Z} \operatorname{Tr} \left(\hat{H} e^{-\beta \hat{H}} \right)$
- Entropy: $S := -\frac{\partial F}{\partial T} = k_B \ln Z + \text{Tr} \left(\hat{H} e^{-\beta \hat{H}} \right) = \frac{1}{T} (E F)$
- Euclidean propagator: $K_E(q'', q'; \tau) := \langle q'' | e^{-\tau \hat{H}\hbar} | q' \rangle$ is related to quantum propagator $K(q'', q'; t) = \langle q'' | e^{-it\hat{H}\hbar} | q' \rangle$ via Wick rotation $t \to -i\tau$ Euclidean time: $\tau = it$

$$\implies K_E(q'', q'; \tau) = K(q'', q'; -i\tau)$$

- Partion function: $Z(\beta) = \int dq \, K_E(q, q; \hbar \beta), \qquad \tau = \hbar \beta$
- Density matrix: $\rho_{\beta}(q'', q') := \langle q'' | e^{-\beta \hat{H}\hbar} | q' \rangle = K_E(q'', q'; \hbar \beta)$

16 Path integral representation of partition function

Remember Lie-Trotter formula for potentials bounded from below

$$e^{-\beta \hat{H}} = \lim_{N \to \infty} \left(e^{-\frac{\hat{P}^2}{2m} \frac{\beta}{N}} e^{-V(\hat{Q}) \frac{\beta}{N}} \right)^N$$

We again insert (N-1)-times resolution of unity and observe that

$$\langle x_j | e^{-\frac{\hat{p}^2}{2m}\frac{\beta}{N}} | x_{j-1} \rangle = \int dp \, \langle x_j | p \rangle \langle p | x_{j-1} \rangle \, e^{-\frac{p^2}{2m}\frac{\beta}{N}}$$

$$= \frac{1}{2\pi\hbar} \int dp \, e^{\frac{i}{\hbar}p(x_j - x_{j-1})} \, e^{-\frac{p^2}{2m}\frac{\beta}{N}}$$

$$= \sqrt{\frac{mN}{2\pi\hbar^2\beta}} \, \exp\left\{-\frac{m}{2\hbar^2} \frac{(\Delta x_j)^2}{\beta} N\right\}$$

Hence we arrive at

$$\rho_{\beta}(x'', x') = \prod_{j=1}^{N-1} \int dx_j \prod_{j=1}^{N} \left(\frac{mN}{2\pi\hbar^2 \beta} \right)^{1/2} \exp\left\{ -\frac{m}{2\hbar^2} \frac{(\Delta x_j)^2}{\beta} N - V(x_j) \frac{\beta}{N} \right\}$$

Taking the limit $N \to \infty$ provides us with a path integral representation of the density matrix / Euclidean propagator

30

• Euclidean propagator: $\beta = \tau/\hbar$ $\varepsilon := \frac{\tau}{N} = \frac{\hbar \beta}{N}$

$$K_{E}(x'', x'; \tau) = \rho_{\tau/\hbar}(x'', x')$$

$$= \lim_{N \to \infty} \prod_{j=1}^{N-1} \int dx_{j} \prod_{j=1}^{N} \left(\frac{m}{2\pi\hbar\varepsilon}\right)^{1/2} \exp\left\{-\frac{m}{2\hbar} \frac{(\Delta x_{j})^{2}}{\varepsilon} - \frac{1}{\hbar}V(x_{j})\varepsilon\right\}$$

$$= \int_{x'=x(0)}^{x''=x(\tau)} \mathcal{D}[x(\tau)] \exp\left\{-\frac{1}{\hbar} \int_{0}^{\tau} d\sigma \left(\frac{m}{2}\dot{x}^{2} + V(x)\right)\right\}$$

• Euclidean action

$$S_E[x(\tau)] := \int_0^{\tau} d\sigma \left(\frac{m}{2}\dot{x}^2 + V(x)\right)$$

Is formally the classical action for a particle in inverted potential U(x) = -V(x) !!!

• Partition function

$$Z(\beta) = \int dx \, \rho_{\beta}(x, x)$$
$$= \oint_{x(0)=x(\tau)} \mathcal{D}[x(\tau)] e^{-\frac{1}{\hbar} S_E[x(\tau)]}$$

Here integrate over all periodic paths with period $\tau = \hbar \beta$

$$Z(\beta) = \lim_{N \to \infty} \prod_{j=1}^{N} \int dx_j \prod_{j=1}^{N} \left(\frac{m}{2\pi\hbar\varepsilon} \right)^{1/2} \exp\left\{ -\frac{m}{2\hbar} \frac{(\Delta x_j)^2}{\varepsilon} - \frac{1}{\hbar} V(x_j)\varepsilon \right\}$$

Recall $\beta = N\varepsilon/\hbar$

Note: Here we have N integrations due to the trace !!!

17 The free particle partition function

The Euclidean propagator trivially follows from the quantum propagator through Wick rotation

$$K_E(x'', x'; \tau) = \langle x'' | e^{-\tau \hat{H/\hbar}} | x' \rangle = \sqrt{\frac{m}{2\pi\hbar\tau}} \exp\left\{ -\frac{m}{2\hbar} \frac{(x'' - x')^2}{\tau} \right\}$$

For partition function confine to a finite volume V in \mathbb{R}^3

$$Z_0(\beta) = \int_V d^3 \vec{x} \, K_E(\vec{x}, \vec{x}; \hbar \beta) = \left(\frac{m}{2\pi\hbar^2 \beta}\right)^{3/2} \int_V d^3 \vec{x} = V \left(\frac{m}{2\pi\hbar^2 \beta}\right)^{3/2}$$

18 The harmonic oscillator

$$\hat{H} = \frac{\hat{P}^2}{2m} + \frac{m}{2}\omega^2 \hat{Q}^2, \qquad \omega > 0.$$

Recall quantum result for $0 < \omega t < \pi$

$$\langle x''|\mathrm{e}^{-\mathrm{i}t\hat{H}/\hbar}|x'\rangle = \sqrt{\frac{m\omega}{2\pi\mathrm{i}\hbar\sin(\omega t)}}\exp\left\{\frac{\mathrm{i}}{\hbar}\frac{m\omega}{2\sin(\omega t)}\left[(x''^2 + x'^2)\cos(\omega t) - 2x''x'\right]\right\}$$

Wick rotation: $t = -i\tau \implies i\sin(\omega t) = i\sin(-i\omega\tau) = \sinh(\omega\tau)$, $\cos(\omega t) = \cosh(\omega\tau)$.

$$\rho_{\beta}(x'', x') = \sqrt{\frac{m\omega}{2\pi\hbar\sinh(\omega\tau)}} \exp\left\{-\frac{m\omega}{2\hbar\sinh(\omega\tau)} \left[(x''^2 + x'^2)\cosh(\omega\tau) - 2x''x' \right] \right\}$$

Partition function:

$$Z_{\omega}(\beta) = \int_{-\infty}^{\infty} dx \, \rho_{\beta}(x, x)$$

$$= \int_{-\infty}^{\infty} dx \, \sqrt{\frac{m\omega}{2\pi\hbar \sinh(\omega\tau)}} \exp\left\{-\frac{m\omega x^{2}}{\hbar \sinh(\omega\tau)} \underbrace{\left[\cosh(\omega\tau) - 1\right]}_{2\sinh^{2}\frac{\omega\tau}{2}}\right\}$$

$$= \sqrt{\frac{m\omega}{2\pi\hbar \sinh(\omega\tau)}} \left(\frac{\pi\hbar \sinh(\omega\tau)}{2m\omega \sinh^{2}\frac{\omega\tau}{2}}\right)^{1/2} = \frac{1}{2\sinh\frac{\omega\tau}{2}}$$

$$= \frac{1}{2\sinh\frac{\hbar\omega}{2}\beta} = \frac{e^{-\frac{\omega\tau}{2}}}{1 - e^{-\omega\tau}}$$

Remember:
$$\sum_{n=0}^{\infty} e^{-n\omega\tau} = \frac{1}{1 - e^{-\omega\tau}}$$

$$Z_{\omega}(\beta) = e^{-\frac{\omega\tau}{2}} \sum_{n=0}^{\infty} e^{-n\omega\tau} = \sum_{n=0}^{\infty} e^{-(n+\frac{1}{2})\omega\tau} = \sum_{n=0}^{\infty} e^{-(n+\frac{1}{2})\hbar\omega\beta} = \operatorname{Tr} e^{-\beta\hat{H}}$$

19 The Wigner-Kirkwood expansion

Consider the quasi-classical limit $\hbar \to 0$ of partition function

$$Z(\beta) = \oint \mathcal{D}[x(\sigma)] \exp\left\{-\frac{1}{\hbar} \int_0^{\hbar\beta} d\sigma \left(\frac{m}{2}\dot{x}^2(\sigma) + V(x(\sigma))\right)\right\}$$

$$= \oint \mathcal{D}[x(\sigma)] \exp\left\{-\frac{1}{\hbar} \int_0^{\beta} ds \,\hbar \left(\frac{m}{2\hbar^2}\dot{x}^2 + V(x)\right)\right\}$$

$$= \oint \mathcal{D}[x(s)] \exp\left\{-\int_0^{\beta} ds \left(\frac{m}{2\hbar^2}\dot{x}^2(s) + V(x(s))\right)\right\}$$

As only \hbar^2 shows up we expect

$$Z(\beta) = Z_{\rm cl}(\beta) + O(\hbar^2)$$

• Classical partition function

Let $h(p,q):=\frac{p^2}{2m}+V(q)$ be the classical Hamilton function representing Hamiltonian \hat{H}

$$Z_{\text{cl}}(\beta) = \int \frac{\mathrm{d}p \mathrm{d}q}{2\pi\hbar} \exp\left\{-\beta h(p,q)\right\}$$
$$= \frac{1}{2\pi\hbar} \int \mathrm{d}p \, \mathrm{e}^{-\beta p^2/2m} \int \mathrm{d}q \, \mathrm{e}^{-\beta V(q)}$$
$$= \sqrt{\frac{m}{2\pi\hbar^2 \beta}} \int \mathrm{d}x \, \mathrm{e}^{-\beta V(x)}$$

Classical parts contributing to path integral appear to come from constant paths x(s) = x.

Suggests expansion: $x(s) = x + \hbar q(s)$

 $S_E = \int_0^\beta \left(\frac{m}{2} \dot{q}^2 + V(x + \hbar q) \right)$ Euclidean action:

Partition function:

$$Z(\beta) = \int \mathrm{d}x \oint_{q'=0}^{q''=0} \mathcal{D}[q(s)] \exp\left\{-\int_0^\beta \mathrm{d}s \left(\frac{m}{2}\dot{q}^2 + V(x + \hbar q)\right)\right\}$$

Expansion of potential:

$$V(x + \hbar q) = V(x) + \hbar q V'(x) + \frac{1}{2} \hbar^2 q^2 V''(x) + O(\hbar^3)$$

= $V(x) - \frac{1}{2} \frac{V'^2(x)}{V''(x)} + \frac{1}{2} V''(x) \left(\hbar q + \frac{V'(x)}{V''(x)} \right)^2 + O(\hbar^3)$ (*)

• The lowest order: $V(x + \hbar q) \approx V(x)$

$$Z_{\rm cl}(\beta) = \int \mathrm{d}x \, \mathrm{e}^{-\beta V(x)} \underbrace{\oint_{q'=0}^{q''=0} \mathcal{D}[q(s)] \exp\left\{-\int_0^\beta \mathrm{d}s \, \frac{m}{2} \dot{q}^2\right\}}_{\text{free particle} = \sqrt{\frac{m}{2\pi\hbar^2\beta}}}$$

 \implies expected and known result

$$Z_{\rm cl}(\beta) = \sqrt{\frac{m}{2\pi\hbar^2\beta}} \int \mathrm{d}x \, \mathrm{e}^{-\beta V(x)}$$

• Next order: Set $\eta:=\hbar q+\frac{V'}{V''}$ as suggested by (*) All V's are now taken at x

$$Z(\beta) = \int \mathrm{d}x \, \mathrm{e}^{-\beta \left(V - \frac{1}{2} \frac{V'^2}{V''}\right)} \underbrace{\oint_{\eta' = \frac{V'}{V''}}^{\eta'' = \frac{V'}{V''}} \mathcal{D}[\eta(s)] \exp\left\{-\int_0^\beta \mathrm{d}s \, \frac{m}{2\hbar^2} \dot{\eta}^2 + \frac{1}{2} V'' \eta^2\right\}}_{\text{harmonic oscillator with } \omega^2 = \frac{V''}{m}}$$

$$Z(\beta) = \int \mathrm{d}x \, \mathrm{e}^{-\beta \left(V - \frac{1}{2} \frac{V'^2}{V''}\right)} \sqrt{\frac{m\omega}{2\pi\hbar \sinh(\omega\tau)}} \exp\left\{-\frac{m\omega\tilde{x}^2}{\hbar \sinh(\omega\tau)} \left(\cosh(\omega\tau) - 1\right)\right\}$$

where $\tilde{x} := \frac{V'}{V''}$ and $\omega \tau = \hbar \omega \beta$.

Homework problem 13:

$$\rho_{\beta}(x,x) = \frac{m}{2\pi\hbar^2\beta} e^{-\beta V(x)} \left[1 + \frac{\hbar^2\beta^2}{24m} \left(\beta V'^2(x) - 2V''(x) \right) + O(\hbar^4) \right]$$

and

$$Z(\beta) = \int \mathrm{d}x \, \rho_{\beta}(x, x) \approx \sqrt{\frac{m}{2\pi\hbar^{2}\beta}} \int \mathrm{d}x \, \mathrm{e}^{-\beta V_{\mathrm{eff}}(x)}$$

with effective potential

$$V_{\text{eff}}(x) = V(x) - \frac{\hbar^2 \beta}{24m} V''(x) + O(\hbar^4) = V(x) - \frac{\hbar^2 \beta^2}{24m} V'^2(x) + O(\hbar^4)$$

Similar in form to classical result but potential receives a quantum correction.

E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev. 40 (1932) 749.

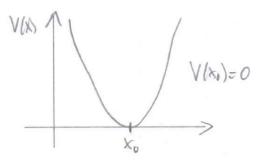
J.G. Kirkwood, Quantum Statistics of Almost Classical Assemblies, Phys. Rev. 44 (1933) 31.

20 The large τ behaviour

Or the low temperature limit $\beta = \tau/\hbar \to \infty$

20.1 Single-well potential

Let us assume a single well potential V with minimum at x_0 , $V(x_0) = 0$ for convenience



We consider the diagonal element of the Euclidean propagator

$$K_E(x_0, x_0, \tau) = \int_{x_0}^{x_0} \mathcal{D}[x] e^{-\frac{1}{\hbar}S_E[x]}$$
$$S_E[x] = \int_{-\pi/2}^{\tau/2} d\sigma \left[\frac{m}{2} \dot{x}^2 + V(x) \right]$$

• Classical path: $\overline{x}(\sigma)$ obeys Newton's equation for U(x) = -V(x)

$$m\ddot{\overline{x}} = V'(x)$$
 with $\overline{x}(\pm \frac{\tau}{2}) = x_0$, τ large

Hence it stays at x_0 forever at unstable balance $\overline{x}(\sigma) = x_0$ and $S[\overline{x}] \equiv S_0 = 0$.

• Quasi-classical approximation: $\omega^2 = \frac{1}{m}V''(x_0)$

$$\langle x_0 | e^{-\tau \hat{H}/\hbar} | x_0 \rangle \approx F_{\omega^2} e^{-S_0/\hbar} = \sqrt{\frac{m\omega}{2\pi\hbar \sinh(\omega\tau)}} = \sqrt{\frac{m\omega}{\pi\hbar}} \left(e^{\omega\tau} - e^{-\omega\tau} \right)^{-1/2}$$
$$= \sqrt{\frac{m\omega}{\pi\hbar}} e^{-\frac{\omega}{2}\tau} \left(1 - e^{-2\omega\tau} \right)^{-1/2}$$
$$\stackrel{\omega\tau \gg 1}{\approx} \sqrt{\frac{m\omega}{\pi\hbar}} e^{-\frac{\omega}{2}\tau} \left(1 + \frac{1}{2} e^{-2\omega\tau} + O(e^{-4\omega\tau}) \right)$$

• Spectral representation: $\hat{H} = \sum_n E_n |\varphi_n\rangle\langle\varphi_n|$

$$\langle x_0 | e^{-\tau \hat{H}/\hbar} | x_0 \rangle \overset{\omega \tau \gg 1}{\approx} e^{-E_0 \tau/\hbar} |\langle x_0 | \varphi_0 \rangle|^2$$

$$\times \left(1 + e^{-(E_1 - E_0)\tau/\hbar} \frac{|\langle x_0 | \varphi_1 \rangle|^2}{|\langle x_0 | \varphi_0 \rangle|^2} + e^{-(E_2 - E_0)\tau/\hbar} \frac{|\langle x_0 | \varphi_2 \rangle|^2}{|\langle x_0 | \varphi_0 \rangle|^2} + \cdots \right)$$

Note: In harmonic approximation $V(x_0 + x) = V(x_0 - x)$ and hence φ_1 is antisymmetric $\Rightarrow \varphi_1(x_0) = 0$ first correction term above vanishes

Conclusion:

$$E_0 \approx \frac{\hbar\omega}{2}$$
 $|\langle x_0|\varphi_0\rangle|^2 \approx \sqrt{\frac{m\omega}{\pi\hbar}}$ $E_2 - E_0 \approx 2\hbar\omega$ $|\langle x_0|\varphi_2\rangle|^2 \approx \frac{1}{2}\sqrt{\frac{m\omega}{\pi\hbar}}$

34

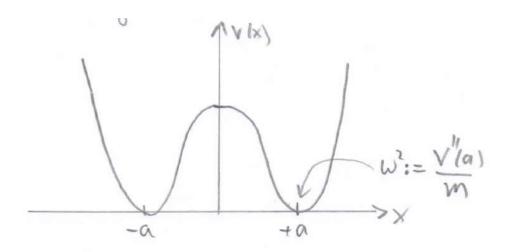
Remarks:

• Zero order approximation for anharmonic oscillator is harmonic

- For $x'' = x_0 = x'$, i.e. the classical ground state, no info is obtained on 1. exited state. One may consider $x'' \neq x'$ but that is difficult to handle
- No non-perturbative effects are considered in this approach as $S_0 = 0$. There may be local minima of action with $0 < S_0 < \infty$ being of order $e^{-S_0/\hbar}$ (Instantons !!!)

20.2 Double-well potential

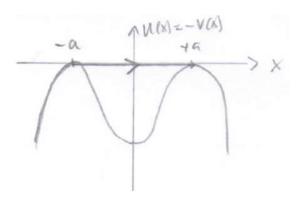
Now we assume a symmetric double-well potential of the typical form like $V(x) = \frac{\omega^2 m}{8a^2} (x^2 - a^2)^2$ with two local minima $V(\pm a) = 0$.



Idea: Consider Euclidean propagator in quasi-classical approximation and extract info on ground state and first excited state from the asymptotic behaviour for large τ with x' = -a and x'' = a.

• Classical paths:

$$\overline{x}(\pm \frac{\tau}{2}) = \pm a \quad \text{for} \quad \tau \to \infty$$



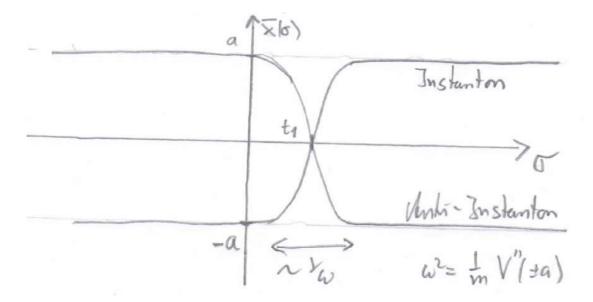
To move from -a to +a in a very long time $\tau \to \infty$ particle must have an energy $E \approx 0$

$$E = \frac{m}{2}\dot{\overline{x}}^2 + U(\overline{x}) = \frac{m}{2}\dot{\overline{x}}^2 - V(\overline{x}) = 0 \qquad \Longrightarrow \qquad \dot{\overline{x}} = \pm\sqrt{\frac{2V(\overline{x})}{m}}$$

Instanton (+) moves from left to right Anti-Instanton (-) moves from right to left

• Instanton: For most of the time particle sits at -a, at some instants t_1 it rolls from -a to +a and stays there for rest of time

35



In our example:

$$\dot{\overline{x}} = \pm \frac{\omega}{2a} (x^2 - a^2) \qquad \Longrightarrow \qquad \overline{x}_{t_1}(\sigma) = \pm a \tanh \left[\frac{\omega}{2} (\sigma - t_1) \right]$$

Translation invariance in time

$$\overline{x}_{t_1}(\sigma) = a \tanh \left[\pm \frac{\omega}{2} (\sigma - t_1) \right] = \overline{x}_0(\pm (\sigma - t_1))$$

• Classical action:

$$S_0 := \int_{-\tau/2}^{\tau/2} d\sigma \left(\frac{m \dot{x}^2}{2} + V(x) \right) = \int_{-\tau/2}^{\tau/2} d\sigma \, m \dot{x}^2 = \int_{-a}^{a} d\overline{x} \, m \dot{x}$$

 \Longrightarrow

$$S_0 = \int_{-a}^{a} \mathrm{d}x \sqrt{2mV(x)}$$

Potential barrier strength is independent of t_1 !

• Multi instantons:

Single (anti-) instanton solution is approximate solution for large τ becoming exact only in the limit $\tau \to \infty$.

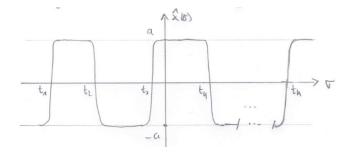
Further approximate solutions exist and consist of several instantons and anti-instantons. These are local minima of action.

• The *n*-instanton solution:

Let

$$-\frac{\tau}{2} < t_1 < t_2 < \dots < t_n < \frac{\tau}{2}$$

then the n-instanton solution is given by



$$\hat{x}_{t_1,t_2,\dots,t_n} := \overline{x}_0(\sigma - t_1) + \overline{x}_0(t_2 - \sigma) + \overline{x}_0(\sigma - t_3) + \dots + \overline{x}_0(\sigma - t_n)$$

n-Instanton action:

$$S[\hat{x}] = nS_0 + \text{exponentially small corrections}$$

Contributes factor $e^{-nS_0/\hbar}$ to Euclidean propagator. Is exponentially small but there is an infinite number of them as $n \to \infty$.

• Contribution of one instanton:

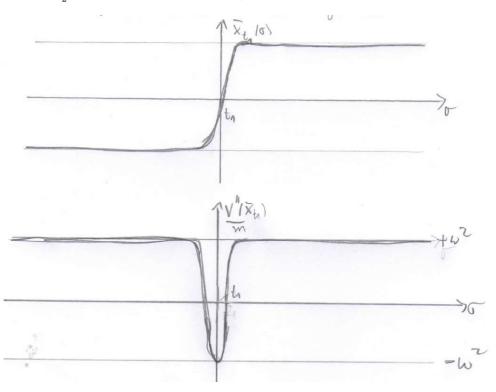
$$\langle a|\mathrm{e}^{- au\hat{H}/\hbar}|-a\rangle pprox F_{V''(\overline{\omega})}(au)\,\mathrm{e}^{-S_0/\hbar} = K(au)F_{\omega^2}(au)\,\mathrm{e}^{-S_0/\hbar}$$

where

$$K(\tau) := \frac{F_{\frac{V''(\overline{x})}{m}}(\tau)}{F_{\omega^2}(\tau)} = \sqrt{\frac{\det\left(-\partial_\sigma^2 + \omega^2\right)}{\det\left(-\partial_\sigma^2 + \frac{V''(\overline{x})}{m}\right)}}$$

Classical dynamics:

 $-\frac{\tau}{2} < \sigma < t_1$: Particle oscillates in left/right well with frequency ω $\sigma \approx t_1$: Particle jumps to other well (tunneling) $t_1 < \sigma < \frac{\tau}{2}$: Particle oscillates in right/left well with frequency ω



Lemma: (see tutorial)

$$K_0 := \lim_{\tau \to \infty} K(\tau)$$
 does not dependent on t_1

In addition, instanton and anti-instanton have same contribution. For large τ the contribution of one (anti-) instanton is given by

$$F_{\omega^2}(\tau)K_0\mathrm{e}^{-S_0/\hbar} \approx \sqrt{\frac{m\omega}{\pi\hbar}}\,\mathrm{e}^{-\frac{\omega\tau}{2}}K_0\,\mathrm{e}^{-S_0/\hbar}$$

\bullet Contributions of n instantons

at fixed t_n ?

$$\sqrt{\frac{m\omega}{\pi\hbar}} e^{-\frac{\omega\tau}{2}} \left(K_0 e^{-S_0/\hbar} \right)^n$$

• Dilute instanton gas approximation

We assume that $\omega |t_i - t_j| \gg 1$. That is, instantons are well separated.

We give up the ordering of the t_i 's by permuting them and correct by the factor 1/n!. So now $t_i \in [-\frac{\tau}{2}, \frac{\tau}{2}]$

Integration over all instances then provides the factor

$$\frac{1}{n!} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \mathrm{d}t_1 \cdots \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \mathrm{d}t_n = \frac{\tau^n}{n!}$$

• Collecting the result:

To $\langle \pm a | e^{-\tau \hat{H}\hbar} | \mp a \rangle$ contribute all odd n's.

To $\langle \pm a | e^{-\tau \hat{H}\hbar} | \pm a \rangle$ contribute all even n's.

Explicitly

$$\langle \pm a | e^{-\tau \hat{H}\hbar} | \mp a \rangle = \sum_{n=1,3,5,\dots}^{\infty} \sqrt{\frac{m\omega}{\pi\hbar}} e^{-\frac{\omega\tau}{2}} \frac{1}{n!} \left(\tau K_0 e^{-S_0/\hbar} \right)^n$$
$$= \sqrt{\frac{m\omega}{\pi\hbar}} e^{-\frac{\omega\tau}{2}} \sinh\left(\tau K_0 e^{-S_0/\hbar} \right)$$

$$\langle \pm a | e^{-\tau \hat{H}\hbar} | \pm a \rangle = \sum_{n=0,2,4,\dots}^{\infty} \sqrt{\frac{m\omega}{\pi\hbar}} e^{-\frac{\omega\tau}{2}} \frac{1}{n!} \left(\tau K_0 e^{-S_0/\hbar} \right)^n$$
$$= \sqrt{\frac{m\omega}{\pi\hbar}} e^{-\frac{\omega\tau}{2}} \cosh\left(\tau K_0 e^{-S_0/\hbar} \right)$$

20.3 The tunneling splitting

Let us consider

$$\langle a|e^{-\tau \hat{H}\hbar}| \mp a \rangle = \sqrt{\frac{m\omega}{\pi\hbar}} e^{-\frac{\omega\tau}{2}} \frac{1}{2} \left(e^{\tau K_0 e^{-S_0/\hbar}} \mp e^{-\tau K_0 e^{-S_0/\hbar}} \right)$$
$$= \frac{1}{2} \sqrt{\frac{m\omega}{\pi\hbar}} \exp \left\{ -\frac{\omega\tau}{2} + \tau K_0 e^{-S_0/\hbar} \right\} \left(1 \mp e^{-2\tau K_0 e^{-S_0/\hbar}} \right)$$

Compare with spectral representation

$$\langle a|e^{-\tau \hat{H}\hbar}| \mp a \rangle = \langle a|\varphi_0\rangle\langle\varphi_0| \mp a \rangle e^{-\tau E_0/\hbar} \left(1 + \frac{\langle a|\varphi_1\rangle\langle\varphi_1| \mp a \rangle}{\langle a|\varphi_0\rangle\langle\varphi_0| \mp a \rangle} e^{-\tau (E_1 - E_0/\hbar} + \cdots\right)$$

• Ground state:

$$|\langle a|\varphi_0\rangle|^2 = |\langle -a|\varphi_0\rangle|^2 \approx \frac{1}{2}\sqrt{\frac{m\omega}{\pi\hbar}}$$

Half of the probability of the single well ground state as expected, symmetric in $\pm a$

• Ground state energy:

$$E_0 \approx \frac{\hbar\omega}{2} - \hbar K_0 \mathrm{e}^{-S_0/\hbar}$$

Non-perturbative correction to ground-state energy of single well!

There are perturbative corrections of $O(\hbar^2)$ being larger but they cannot characterize the tunneling splitting

• First exited state:

$$\langle a|\varphi_1\rangle\langle\varphi_1|\mp a\rangle\approx\mp\frac{1}{2}\sqrt{\frac{m\omega}{\pi\hbar}}$$

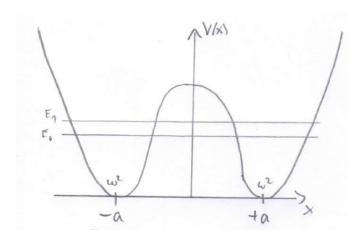
Similar to ground state but anti-symmetric in a

• The tunneling splitting:

$$E_1 - E_0 = 2\hbar K_0 e^{-S_0/\hbar}$$

 $S_0 = \int_{-a}^{a} \mathrm{d}x \sqrt{2mV(x)}$ Recall:

Tutorial: $K_0 = \sqrt{\frac{m\omega}{\pi\hbar}} \lim_{\tau \to \infty} e^{\omega\tau} \dot{\overline{x}}_0(\tau)$ Obviously non-perturbative (in \hbar) correction to energy splitting. Any perturbative corrections would cancel each other in this difference



$$\varphi_{0/1}(x) = \frac{1}{2} \sqrt{\frac{m\omega}{\pi\hbar}} \left(e^{\frac{m\omega}{2\hbar}(x-a)^2} \pm e^{\frac{m\omega}{2\hbar}(x+a)^2} \right)$$