Lecture 3

12 Change of variables
Basic idea: Map system with unknown solution into a system with known solution.

12.1 Classical mechanics

Action: :
m .
S(t) ::/ dr (5 q2 — V(q))
0
Hamilton’s characteristic function:

W(E) := S(t) + Bt = /Ot dr (% - V(g + E)

Change of coordinates: q — = q=: f(x)
Change of time: t — s, T+ 0 such that dr =: g(z)do g to be defined

§= j—z = ];((;”)) i with ()= %(.)

Consider
t m s m 12 T
wie)= [ ar (G&-v+E)= [ o (5 Ea g v —E))
Form invariance: () . g(z)
W(E) = /0 do (% 2~ V(x)+ E) = W(E)

with _ _

V() = f*)(V(g)~ E)+Va

E = ‘70 for convenience, arbitrary

Result: Problem (V, E) in (q, 1) = Problem (V, E) in (z,0)
Hamilton’s characteristic function is invariant under this ”form-invariance” transformation.

Example: Radial Kepler problem

L: classical angular momentum
a : coupling constant

Let — r=p® thatis  f(p)=p?, g(p)=f"(p)=4p*, dr=4p’do

= —4AEp? —da+V,
2mp? a+ W
Choose: ~ ~ m
Vo=4a=F L=2L, —4E = —w?
-~ L*  m 45,
e = a—
() =5~ atgw



Result:

Kepler problem (Newton) = Harmonic oscillator (Hooke)
(L,a, F) = (L,w, E)
Swapping between energy and coupling constants, rescaling of angular momentum
4o =F, W= —% (E < 0 for bound states), L=2L

This duality between Kepler and harmonic oscillator was already known to Newton and
Hooke.
There exists a more general duality between power-law potentials

L? N L?

_ b —
V(r) + A1 and Vip) = Smp? + Xpp for (a+2)(b+2) =4

T 2mr?

See, e.g., https://doi.org/10.3390/sym13030409 for details.

12.2 Quantum mechanics
Schrodinger eq. (SE):

(30 + Vi) = B) o) =0
Let as before q=: f(x) and now o(q) =: h(z)p(x).
Obviously (Homework problem 8): f/(z) := 0, f(z) etc.

h N’ f! — hf" R — fUH
2 — .
(aq) ¢ = FVOH + 113 SOI + 113 ¥
Form invariance: 20 ! = hf" '-term vanishes
h/ 1 f//

1 ! _ — !
FTap nh =5l f (4 const = 0) = h(z) =/ f'(z)

Plug into SE:

i <_h_2 " h_Zflh// _ f//hl

h (o
i 2m 2m hf' 90) +F<f2(V_E))S0:O

That is

Noting

, 1 g1 o LN 11
Yap h—z—f/<ﬁf ‘§m>—§<ﬁ—§f,3/z>

! 1 f/// 1 f//2

h 2 f 4 f/2
X N f// 1 f/// 1 f//2 1 <f//>2 1 (f/// 3 f//2>
A AN A (A 25 L L

h h f/ - 2 f/ 4 f/2 2 f/ f/ 2 f/2
With Schwarz derivative: )
oI o3
sn@ =1 -3 (%)
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we arrive at

2m

[_ 1’ (aﬁ + %(Sf)(m)) + /(@) (V(f (@) — E)] o) =0.

(ﬁz - E) o(z) = <—%ag F V() - E) o(z) =0

where

- ~ 2
Vi) = 20 (V@) B) + T 1 (S))
~—_——

classical part

quantum part

E =W for convenience, arbitrary

Result: Problem (V, E,, ¢) = Problem (V, E, ¢) with

nlq) = f'(x) on(z)
By = {BIE(B) =T}

Remark: ¢, in general not normalized as

| / Al = / dz () f' (2)¢2 ()

Example: Coulomb problem

K0(0+1)  a
V0 = 7
Again we let r=pt=flp), — f =20, f'=2, f"=0.
2
Schwarz derivative: — (Sf)(p) = —32 (%}) = —%z

New eff. potential:

i RA(+1) N
1% L i SNy AR -/ I /A .
(p) 4 < 2m,04 p2 +Wo m 2

3 -
= I <452 +40+ Z) —da—4Ep* + 7

When welet  (+3:=2((+3) — f=20+L1 — ((l+1)=4C+40+3
we arrive at the harmonic oscillator problem

_ 2
V(p) h

~ m

= U0+1) + —w?p?
2me(—l—)—i-pr
with  (=204+1, Vy=E=4a, w?=-3E

m

In QM the Coulomb and harmonic oscillator (HO) problem are quasi-dual to each other.
Quasi-dual because an integer ¢ € Ny results in half-odd integers /.

However, both are simply parameters in the radial SE and hence this is not really a re-
striction. We treat them as real numbers and only in the end we may imply the angular
momentum quantisation.

Comment;:

It is known that the WKB approximation provides the exact spectrum for the 1-dim. HO
but not for the radial HO or Coulomb problem. Only upon the ad-hoc Langer modification,
where the replacement £(¢+1) — (£+1)? is imposed. Recall the classical relation L? = 4L?
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and impose Langer modification on both sides (¢ + $)? = 4(¢+ $)%. This is precisely the
exact relation ¢ = 20 + % found above. See Homework problem 9.

Energy eigenvalues:
We know the spectrum for the radial HO

= ~ 3 N
Enz(E)=M<2n+€+§> = hw(2n + 20+ 2) = T = 4a
L 8En£

< > 271—!—2/—1—2) m

2

2h2 (n+€+1)

= FEy= Coulomb specrum!!!

Remarks:
e For the energy eigenfunctions see tutorial exercise 9
e The quantum case is almost identical to the classical case

e change of time in classical system <= change of wave function in QM.
Recall also the classical time transformation 0, = %(9(, = #6‘7' This transforms into

. h . - .
(9, — H)o = (0, ~ H)p =0 with  6(0,7) = h(a)p(z,0)
e How does this show up in path integrals?

12.3 Change of variables in path integrals

Recall Green’s function and promotor

G(—w . E) _ l/oo dt <f//|e—(i/h)(H—E)t|f/>

= =
@) =1 [
:%/ dt Pp(2”,2';t)
0

with promotor o
PE(ZL‘”, 1‘/; t) — <I_//|e—%(H—E)t|$/>

Let’s look at the spectral representation (for simplicity purely discrete spectrum)

q q E Z ¢ ” (b* ; f’(l’//)f/(x/) g‘r_”)Ef*((;,)) _ h(at”)h(a:')é(x”,x’;E)

Proof: Recall relation (H—E)qh(x)
and  (H—E),G(¢,dE)=0(q—d) =

(H-E),  with  h(z) = /f(z)

8(g—4¢') = (H-E)g h(2)h(2")G (z,2"; E) =

This is correct as ¢ = f(x).

Implies a relation for the integrated promotors:

i (o]
G(q",q;E) :ﬁ/o dt Pr(q”,q';t)

= V(" f' ()G (x 2 E) f/(x//)fl(xl)/OoodSPE(mll7x/;8)
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Both promotors exhibit a path integral representation

rutan = [ Do {3 [ar (B - vio+ £)}

a'=q(0)
N rx! =x(t) i [ m - ~
Pa(x" 2'5s) = / Dlz(0)] exp —/ do (—:i:2 —V(z)+ E)
x'=x(0) h Jo 2
They are related via the point transformation g = f(x).

Questions:

e How shall we implement the classical relation dr = f’ 2(x)da?
A priory, the parameters ¢t and s are independent in above derivation.

e How are the potentials and energies related?
Can we recover the same relations as in the classical case and/or for the SE?

Point transformation in time-sliced path integrals
We start with P (¢”,¢';t) and hope to arrive more or less at Pj (2", 2';s).

N—-1 N
PE(q” q/.t): lim H /dq,H( m )1/2 Qi/MW;(E)
T N=voo L szl omihe

with Ag 2
W (E) = %% ~ V(gj)e + Ee
The point transformation ¢ = f(x) implies: Ag; = q5 — ¢j—1 = f(z) — f(zj—1) =
fi = fia
Tutorial Exercise 8: (Ag;)? = f! i 1(Ax)? + (if]’.’2 — %f;”f;) (Azj)t + O((Ax;)%)

Recall the rule

_a 2, b4 _ a2
/d:ve Szt :/die Tty 20’+O(0

im ]y im 7 (1
(qu) _ J’J 1(ij)2_|_ jlj—1 ( n2 ij) (Aa:j)4

With

2h5 2he 2he 477

1 £
fJ J-1

we have

B - m B . 1 f//2 1 f/_//f]{ B f/// 3]‘.”2 B im
I Tae T (zw‘a 7 ) =1 (f_’_§F> = i)

Hence we may approximate the higher order term as follows

N R i B O | e e

—

where



We arrive at the same result as via SE.
Looking at the measure

N-1 N N-1 N m 1/2
/ _ gl
, dg; H 271_17# = 1;[ du; fi 1;[ (27TiﬁO’f/-fj/- 1>

Jj=1 Jj=1

Result

) 12 -
N S (i/mW; (E)
Pl 4:1) ' f!(x A}gnoo H /dx] H 2771710) ¢ 7

:Isé(z”,z’;s) s=No

Compare with previous result
i [eS]
G(d". ¢ E) = 7_1/ dt Pp(q”,q';t)
0

T ho \///71'/ CRLAL)
LV [ ds Pyt
Obviously we cannot do the t-integral in the second line as we have no relation between t

and s
However, the last line suggests the formal substitution

ndt — f/(ZE//)f/(LE/) dS” .
In essence, we can reproduce the result of the SE also within the path integral. However,
one needs to consider the Green’s function and the integrated promotors represented by a
path integral.
13 Path integration for the Coulomb problem

Here we will apply the above change of variables to the Coulomb problem represented by
potential

V(r):—§, r=1.

13.1 Propagator and angular integration

Obviously the propagator is given via below path integral representation

7' =7(t) i t m - a
K™, 7t :/ DIr(r exp{—/ dr (=i + = }
(.7 1) o ey | dar(57+7)
. 3. m \32 (i/ms
7]\}E>noo H /d 27r1h€> ¢ !

with Sj = 2—E(AFI)2 + %E
J
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We note that due to it spherical symmetry we can apply the decomposition in polar coor-
dinates as discussed in section 10 to arrive at

(7" s ZKM r';t) ZYZM L)Y (0 @)

pn=—=

with radial path integral

P2 — e
where (recall 7§ = rjr;_1)

. 22

m i m % mr;

kolr: r: 1) = — =%+ —e| oI -
4(7‘41,7"(/ 1’5) ihe Tiri—1 exp{h |:2€ (7" +7"] 1) + fj :|} Z“'i ( ihe

13.2 The radial Green’s function

Similar to the propagator, the Green’s function decomposes into a radial and angular part

(7", 7', E) = ZGM r'; E) ZYeM LY, ¢)
pn=—r

with radial Green’s function given by
Ge(r",7';E) = %/ dt Ko(r" v t) e/MEL = %/ dt Ppe(r”,1'; t)
0 0

Here the radial promotor is expressed by the formal radial path integral

r’=r(t) . 9
Pry(r",r'st) = / Dlr(r)] exp{;i/ dr (ZL 2 e+ DA + % + E)}

- 2mr?
Now we perform the point transformation r = p?, that is, f(p) = p?. This implies
f'(p) =2p, dr = 4p*do or  e=4pjpj_10
The new effective potential is given by (cf. example in section 11.2)

- R2 - -
V(p) = L0+1)+ E</.)2,02

2mp?

Hence we arrive at

Go(r" v4p”p/ ds Pgy(p", 05 9)

with
o' =x(t)

Padl i = [ Diteles {3 [ a0 (570 +E) |

~ (((+ 1R m
V(p) = 2mp2 + EWQPQ )

and
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which is the radial harmonic oscillator path integral plus a constant FE = 4a.
This we already solved in section 10.3 with the result

- 1 mw imw, 9 9 mwp’ p ~ ,
P p:s) = ldbeaar N/, ’ t I (i/h)4as
ACEVAR) V' ihsinws PR 2 (P 4 p7) cotws t+5 \ihsinws )
The remaining s integration can explicitly be performed resulting in

Go(r", 7", E) :%\/4/7”/7’ / ds Ppy(p". /s 5)

0
_im T —iv+1) W
T RrrR2T(20+2) 0w

(~2ikry )M, o1 (~2ikr )

Here W and M are the linearly independent Whittaker functions (confluent hypergeometric
function) and we have set
h%k h2k?
L

ry =max(r’,7"), r_=min(r",7"), « — =5

Note that ImE > 0 < Imk > 0 and mw = —2ikk and E = 4a = iv = E/2hw.
For the experts, use below formula with ¢ = iws and = ¢+ % fora >b

> 1 tvab (3 +p—
/ dq _— e‘%(d—}—b)tCothq e2Vq :[2;1, i a — (2 + 1% V) W,,,H(at)]\f%#(bt)
0 sinh ¢ sinh ¢ tvVabl'(2u + 1)

Homework: Derive the Coulomb spectrum from the poles of Gy(r”,r'; E).
For more general duality relations see: https://doi.org/10.1088/1751-8121/ad213d

14 Particle confined on a ring

Consider a particle of mass m > 0 moving around a ring S' of radius R > 0.
Hilbert space:  H:= L?(S'), S ={p|0<p<2r}
-

Hamiltonian: H = om = _mﬁ_ﬁ

1 .
Eigenfunctions: = ——e% = (g +2m), leZ
g U(p) N Y(p + 2m)
h2¢?

Ei lues: Ey= ——
igenvalues (=5

Propagator:
Use spectral representation (also called angular momentum representation)

Kool 1) = i 1 i h2£2f (o)
vt = o7 P\ " hamee (€
{=—00

Jacobi’s Theta function: See Homework 3 Problem 11

O(z|T) == Zexp {i7r€27' + 27ilz} zeC, Im7t>0.
LEL
U /
— t
Letz::SDQﬂLp , T = BTy recall Imm >0

1 <P” _ s0/

B ht
2mR?2
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From homework:

i 1
O(z|r) = \/Ie_‘mz/T@ <E ——)
T T| T
Propagator:

1 [2mR2xi o — ¢ \? [ 2mR2m z| 1
K Vi / [ - 3 I
(1) 2m “nt P { . ( 2 —ht © T| T

mR? imR? N n? nz
<p 4 — o — E xXp ¢ —im— + 27—
27Tihtep{h 2t ( )} ep{ T 17}

nez

Let us look into the exponent in more detail

imR?, , ,o . o2mR%m . " — ¢ 2mR*w
Z o 2 anatr
h 2t (¢ ’62) T e —ht
imR
— %W;t [(Lp” _ ‘P,)Q _ 2n(ap” _ 301)27_‘_ + 47‘(‘277,2]
. ,RQ
= %% (¢ —¢' — 27m)2

Propagator in winding number representation

[mR2 2
K(p ;:tht { . mR o' -+ 27Tn)2}

—ZKgagat

nez

with

'mR2 i mR2
K¢ ¢ 1) o= g e {ﬁ 5 (¢”—s@’+2m)2}

Distance " — 2’ between initial and final point
2 — 2’ =R — ¢ +2mn) with n full cycles
Like free particle on line with dx = Rdy

K " S t) =R m lm " N2
n(@", ¢ t) Py exp{mt(ﬂf ')
Remarks:

e S' is multiple connected space

e Winding number n classifies all paths within one homotopic class

e Paths belonging to different homotopic class cannot be deformed into each other

e K, is partial propagator for homotypic class n

Laidlaw/DeWitt (1971) and Dowker (1972):
Propagator on multiple connected space M

K(2" 2'5t) ZX Ko (2" 2/ t)

a: Represents homotopy class of paths from 2’ to z”
x(«): Unitarity representation of fundamental homotopy group of M, m1(M)

Our example: S' =R/Z

R: Universal covering space

Z: Fundamental group

Unitary reps.: X (n) = e i0n 0 €[0,2n[  arbitrary
Our derivation resulted in trivial reps. 6 = 0 where x(¥(n) = 1.
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Using a non-trivial reps.: 0 #0

Let
Ko@) = e MKy (¢", ¢ t)
nez
R2 1m]-?2
—16n " / 2
= — 2
7% V orint © {h o ¥ 90+7m)}

Tutorial Excercise 11

2
—Z— { lwt}ei@—;ﬂ)w—w
2mR2

LeZ

That is, the spectral properties now read

s 5 )" 1 . 5
Be = 2mR2 <€ B %) ) Ye(p) = oz exp {1 <€ - %> 90}

They still obey the same Schrédinger eq.

n? 02

2mR2 6¢2 Z,/Jg( )= Ef’(/}f(w) :

So what is the physical meaning of §7 = AB-effect
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