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Lecture 1

1 Concepts of classical mechanics

Let’s consider a non-relativistic point-like particle of mass m > 0 moving along the real line
R under the influence of an external force characterised by potential V.
e Lagrangian:

. m .
L(d,q) :ZEqQ—V(q), g€R

e Action: 0
Sz (t)] = /t dt L(a(t), 2(t)

Is a functional of paths which start at ¢, := z(t,) and end at gy := z(tp).
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e Hamilton’s principle:
Classical dynamics follows paths x(t) along which the action is stationary
65[z(t)]
ik S o}
dx(t)

e FEuler-Lagrange equation: Follows from Hamilton’s principle

Characterises the dynamics in configuration space ¢ € R

e Hamilton function: The energy of the system expressed in terms of coordinates and
momenta

oL
with canonical momentum p := — and ¢ = ¢(p, q) [Legendre transformation]

94
e Hamilton’s equations:
_ 9H(p,q) p= 2HP9)
op 7 dq

Characterises the dynamics in phase space (p,q) € R.

e Poisson brackets:
Let F(p,q) and G(p, q) be phase-space functions then

OF 0G  0G OF

F.G = - — =—{G,F
{ ) }PB aq ap aq 8p { ) }PB
In particular we have {q,p}pg = 1.
e General dynamics for phase-space functions:
. OF
F(p7Q*t) = {F7H}PB+ E

Hamilton function H acts as generator of the dynamics (time evolution)



2 Canonical quantisation

Heisenberg (1925): Matrizenmechnik (Heisenberg picture)
Schrodinger (1926): Wellenmechanik (Schrodinger picture)

Canonical quantisation:
Phase space R? — Hilbert space H = L*(R)
Phase space functions ¥ — Operators acting on H, F:H—>H
Poisson bracket {F,G}py — Commutator %[F,G‘] ce.g. [Q,P] =ih
Quantum dynamics: Heisenberg picture
OF

P [pa]+ 5

When F is not explicitly depending on time ¢ then this integrates to
B(t) = er Mt F(0)e w11
Proof: d%ﬁ = %H’F - %Fﬁ = %[F,Iﬂ
Expectation values: For system in pure state |¢) € H
(F)y = WD) = @ler " FO)e 7' |y) = (ws(H|FO)lws (1)

with o
[hg(t)) = e n ) Schrodinger picture

Schrodinger equation: Schrodinger picture
. d . A
ihy [0s(t)) = Hgs(t)) = H(P, Q) [¥s(1))

Ordering problems may occur in H(P, Q)

g-representation: ¥g(q,t) :=){q|¢s(t)) where <‘1‘Q = q{ql, <q|1S = (_iha%) {al -
P 1o}
ih=sws(a.1) = H (—iha—q7q> Us(q,t)

For standard systems H(p,q) = % + V(q) the quantum Hamiltonian in g-repreesentation
reads

R? 92
=———+4V
Integration of Schrodinger equation results in

bs(q,t) = (gle”#7|)

Insert complete set of Q—eigenstates

“+o00 R
/ dao |40) (ao0] = 1

leads us to oo
Vs(g,t) Z/ dao (gle#""|q0) ¥s(q0,0)
—00 —

Integral kernel

The integral kernel represents the transition amplitude for the quantum particle starting in
qo at t = 0 to arrive at ¢ after time ¢ > 0. It is also called the quantum propagator.



3 The propagator

Is the key object of Feynman’s path integral

Definition: _

K(2",2/5t) := (@"|T(8)|a) = («"[e" 77 |a)

g-representation of the time evolution U(t) 1= exp {—%ﬁt}
Properties:

e Unitarity: Uty )y =1=0@)0% (1)

e Convolution: Ut —7)U(r — to) = U(t — to)

e Spectral representation: Assume H |tn) = Epltp,), pure point spectrum

O(t) = e 780y, (i

K(a",a'5t) = > e hnty, @) (o)

n

e Green function

G(FE):= 55’ E € C\spec (H)

G(a" 2/ E) = (2"|G(E)|2')

= / dt%(x"|e7%(ﬁfE)t\m’>, ImE >0
0

P
:7—1/0 dtenP K (2" 2 t)

i oo
= —/ dt Pe(2”,2';t)
hJo
with promotor o
PE(JTH,.Z’I; t) — <x//‘e—%(H—E)t‘x/>

Will be relevant at later stage when changing space and time variables for explicit
solutions.

4 Some historical background

N. Wiener 1923: First ”path integral” to describe statistical properties of Brownian motion.

G. Wenzel 1924: In connection with quantum optics introduces a ”sum of paths” weighted
by phase factors.

P.A.M. Dirac 1933: His basic argument is as follows. Canonical quantisation is based
on Hamilton’s theory of classical mechanics. The alternative based on the Lagrangian is
(believed to be) more fundamental.

So he comes up with the question ”What role plays the Lagrangian in quantum mechanics?
His basic idea is that the transition amplitude

Ct
(s ()]s (0)) ” corresponds to” exp {%/ dTL(q,q)}
0



Recall double slit experiment:

HII

——
N
T

‘ St
Photons: Wave amplitude arriving at a given position on screen (interference) is given by
~ elfl ikl kE=2m/X, wave number

FElectrons: Show same interference pattern, so wave amplitude arriving at a given position
on screen is also a sum of phases

~ P+ Py, passage thru slit 1 and 2, respectively

Taking the double slit away = slits everywhere

S Ol

Interpretation/assumption: Electron (wave) takes all paths simultaneously. FEach path
contributes with same amplitude and a path-dependent phase ®[z(t)] to the transition
amplitude

K(2" 2';t) = E [z (1))
paths ()
z'=x(0)
" =x(T)

R. Feynman 1948: In essence, replaced Dirac’s ”corresponds to” by an equal sign.

” All paths contribute with same amplitude and a phase proportional to the action”

Blir(7)] = const. exp {%S[I(T)]}

Big Problem: How this sum over paths shall be interpreted or even be performed!?

= Path Integral, Functional Integral, Sum over Histories



5 Derivation of Feynman’s path integral

Consider propagator: (No more ”hats” on operators)

K(a",a'31) = (o F12)
Divide time interval into N slices ¢ := T /N
e_%Ht = e_ihHse_ihH6 .. -e_iEHE
Insert N — 1-times resolution of unity
“+oo
/ dx,\@)(z’]\:l, j:1,2,...,N—1
—00
and take limit N — oo
N
K(x" 2';t) = zx}gnoo dey_1--- /dxl 1_[1K(xj,xj_1;€) ,
J:

with 2’ = xg, ” = zy and short-time propagator

i P2
K(zj,zj_1;¢) = <a:j|e_ﬁH5|xj_1> , with H=T+V = 5 +V(Q)
m

Lie-Trotter formula: Exercise 1
e nle = o TeemnVe (14+0(e%)

Proof: e~ #¢ = 1—H(T+V)e+0(e?) = (1-4Te)(1-1+Ve)(14+0(e?)) = e ileenVe (1+0(c?)).
See also Baker-Campbell-Hausdorff or Zassenhaus formula: ¢®("+V) = e7e?V (1 4+ 0(42))

On short time scale ¢ — 0 we can commute 7" and V with error of O(¢?) = Classical
behaviour

Short time propagator:
K (zj,mj158) o (w5le™n = |myy)e #0007 o (om0 o[y g o7V (e

Free Particle Propagator: Exercise 2

wo—iP2y o[ m im(z" —a')?)
(e 1) =\ o eXp{h 21

Hence
i, mimd?
(xjle™n flai_q) = 2ﬂ'ihseh =, Azj:=xj —xj_1
Result:
. N 2
P m \N/2 i m [ Ax;
K atsn) = gim (o) [anve [anes 3% E(T Vi)

)2
Note the appearance of the short-time action S; := %% —V(zj-1)e
Formal expressions which are often used

z(t)=z"

"o s LS[x(m)] r=e i ;
K(2",2';t) = Dx(T)en = Dz(1) exps = | drL(i,x)
z(0)=z’ z(0)=a’ h 0



Interpretation:
In between kicks by potential e=(/MV(Z;)¢ the system moves freely for a very short time e.

x!‘x-\

¥ He

Severe problems:

Dx(7) is NOT a measure !!! = Wiener measure.
Only the discrete time formalism is well-defined but..

The limit N — oo may not exist in general.
Feynman could solve only the free particle and harmonic oscillator problem.
A priori in cartesian coordinates.

The Coulomb problem (once being the most important success of quantum mechanic)
could not be solved for a long time

H-atom formally solved in 1979/1982

Early successes:

In QFT and in particular QED
(Nobel Prize in Physics 1965 to Sin-Itiro Tomonaga, Julian Schwinger, Richard P.
Feynman)

Perturbation theory (Feynman diagrams)
Elimination of oscillators

Renormalization group

6 Rules for explicit calculations

Regularisation of oscillatory integrals, for example, via m — m + in and let n 0 in

the end
imAz?
exp J can be integrated
2he

Feynman original proposed i — A(1 — 1d) with ¢ \, 0.
Alternative is a Wick rotation ¢t — —ifh

o~ (/W HE _y —BH

Leads to the well-defined Wiener measure in limit N — co (stochastic processes).



e All terms of order O(¢'*+?%), § > 0, may be ignored in short-time action

imAx?

o Az; = O(¢/?) due to the "Gaussian” weight / Ste— eXP {WL} See Homework

L mg=2?/e _ (EN" 9 — 1)1
\/%/dxx e 7<2> (2n — 1!

from which one can deduce

[azerztatet = [agemtteifow

Therefore we can approximate

6 @Ax? +/3Am§ - TALL‘? L3 _
T2 e 5 2 € 4m?
Here a = —12’—%‘ and b = % This is needed when changing variables (e.g. polar

coordinates)

e Vector potentials: B=VxA

In short-time notation [ d¢ A AZ; ff(:%}) Hence choice of mid-point aN?j becomes
relevant as AZ; = O(/e).

e Scalar potentials:
V(zj)e =V(vjo1+ Azj)e =V(xj_1)e + V'(z;) Azje +0(e?)
N——

O(e3/2)
~V(rj_1)e = V(Tj)e = V(L)

with Z; := L(z; + z;_1) and &; := /z;T;_7 etc.

7 The free particle propagator

In tutorial we show (w/o path integrals)

ip? m im(z" —a')?
" /'t = /" _hg’mt / e R
Ko(z",2';t) (z"]e |2") Gy exp e ;

Calculating the path integral

m N/2 i N m Ax
Ko(a",2';t) = lim (27rih€> /deN—l"'/dxleXp ﬁZET

N—o0

Obviously
Ko(z",2';t) = lim [ dey_q--- /d$1K0($N,$N_1; g) - Ko(w1,To;€)
N—o0
Integration and limit trivial with the help of homework problem 5 resulting in above finite

time expression.
In D dimension this reads

, \D/2 im
Kol(2" ,—_»/;t _ ( m ) e g2l
@75 = (5am) P A )

8




Consider the classical action of free particle:

With
" — %
T = = const.
we have . . o
Sa(x”,2';t) == S[za(r)] = / dTEicl(T) = m (@ — )
0 2 2 t
Consider the expression
D?Saq (2", 2';t) _om
ox" 0x’ ot
This allows us to write
i 02Sq(x”, a';t) i
Ko(z",z'5t) = h ovar P ﬁScl(l’”?w';f) .

In D dimension it is given by

.\ D/2 209 (7 - .
i 028 (2", 25 t) i

Ko@) = (57 ) et (Do) e { s in)
2rh 0xll0, h

. ST
with &' = (x1,29,...,Za,...,ZD).

This is known under the name of VanVleck-Pauli-Morette formula.
Is exact for quadratic systems.
Is quasi-classical approximation for general systems.

8 Phase-space path integrals
Recall
N
K" 2:t) = li dey_1--- | d K(xi,z;_1;
(.’L’ y L3 ) Ngnoo ITN-1 xll_ll (xjaxj 175)7
J:
with short-time propagator
_ip? —iy(Q)
K(xj,7j-15€) = (wjle”nam e ™m0 ).
Inserting unity in form of momentum eigenstates: Plp;) = pjlp;)

1= / dp; p;) 5]
— 00

leads us to

. 2
K(xj,z5-1;¢) —/ dpj (zj|ps)(pslei-1) eXP{—ﬁ (;—;n + V(%’—l)) €}

1 & T D i [ p?
=g et el (o)<}
Az, P?
m/ dpfexp{ ( i g V) |

Phase-space path integral:

; 2
K(z" o';t) = hm H/ deH/ Hexp{%( %—%—V(azj_l)> 5}



Formal expression

.t
K(z" 2';t) = /DmDp exp{%/ dr (p-?'T—H(p,m))}
0
Remarks:

¢ In phase space paths are not continuous and thus this expression has even more severe
problems.

e There is no well-defined mathematical counterpart available.

e Coherent states path integral should be used instead.
Coherent state: alz) = z|z), z € C, a:= \%(Q +iP), 2= (q+ip)V2.
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