5. Homework in "Path Integrals"

Problem 14: Over-completeness of coherent states

Proof the over-completeness of the fermion coherent states,

$$\langle \psi | \psi' \rangle = \exp \left\{ -\frac{1}{2} \overline{\psi} \psi - \frac{1}{2} \overline{\psi'} \psi' + \overline{\psi} \psi' \right\}.$$

Hint: ψ and f^{\dagger} anti-commute and therefore $\psi|1\rangle = -|1\rangle\psi$ but $\psi|0\rangle = |0\rangle\psi$.

Problem 15: Time evolution of boson and fermion coherent states

Let a, a^{\dagger} and f, f^{\dagger} be the boson and fermion annihilation and creation operators, respectively. For $H_B := \hbar \omega a^{\dagger} a$ and $H_F := \hbar \omega f^{\dagger} f$ show that

$$\langle z|e^{-iH_Bt/\hbar}|z'\rangle = \exp\left\{-\frac{1}{2}|z|^2 - \frac{1}{2}|z'|^2 + e^{-i\omega t}z^*z'\right\},$$

$$\langle \psi | e^{-iH_F t/\hbar} | \psi' \rangle = \exp \left\{ -\frac{1}{2} \overline{\psi} \psi - \frac{1}{2} \overline{\psi'} \psi' + e^{-i\omega t} \overline{\psi} \psi' \right\}.$$

Problem 16: The pseudoclassical harmonic oscillator

Consider the pseudoclassical Lagrangian

$$L(\dot{x}, x, \dot{\overline{\psi}}, \overline{\psi}, \dot{\psi}, \psi) = \frac{1}{2}\dot{x}^2 - \frac{1}{2}\omega^2 x^2 + \frac{\mathrm{i}}{2}\left(\overline{\psi}\dot{\psi} - \dot{\overline{\psi}}\psi\right) - \omega\overline{\psi}\psi$$

where x represents a bosonic (even Grassmann number) and $\overline{\psi}$, ψ are fermionic (odd Grassmann numbers) degrees of freedom.

- a) Derive the pseudoclassical equations of motion for $x, \overline{\psi}$ and ψ .
- b) Following the Ansatz $x(t) = x_B(t) + q(t)\overline{\psi}_0\psi_0$ made in Exercise 14, derive the solutions of the equations of motion for initial conditions $x(0) = x_0 + q_0\overline{\psi}_0\psi_0$ and $\dot{x} = \dot{x}_0 + \dot{q}_0\overline{\psi}_0\psi_0$, where $\overline{\psi}(0) = \overline{\psi}_0$, $\psi(0) = \psi_0$.