
4. Homework in ”Path Integrals”

Problem 12: Winding number representation of idealised Aharonov-Bohm setup

The eigenfunctions and eigenvalues of a charged particle of mass m > 0 and electric charge

e moving on a ring of radius R > 0 around a solenoid with magnetic flux Φ are given by

ψℓ(φ) =
1√
2π

eiℓφ , Eℓ =
ℏ2

2mR2

(
ℓ− Φ

Φ0

)2

, Φ0 = 2π
ℏc
e
, ℓ ∈ Z .

Starting from the spectral representation of the propagator, derive its winding number rep-

resentation as shown below
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where the free partial propagator for n windings is given by
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Problem 13: Wigner-Kirkwood expansion

As shown in the lecture, the quasi-classical approximation of the diagonal density matrix

for a one-dimensional particle in an external potential V = V (x) is given by
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where ω2 = V ′′(x)/m. Show that for small ℏ the partition function
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can be written as
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with effective quantum potential
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Hint:

Assuming lim
x→±∞

V (x) = +∞, integration by parts gives∫ ∞
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