4. Homework in ”Path Integrals”

Problem 12: Winding number representation of idealised Aharonov-Bohm setup

The eigenfunctions and eigenvalues of a charged particle of mass m > 0 and electric charge
e moving on a ring of radius R > 0 around a solenoid with magnetic flux ® are given by
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Starting from the spectral representation of the propagator, derive its winding number rep-

resentation as shown below
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where the free partial propagator for n windings is given by
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Problem 13: Wigner-Kirkwood expansion

As shown in the lecture, the quasi-classical approximation of the diagonal density matrix

for a one-dimensional particle in an external potential V' = V(x) is given by
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where w? = V”(z)/m. Show that for small % the partition function
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with effective quantum potential

can be written as
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Hint:

Assuming 111}[1 V(z) = +o0, integration by parts gives
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