8 Supersymmetry in the Dirac-Hamiltonian

8.1 The Dirac equation

Problem: (see e.g. F. Schwabl, ”QM fiir Fortgeschrittene”)

Schrédinger eq. allows for a probabilistic interpretation but is no relativistic description.
Klein-Gordon eq. E? = p%¢? + m?c* is covariant and relativistic, but does not allow for a
probabilistic interpretation.

Dirac’s ansatz:
H :=cd - p+ pmc?

with @ = (a1, a2, a3)T and § being arbitrary, not necessarily, numbers.

Quantisation: £ — H and p — —ihV results in

H? = —2h2ap0q0p0; — ihmc? (o + Bag )0k + B2m2ct
= —12R* (o + agay)0,0; — ihmc? (agB + Bay)Ox + B2m2ct

Compare with KG relation E? = p2c? 4 m?c* led Dirac to the conclusion

{o, cu}t = 26
{ag, 8} =0 Dirac matrices, Dirac algebra
g2 =1
Further properties: H = Hf - o = a,t and g =pt
Consider: Troy, = Tra 8% = —Tr a8 = —Troy, — Trap =0

Similar Tr 8 = Trﬁa% = —Troagfar = —-Tr 3 = Trs =0
e Pauli representation: 4 x 4-matrices
_( 0 ok or -
ag = o 0 a=

) (3 0)
o Weyl representation:

L, (¢ 0 (01 . 1 1 1
oz—(05> and /3—<10> via UW_\/§<11>

e Supersymmetric representation:

. (0 ¢ (0 —i . _ 1 /1
O‘_<5’ 0> and ﬁ—(i O> via US_\/§<1 1)

e Free Dirac equation: H = ihd,

Q ©
oS Q

1100 (7, 1) = (cd - f+ fmc?) V(7 1) |

U: Dirac spinor, lives in H = L*(R3) ® C4

L

S S T
—
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e Free Dirac Hamiltonian: (Pauli representation)

2

o me®  co-p
Hy = ca - 2= L
0:=cd-p+ pmc (Cg_p _mCQ)

e Free massless Dirac Hamiltonian: (Weyl representation)

— Weyl eq. ho =ci-p¥, U e LR ®C?

e Free Dirac Hamiltonian in 1D and 2D:

Hy = —ihc (0101 + 0202) + o3mc?

e Charged Dirac particle in electromagnetic potentials:
via minimal coupling p’— p'— <A and ihdy — ihop — ege

H=ca- (ﬁ— gff) + Bmc? + ey

e Scalar potentials: V(7) = Bog.(7)

e Dirac oscillator:

oG4 B o me e ()
H = cdl- (p'+ pimwr’) + fmc” = ( c& - (F+ imwr) —mc? )

More details: B. Thaller, ” The Dirac Equation” (Springer, Berlin, 1992)

8.2 Supersymmetric Dirac operators

Recall: N =2 SUSY with Witten operator now on H = L?*(R3) @ C*

(0 A . (00 (10
e=(00) @=(an) w0 h)

SUSY Hamiltonian:

T
HSI—{Q>QT}_<A64 A?A)_<f{)+ I?_)

Definition:
Let

le—Q+QT—<XT‘g>—Q{ and M:—< 0 M_)—M*zo

then

|Hp = Q1 + MW |

is called supersymmetric Dirac operator if [Q1, M] =0 = [W, M].
That is,

Hp = ( My A ) with  AM_ =M, A,  AlM, =M At

AT —M_
Example: A:=c¢5 - (p— %A') = Al My =mc*®1
2 7. (g — €A o
ap=( T ) (5 CA) 4 pme?
co - (p— £A) —mc c

Charged Dirac particle in magnetic field.
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Properties:

e Consider
M A M A
2 2 + +
HD _(Q1+MW) - ( AT —M._ ) ( AT —M._ >
B AAT+ M2 MyA—AM_\ [ AAT+ M2 0
T\ AfMmy —MoAt AtA+ M2 ) T 0 ATA + M?

Let m > 0 be an arbitrary mass-like parameter and define

1 1
AAT H_ = t

H. =
+ 2mc? ’

© 2mc?

Rescale supercharges

Q- 1 <0 A) Q= 1 (0 0>
C Vome2\0 0 )7 Vomez \ AT 0
and set
1 2 o _ ( H+ 0
Hsusy i= 53 (HD—M)—< o I >
Then we obtain a N =2 SUSY QM system with W =

Hspsy =1{Q,Q'}, {Q,W} =0, Q>=0=(Q".

o Let Upw := a4 + Wsgn @ a— be unitary transformation with a4 := % + M

Then (see tutorial)

1/AAT—|—J\42 0
HFW ::UFWI‘IDUJr = * :mHD|
P W 0 ~JAata a2

Upw diagonalises Hp and is called Foldy—Wouthuysen transformation.

Hence with
HEWwE = BFUE and  wE=UL,UE = HpUl = Brud

The subspaces H*E are the eigenspaces of Hp for positive and negative energies, re-
spectively.
A2

2mc?

Observation: In many cases My = mc? and A = Af, that is Hyp := Hy =

Hygr

HEW _ 2 /q
D Bmc + 22

Hence Hypg is the non-relativistic limit of Hp in those cases as
HEW‘H+ =mc® + Hyr+ O (1/m02)
e Spectral properties: Note [H4, My] =0= [H_, M_]

Let Hi¢f =e,6F and Myi¢t =m,c?¢F  with  g,,m, >0

Hence we have

—_— ¢+ - 0
Ef = +v2mc%s, + m,c2, Uh = S U, = o
n
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For unbroken SUSY (g9 = 0) in addition we have

Ef = (of|Mylog) if  ¢f € HTexists with Aol =0
and /or

Ey = —(og |1 M-|¢y) if ¢, € H exists with ~ A¢gy; =0

The spectrum of a supersymmetric Dirac Hamiltonian is symmetric about zero with
the exception at Ej and/or Ej if SUSY is unbroken.

E
good SUSY broken SUSY

The spectral properties of Hp follow from those of the SUSY partners Hi and M.
In all most all case, My = mc? or M4 = 0.

Note: In general A ~ p, hence Hy ~ p?2, i.e. the relativistic problem may be reduced
to a non-relativistic Pauli-like problem.
Example: Electron in magnetic field results in H EW = Bmc2\/1+ g

mc?
Dirac: Hp =ca- ("’— gff) + Bmc?

c

_, N2 Y .
Pauli: HP:L(p_g ) _ehz B

m c 2mc

e SUSY transformations for ¢, > 0:
1 1

Recall = — Ao, and e p———) P

o /—%m025n o (o 1 e on
Hence A @Q\Dﬁ and v, = \/ZQT\I/;'{
Obvious as

~ 1 [0 4 0\ 1 [Aé\_ —
Q\Pn_\/2m02<0 O)(@:)_ 2m02< 0 )—\/a‘l’n

i 0 0\ /et 1 0\ =
O = a0 )0 )= Vama \ algy ) = VAT

8.3 The free Dirac Hamiltonian

Choose: Ai=ci-p= AT, My :=mc? on HE = [?(R?) @ C?
2 — —
_( mc® cd-p .
Hp = < G F —me? ) Pauli reps.
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eg =0 € spec H+ — SUSY unbroken
Eigenspinors: Plane waves
+ 1\*? ik 7 7 3
5= (5m7) 0l FeRL xe {14,

272

R -
with eigenvalues e = o and 2-spinor x (k)
m

Helicity eigenspinors: Let k := |k| and

- 1 ki — iko > . < 1 )
k) = —— d kes) := ,
X+1( ) 2]{7(/€— k3) < k— ks an X+1( 63) 0
- 1 ks — k 0
_1(k) i= —— . d _1(kes) := ,
X 1( ) 2k(k—k)3) < k1+1k2 ) an X 1( 63) ( 1 )
. g-p. . . o G-k
Recall helicity operator A := ﬁ in eigenspace with fixed k, Ay := s
p
Lemma: Above spinors are ortho-normal eigenspinors of Az, that is,
Apa®) =xa®), A==, holP=00"0=1 () x=0.
Proof
- 7 /{'3 kl — lkz
Consid k= .
onsider & ( Ky + ks ks > =
- - k ki — ik ki — ik
__ 1 3 1 2 1 2
7 kxnlk) = Zr= ( kytike ks k— ks >
. 1 kg(kl — ikg) + (kl — ikz)(k — k3)
T V2k(k—k3) k2 + k3 — k3(k — ks3)
k(k1 — ika) -
_ 1 _
- /Qk(k—k;),) < k’(k‘ _ kg) kX-l‘l(k)
5.k (]—C») _ 1 ks k1 — ike ks —k
X-1 v/ 2k(k—k3) k1 +iko —ks3 k1 + iko
_ 1 ks(ks — k) + k% + k2
v/ 2k(k—k3) (kl + ikg)(kg — k) — k3(k1 + ikg)
k(k — ks) 2
_ 1 - _
o 2k(k—k3) < —k(kl + lkg) ) o kx_l(k)
The ortho-normal part is homework.
Summary:
Hy ¢k:i:)\(7?) =& ¢k:l:/\(1?) with Shils h;kz s E S RP’,
+ _ + : —
A qﬁg/\(f') = ¢EA(f’) with A=+1
E* = +v/R202k2 + m2ch @T(f‘) = %“’9 (If_j(F) = 0
EA ’ EA 0 ’ Ex ¢15,\(7:)

Explicit form of FW transformation:
Consider subspace with fixed k and A and set (k) := vVh2c2k2 + m2ct
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With |Hp| ¥, = e(k)¥r = ay=,/i+tm

0 co -

_ 1 _
sgn Q1 = /_02ﬁ2<6(}"ﬁ 0 > <
1
0

vwarea(3 4)(34) (¢
0

1
0

U—+WQ—+A1UT——A01

FW = Q4 sgn(ia_ = a4 +a— 10 ) Fy =04 —a— 10

0 co-p 2p? 0 .
= o= (20T ) @= (7 D) —eren
1
0
A

The ”electron” solution

W (7) = Uy U7 () = [ e < o >] < Xy )

4 a7 (7) )
e

The ”positron” solution

"o (M)
o= ()

ay¢ (7)
SUSY transformations: A =cé-p= Al | ¢ = h;’f
A ¢ka =ché -k g{)%:)\ = chk\ gz%)\ = \y/2mc2e; gzﬁ%F)\ () is phase only!)
— 0 0 ot 0 —
| ) = = = -
QWi = Toma < At 0 ) < 0 ) Aﬁ( o2 ) AVE Vi

R e
QUL = =AY,

Free Dirac particle in SUSY representation:

. (0 ¢ (0 —i
Now a—<&.0> and B—(i 0)

0 cd - p—imc?
Hp =ca o 2 — R
p =cd-p+fme (ca-p+1m02 0 >
Hence

2 and My :=0 —

A:=cd-p—imc
AAT AtA 2p? m2et
2mc2  2mc? o =

Here SUSY is broken with

> Zme® >0

+ T ome " 2me2 < 2

ep = h;’iz + %ch shifted SUSY spectrum

2mh

E];i = £4/2mc%ep = £V c2h2k? + m%c*  same Dirac spectrum

¢ka (7) = (L)3/ LN same eigenspinors
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8.4 The Dirac oscillator

_ me? cd - (p— imwr)
~\ e (P imwr) —mc

Is obviously SUSY Dirac Hamiltonian
A=cé-(f—imwr),  My=mc — AM =My A,  A'M, =M A
Homework: Show
AAT = 2 (52 + m2w 2 + 3mc3hw + 2mcwl - &) = 2mc2 H,

ATA = 2 (p? + m2w?7? — 3mc3hw — 2mc*wL - &) = 2mc2H_
Partner Hamitonians are SUSY Pauli Hamiltonians

Hy =5+ 30272 & (30w + hwl - 5)
= I+ Bt hw (K + 5)

Recall spin orbit operator K := L-d+1
£+1 for s=+1

i pas
—¢  for s=-1 orj =43

Eigenvalues of K are given by: —r = s|k| = s(j + 3) = {
Eigenvalues of H:
Erie=Tw (2n+ 0+ 3) + hw[s(j + 3) + 3]

More explicit

Cpjs =T (2ntj—5+5-sj—5—3) =hwntj+1-s(G+1)
ehe=hw(n+j—5+3+sj+5+3) =hw2n+1)+j+sj]>0

SUSY unbroken with ground state energy

€0j1 = 0 oo—degenerate as j= %, %, g,.

Spectral relation between SUSY partners
gjz—js = €l j—1,-s
Eigenvalues of the Dirac oscillator
i 1/2
E, ;s =—mc [1 + W[Qn +i+1-s(+ 1)]]
2w 1/2
Ef. =mc |1+ —=[2n+1)+j+sj
is = mC [ + mc2[ (n+ )—i—j—i—sﬂ]

8.5 Omne-dimensional Dirac Hamiltonians
e The free Dirac particle on the real line

2

_ 2 mc cp o 5
H = coip+ozme” = ( cp —me? ) on H=L*R)®C
Obvious:  A=cp=Al,  My=me, Hi=gny=2 >0
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e The Dirac oscillator on the real line

mc? c(p — imwzx) )

B . 2 __
H = coq (p + 1mwa:a3) + ozmc” = ( C(p + imwx) —mc

Obvious: A = ¢(p — imwz) = —ivV2mcthwa, My = mc?

Hi:%-f—%meQ:t%hw:ﬁw(aTa—l—%j:%)
Hence
= (z|n - 1), ¢, = (z|n), €n = hwn, n=1,23,...

in addition n = 0 for H_ only.

2
EE = £/m2ct + 2mc2e, = tmc*\ 1+ 67;
me

o The relativistic Witten model
Generalisation of Dirac oscillator with mwz — v/2m®(x)

mc? c(p — ivV2m®(x)) )
2

H = coy(p + iV2m®(x)o3) + o3mc? = (

c(p+1iv2mP(z)) me
Obvious: A = c(p —iv2m®(z)), My = mc?
2
b 2 h o
H =—+90 +—2
£ =5, T @) E =)

Assume unbroken SUSY with ¢y = 0 € spec H_ and ¢, > 0 € spec H then
— 2 + 2 2en

Ey = —mc and E; =xmc\[1+ —5

mce

— Whenever the non-relativistic Witten model can be solved, one also has a solution
of the relativistic Witten model.

Remarks:

— Application of the SUSY WKB formula results in an approximation for the
relativistic Witten model via E? = 2mc?e + m?ct.
Let W(z) := vV2mc? ®(z), then A = cp — iW (z) and

IR 1 A
/ day/E?2 —m2c* — W2(z) = chr [ n+ 3 + 5

L

with W2(xp,/p,) = E* — m?c.

For a general discussion see GJ, Eur. Phys. J. Plus 135 (2020) 464 (13pp)

8.6 Relativistic Hamiltonians with arbitray spin

The Dirac Hamiltonian describes the relativistic dynamics of spin—% particles.
How about particles with other spin?
Goal is to find relativistic eq. allowing for a probability interpretation, that is, being of the
form
ho U = HU, H=IL*R)eC*®,  s=01313..

The general form of such a Hamiltonian is given by

H=Bm+E+0, with  p%=1.
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Here m denotes the mass of the particle.
& and O denote the even and odd parts of the Hamiltonian, respectively. That is,

[6,€]=0, {p.0} =0.
With M :=m + € the general Hamiltonian then reads
H, = HsT for s=1

=3 Fermions
Hy = BHIB for s=0

3
H,=BM+0O  with 2
’17

2,..., Bosons

Choose matrix representation where

10 M, 0 0 A
5:<0 —1> — MZ( 0 M_>’ OZ((—1)28+1AT 0)’

Note: The matrix elements here are (2s + 2) x (2s + 2) submatrices.
Definition:
Above Hamiltonian Hy is called a supersymmetric relativistic arbitrary-spin Hamiltonian if

M,A=AM_,  A'M, =M_A".

Note: For s = 1/2 this is identical to the definition of a supersymmetric Dirac Hamiltonian.

Properties:

e Consider
H2

S

[ (—1)%TLAAT 4+ M2 0
- 0 (—1)2t1AYA + M2

Let m > 0 be an arbitrary mass-like parameter and define

1 1

— TA>
Hy: 5 2mC2AA_O,

SAAT >0, H_ =
c
Define supercharges by

1 (0 A L1 0 0
Q'_\/2m02<0 0>’ @ = 2ch<ATO)

and the SUSY Hamiltonian by

(=1t o _ ([ Hy O
2mc2 (HS - M) = 0 H_

results in a N =2 SUSY QM system with W =

Hsusy ={Q,Q"},  {Q,W}=0, @Q*=0=(Q").

Hsysy =

e As for the Dirac case one can show that for such supersymmetric H, exists a Foldy—Wouthuysen
transformation U which diagonalises H

\/M_% +(—1)25H1AAT 0

HI'W .=UHU' =
0 — /M2 4 (~1)2+1414

:ﬁ|Hs|

The transformation explicitly reads (without proof)

_ ‘Hs|+BHs . 1+ Bsgn Hy
V2HZ +2M|Hs| /2 + {sgn Hy, 3}
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e Due to the SUSY requirement we have [Hy, M1] = 0 and we can introduce a joint set
of eigenfunctions ¢, this is a (2s 4 1)-spinor, with

HygE = o, MydE = mcPoF, £>0.

Hence the spectral properties of H™ can be expressed in terms of gzﬁét and ¢

~ + ~
By = +£y/m2c* + (—1)25t12mc2e Ul = ( ¢05 ) , U = ( ¢0_ ) ,
€
The SUSY transformations explicitly read for £ > 0
1 _ _ 1
= —o—=A40, ¢ =—7—==Al¢l.

2mc2e V2mc2e

The spectrum is symmetric about zerowith possible exception at mgyc? and/or —mgc?
in case of unbroken SUSY with ker AT and/or ker A being not empty, respectively.

Examples
We consider spin-s particles with mass m > 0 and charge e in external magnetic field
b=V xA.

e The Klein-Gordon Hamiltonian s = 0:
The non-relativistic quantum dynamics is provided by the Landau Hamiltonian

1 N2
Hp = — (ﬁ— EA) acting on L*(R?)
c
In 1958 Feshbach and Villars showed that the relativistic Klein-Gordon Hamiltonian

is given by

<m02+HL Hy,

", ~(me® + Hy) ) acting on  L*(R?) @ C?

Obviously we may identify
My = Hp +mc?, A=H; = Al = [My, A] =0

Hence it is a supersymmetric spin-zero Hamiltonian with

1 2

Hi L

T 2mc?

The diagonlised FW Hamiltonian reads

me2 + Hp)?2 — H? 0 20
HEW = v L)~ Hi — Bmc®|[1+ —%
0 —\/(ch +Hp)? - H? me

For a constant magnetic field B = Beé, the eigenvalues of Hj, are the well-know Landau

levels
1 h2k? B
e=hw.n+=)+ z n €Ny, k., eR, wczzm.
2 2m mc
2
Note, the eigenvalues of Hy = %Ig are given by ¢ = 27;262 > 0 and SUSY is broken.

The eigenvalues of My are given by m. = € + mc? = mc? (1 + 4/ 2 )

mc?
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e The Dirac Hamiltonian s = 1/2:
The non-relativistic quantum dynamics is provided by the Pauli Hamiltonian with
g=2
1 1, /7, € -\12 . 2 /13 2
Hp ::—[a-(p——Aﬂ acting on  L°(R°) ® C
2m c
The relativistic Dirac Hamiltonian is given by

me cd-(p
Hyp= . ‘ acting on L*(R?) & C?
co - (ﬁ— 9A> —mc?
c

We already know that it is supersymmetric with My = mc? and A = ¢& - (*— %ff)
The partner Hamiltonians are given by

1 2

Hy A2 = Hp

© 2mc?

The diagonlised FW Hamiltonian reads

24 L omc2H 0 [, 2Hp
HEW _ Vm2ct + P _ 2, /1
1/2 ( 0 —/m2c* + 2mc2Hp pme e

For a constant magnetic field B= Beé, the eigenvalues of Hp are shifted Landau levels

ezzhwc(n—f—%—f—sz)—i—%, n € Ny, k,eR, sZ::I:%.
SUSY is unbroken here due to the shift!

e The vector boson Hamiltonian s = 1:
The non-relativistic quantum dynamics is provided by the ”vector” Hamiltonian for
g=2

1 N 2 h - =
Hy = — (ﬁ_ EA) — e—(S - B) acting on L*(R3) @ C3

AU L [0 -0 10 0
Si=—|101], S=—[1i0 -i]|. S=[00 0
V2 o 1 0 V2 o i o 00 -1

) .
+H =
h=\ peip wens ; on LE)eC
-+ < —(mc® + Hy)

2 SN2
) F—<A p—< A).§

With My = mc®>+ Hy and A = (7 < I Cm) ) = A" one can show that, for a
constant magnetic field [My, A] = 0, leading to a supersymmetric relativistic spin-1
Hamiltonian. In addition one may show that HZ = A2

The diagonalised FW Hamiltonian then reads

mc? + Hy)?2 — H3 0 [ 9oH
H1FW = \/( v) v = Bmc*y/1+ —‘2/
0 —\/(ch + Hy)? — HY me

The eigenvalues of Hy = Hy, — sgn(eB) hw. S are again given by the Landau levels

h2k2
2m ?

e::hwc(n—ké—ksz)—i— n € Ny, k,eR, s, € {-1,0,1}.
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. . . 2
The partner Hamiltonians Hy = ﬁz HZ have the eigenvalues £ = Tl

The eigenvalues of My are given by m. = € + mc? = mc? (1 + 4/ 2e )

mc?

Note that ¢ = 0 when € = 0, which is the case forn =0, s, = —1 and k, = +1/\1.
AL := /h/mw. = \/hc/|eB| is the Larmor wavelength.
Hence SUSY is unbroken, but A =0as Hy = H_.

The corresponding eigenvalues of H; are then given by

By = £y/m2c* + h2¢2k2 + 2mc2hwe(n +1/2 + s5.)

Note: For k, =0, n =0 and s, = —1, the above eigenvalue would become complex if
|B| > m2c3/|e|h. Such large magnetic fields would imply A;, < Ac := h/me. That is,
the Larmor wavelength is small than the reduced Compton wavelength.

Let’s confine a particle to such a small area Az ~ Ac.

Then uncertainty relation implies Ap ~ h/Ax = me. At such large energies a single
particle description is no longer appropriate. In other words for such large magnetic
fields a description via quantum field theory must be applied.

For details see GJ, Symmetry 12 (2020) 1590 (14pp)
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Summary Section 8

Supersymmetric Dirac Hamiltonians are of the form

M A .
Hp = ( A;* Y ) with M A=AM_, M_A' =AM, .
The N = 2 SUSY is explicated via (m > 0 is a free parameter with dimension of a mass)

1 [0 A L1 0 0 (M. 0
Q - /_2m(52 ( 0 0 > ) Q - f2m02 ( AT 0 ) ) M - ( 0 ]\4—_ > )
Hsusy ={Q.Q'} = — (HL%—MQ)L<}{)+ h(()_>’ W_ﬁ_<(1) —Ol>

2mc2 T 2mc?
Note Ant ;
ATA
= — = — M, H |=0=|M_ H_
T ome2’ 2me?’ My, Hy] = 0= [M_, H]

Supersymmetric Dirac Hamiltonians can always be diagonalised via a FW transformation

M? +2mc2H 0
HEW —vHpUt = glHp = | VT *
P 0 _ M2+ omerH

The spectral properties of Hp are fully determined by those of the non-relativistic Pauli-like
partner Hamiltonians H4 and the often trivial mass operators M.
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