6.3 Supersymmetry of the FP equation

Consider pair of drift potentials Uy defined via forces U, = Fy := F®(x) or
Ut(z) = 42/ dz ®(z) = —Ux(z).
0

U_(x) Uy (z)

stable meta stable

FP equation:
+ D o 4 + ~ +
Oym; (x, ) = ) 0z my (z,20) F 0y ©(x)mi (z, z0) with mgy (z,20) = d(x — z0)
Ansatz:

mE (x, z0) =: exp {—% [Ut(x) — Ui(l’o)]} K (z, x0) with K (x,20) = 6(x — x0)

leads to
Og mti(x,xo) — o lM/D _%Ui(x)Kti(x,xO) + 8mKti(fc,xo)>
e D (9, K (2, o) + %q)(x)Kti(a:, xo))
2 !
miteia) = o PP (BRF) 2 pe@RE0) + TP = T k)

In FP equation multiplied by D

+ D? 5 1., D _, +
—Do K[ (z,x0) = —78m + §<I> (x) £ E@ () ) K (z, xo)

Time-dependent imaginary-time Schrédinger eq. for pair of Hamiltonians

D2
2

D

1

One-to-one correspondence with partner Hamiltonians of Witten model

Witten Model <= Pair of FP
Hy>0 HIP >0
it t
h D
m 1
) %c}
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Solution: Is given by the Euclidean time evolution operator (density matrix)
_ FP
K (v,20) = (e 1E"/P|zg)
Assume: Purely discrete spectrum for simplicity, that is,
HEP|63) = Ailen),  n €N,

Then
i (o) = exp { - S U 0) — U } Y- enp { =S 03 } o @16 )
n=0

Remarks:
e A\ >0 are the decay rates for UL
e ¢F(z) are the corresponding decay modes

Stationary distribution: < )\g = 0 <= unbroken SUSY with A = F1

Pi(a) = Jim i .a0) = exp { - 5 [0s(0) - Us(a)] | 65 (0165 ()

Recall
¢ (z) = Nexp {i@ /dx@(m)} = Nexp{i% /dw<1>(w)} = Nexp {—%Uﬂ:(@}
Hence

P () = |65 (@)

Is normalisable in case of unbroken SUSY, i.e. U+ (z) — oo fast enough.
Note, in the case of unbroken SUSY only one of below cases exist

A = +1: P (z) = |¢g ()| exists, U_ is stable, U, is unstable

A= —1: P(z) =|¢§ (z)|* exists, Uy is stable, U_ is unstable

1
Obviously " Py (x) = 7
' P (@)

Factorisation:

Recall A = «%@f +0(z) = A= 5(D0 + B(2)) , AT = &(~Dy + (z))

L
V2
= HIP = AAT >0 HFP = AtA >0
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Good versus broken SUSY Examples: Drift and SUSY potentials
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Figure 7.1: Typical drift potentials U_. inverted drift potentials U/, = —U_ and drift coeffi-

cients & = U} for good SUSY (/eff row) and broken SUSY (right row).

33



Good versus broken SUSY Examples: Corresponding Witten partner potentials
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Figure 7.2: The partner potentials ¥ and ®? for the drift potentials shown in Figure 7.1.
Again the left row corresponds to the good-SUSY and the right to the broken-SUSY case.
The diffusion constant D has been set to unity.

34



6.3.1 Implications of unbroken SUSY

We use convention A = +1, hence U_ is the stable potential and U, is unstable.

e Stationary distribution: \j =0
Pu(a) = [N PPe™ 5 ) = |¢7 (a)

¢ Decay rates:
An::AT_L:)\j’L——1>07 n:17273,...

Note: U; and U_ = —U; have identical decay rates!

e SUSY transformations: Relation between decay modes

5a(0) = S5 (D g+ 2@)) (),

000) = = (D g+ 2()) 67 ),

e Transition probability density: Spectral representation

_ _ 0 (2) o~ _ PN
my (@.20) = 165 (@) + d’?—”ze WD ()6 o),
o (20) 22
my (z,w0) ’\"t/Dcﬁ (2)¢, % (20).
7:=D/A: time scale for decay of Uy =  time scale of U_ to reach Pi.

6.3.2 Implications of broken SUSY

e Decay rates:
/\n:A;:/\:{>O7 n:0,1,2,3,...

As before: U, and U_ = —U, have identical decay rates! No stationary distribution.

e SUSY transformations:

550 = 5 (£D 55 + ¥(@)) 40

e Transition probability density: Spectral representation

my (,20) = exp {i% [U_(x) } Z et/ D G (1) §E (),

Note: exp {+5 [U_(z) — U_(z0)]} = exp {— 5 [U=(2) — Us(x0)]}

6.3.3 Some examples
®y(z) =asgnw

®y(z) = atanhx for a>0 unbroken SUSY (Homework)
D3(z)=a—e "
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Case 3:

Zero mode: ¢ () = N exp { x ®3( } =Nexp{—az —e "}
Stationary distribution: Py (z) = |¢g (z)]* = N exp {—2ax — 2¢7"}
Drift potential: U_(z) = / Q3(x) =ar+e”

Partner potentials: Vi (a,2) = 1@3(z) £ $®4(2) = 2e72* — (a F )e ™ + 1a?
Note: Vi(a,z) = V_(a —1,2) + a — 3 (shape-inv. Morse potential)
Obviously A\; = a—% ifa>1 or A = % if 0 < a <1 (V_ has only 1 bound state).
6 lll 'I I I I I I I
| X + exp(-x)
|| exp(-2*x)/2 - (3/2)*exp(-x) + 1/2
S F ‘\ | ,7
\ |I //
' 7
' v
4 II & .
| //
///
3 P ]
| " - |
., G
1F — -
\
0} \‘\.\ P
_1 | 1 1 1 1 1 |
-3 2 -1 0 1 2 3 4 5
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Additional Homework: Discuss ®(x) = x

As for the Witten model one can construct conditionally exactly solvable drift potentials

(see Book)

Family of stable drift potentials related to the harmonic oscillator
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Summary of Section 6

e SUSY naturally appears in Fokker-Planck equation.

e Also for the Langevin equation (see the book section 7.3)

¢ Diffusion in drift potential U_ and in its inverted potential U, = —U_ are closely

related.

e For broken SUSY both have same decay rates.

e For unboken SUSY (U_ stable) equilibrium distribution is given by the SUSY ground
state, relaxation times into equilibrium are also the decay rates for U,..

e "Supersymmetric theory of stochastic dynamics” first introduced (1979-1982)

by G. Parisi (Nobel price 2021) and N. Sourlas.
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7 Supersymmetry in the Pauli-Hamiltonian

7.1 N =1 SUSY of Pauli-Hamiltonian in 3 Dimensions

Spin % particle with mass m > 0 and charge e (e < 0 for electron) in external el.-magn.
field characterised by

Vector potential: A(7,t)
Scalar potential: ¢(7,t)
Hilbert space: H = L%(R3) @ C?

Phenomenological Pauli-Hamiltonian

Magnetic field: B(F,t) = V x
Electric field: E(7,t) = V(7 t)
Gauge transformations:

B0 = 675 0) — X0, A H) = A7 0+ VX 8), 3 = ey

Spin: S = %5” with Pauli matrices

/01 (0 —i /10 L[
01 = 1 0 ) g2 = i 0 ) 03 = 0 —1 ) 0 = 02
03

eh
4me

Magnetic moment: jig := gﬁg =910 = dsgnepupd

Bohr magenton: up := 2‘;':2 g: Landé g-factor interaction term Hg := —[ig - B
For electrons e < 0:

non-relativistic SUSY: g=2

relativistic Dirac SUSY theory: g = 2

standard model theory: g = 2.002319304 36322(46)

experiment: g = 2.002319 304 363 56(35)

We know from Tutorial 1: From now on ¢ = 0 and ff =0
N =1 SUSY with @ = /A= (P~ £4) -6 = Qf q

mV.-d
v2mH

Velocity operator V = 7 = iH =1 (]3_ £ _')
SUSY Pauli-Hamiltonian:

No Witten operator but helicity operator A = =sgnQ

2m

_ A 2 _
H=g (P-2A) - s B

Homework:

Show AT —A, A* =1, [AH]=0, Q—sn@lQl—\/ZA

7.2 N =2 SUSY of Pauli-Hamiltonian in 2 Dimensions
a1z, x2) )

az (w1, 2)
Magnetic field: E(xl,xg) = B(x1,%2)€3, B(z1,22) = A1az(x1,2) — Deaq (21, 22)

Hilbert space: H = L*(R) @ C2 =HT ¢ H~
Witten operator: W = o3 H* = L?(R?) spin up/down subspace

Vector potential: A(z;,xy) = (

38



Supercharge:

0 A 1 0
— + w
Q=A%0 _<0 0)’ (0—1)

Aoe L Kpl _ §a1> == (P2 - Eaz)}

— N=28SUSYasQ#Qf

with

o
3

T
Hamiltonian: H := {Q,Q'} = ( A4 ?A )

0 A

Calculation:
AAY = L [(Pr— 2a1) Fi (P — Sa2)] [(P1 — an) +i (P2 — a2))]

= ot [(PL = £a1) + (P2 = £a2)® i [(Pe — £a2) (P — 1) — (P~ £ar) (P2 — Za2)] |

N\ 2
= ) Fige ([P1,az2] + [a1, P2])
_ 1
2m

q:
B 1 1 p_ef 2 el
Similarly ATA = — ( - EA> T B(x1,72)
Result:

c
== N =2 SUSY of Pauli-Hamiltonian with g = +2.

Witten parity eigenstates are eignestates of S3.

From now on we consider only upper sign g = +2 and electrons e = —|e|.

1 /. N2
H=_— (P— EA) + ppB(x1,12)03
2m c

Magnetic flux:
F::/ dﬂ?ldxz B(.Tl,xg)
R2
and assume |F| < oo, that is, B is bounded with compact support
Aharonov-Casher theorem: (see Tutorial 14)

e Ground state energy: Fg =0 = SUSY unbroken

e Degeneracy of Ey: d= [{%]‘

Here [7] := TILI}E%);{TLHL < z}, largest integer stricly less then z.

And @ := 27‘1’% represents the flux quantum.

e All d ground states belong either
to H~ for F' > 0, spin-down states
or HT for F < 0, spin-up states

e SUSY implies that all states with E > 0 are pairwise (1)) degenerate due to existing
SUSY transformations. Unpaired spins can only exist on the ground state level.

e Witten index:

F
A = dimker ATA — dimker AAT = dsgn F ~ 5
0

Topological invariant as details of B are irrelevant and only total flux through R? is
essential!
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7.3 Paramagnetism of non-interacting electrons in 2D
Consider a 2-dim. gas of IV non-interacting electrons at 7' =0
e Ground state: Is characterised by integrated density of states
O(ep — H)

With 1-particle Hamiltonian H %

and Fermi energy ep defined via Tr ©(
All states up to ep are occupied.

L N2
(P— %A) + ppB(z1,22)03
EF—H) = .

e Typical N-particle ground state:
Assumption that e is between two Landau levels (case B = const.)

All levels either fully occupied or empty

Ey
Es R
Ey A
E A
G LI
e Magnetisation: Recall magnetic moment of single electron jis = —upc
M = pup(N;y—Ny) N3y = No. of occupied 1] states

—upTr[o30(ep — H)]

= pupA(ep) IDOS regulated Witten index
J75:7AN under above assumption

pupdsgn F =~ p B(DLO topological invariant

e Simplifying assumptions: B(z1,72) = B > 0 constant magn. ficld on finite arca A
A C R? with A= {(x1,20) € R} —£/2 < x; < {/2,i=1,2} = F=B?>0
B2
magnetisation: M =pup—
D
specific magnetisation B c|B
>cl > D= = —_— =
p g 02 “B Do UB 2rhe

e Paramagnetic Susceptibility: of the 2-dim. electron gas

10M le] e

X2 oB T M orhe T drme?

Remarks:
e Result independent of electron density (¢¢) and magnetic field strength (B)!

e Derivation uses full single-particle Pauli-Hamiltonian
1 /2 e A2
H=H® = — (P - fA) + upBos
2m c
Standard textbook use the free Hamiltonian with spin term
1 -
Hy:= — P? 4 pugBog

2m

but arrive at same result!!! — ”Topological Invariance”
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7.4 Paramagnetism of non-interacting electrons in 3D

Homogeneous magnetic field: B = Bé; on A as before
Macroscopic Volume: V = (/{3 {3 is extension in xg-direction
Single particle Hamiltonian:

H® — + H®
2m

Free motion in z3-direction but eigenvalues of P3 are quantised as £3 < oo
periodic boundary conditions allow only certain wavelengths

p3 = hks with k‘gzg—n, n ez
3

For the non-interaction electron gas all k3 are occupied where

1/2m€f

|ks| < kp := - Fermi wave number
Number of occupied kj3: 2Mmax = Ef;# , —Nmax < N < Nmax
Each eigenvalue k3 contributes to magnetisation the 2-dim. result
B?
M2 - =
KB oy
Total magnetisation:
2
MO = op M@ = ket B
™ (I)O
Specific magnetisation:
M®  kpB 2
_MEPEE ¢ 4B
v T @y  4mw2mc?
Paramagnetic Susceptibility: Is dimensionless!
1 M3 e? a2
V OB 4m’me 2m
Bohr radius: ag := W’Z‘zz

. 2
Fine structure constant: o := %

7.5 The textbook approach
Calculate spectral density of a free particle in a box: V = L3 using Hy = 5—2
e Eigenfunctions:

P(F) =

(i)?’/QeiE-F7 k=2 n,, n; €%, J=1223

e Volume taken by one state in k-space: g := (27”)3

e Volume of sphere in k-space: dQ = 4nk?dk
with e(k) = ZE & f= |k\ 2me = gy,

Hence dQ = 47T2m5 m %”“/ 2me

e Spectral density: number of states in the sphere

1 dQ 1% m [2me Vm
D(e) = =Ly w/
@) =a = s m\ e T o
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e Specific spectral density:

D) m 2me  m
PE) == = 5o\ T T ek

Graphical representation for spin-up/-down electrons

pr(€)
/
EF
\
pi(e)

Switch on magnetic field: Using free Hamiltonian with spin term only

132
Hy = Hy = — +pupBos
2m

\""'
™

pi(€)

NT — NT — uBBp(SF)V
N, = N, —pupBp(ep)V
Magnetisation: M®) = up(N| — Ny) = 2u%p(ep)V B
1 e 252 2
Susceptibility: x3) = 2up(er) = %# kp =5 —=kr

Result is identical to the SUSY derivation.

Surprisingly the wrong use of the free Hamiltonian with spin term is sufficient.
The spectral free density actually changes drastically to Landau levels.
Nevertheless the net magnetisation is NOT sensitive to such approximation.

Recall M = pp A is related to the Witten index, i.e. a topological invariant.
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