# 4 The Darboux Method (1882)

**Assumption:** Let us assume we have two self-adjoint operators  $H_{\pm}$  and one linear operator A, all acting on common Hilbert space  $\mathcal{H}$  obeying the condition

$$\boxed{H_{+}A = AH_{-}} \Longrightarrow A^{\dagger}H_{+} = H_{-}A^{\dagger} \tag{*}$$

Let's further assume the spectral properties of  $H_+$  are known (we assume a purely discrete spectrum for simplicity)

$$H_{+}|\phi_{n}^{+}\rangle = E_{n}|\phi_{n}^{+}\rangle, \qquad n = 0, 1, 2, 3, \dots$$

Then

$$|\phi_n^-\rangle := C_n A^{\dagger} |\phi_n^+\rangle \neq 0$$

is eigenstate of  $H_{-}$  with same eigenvalue  $E_{n}$ .

Obvious as

$$H_{-}|\phi_{n}^{-}\rangle = C_{n}H_{-}A^{\dagger}|\phi_{n}^{+}\rangle \stackrel{(*)}{=} C_{n}A^{\dagger}H_{+}|\phi_{n}^{+}\rangle = E_{n}|\phi_{n}^{-}\rangle$$

#### Remarks:

- States  $\phi_n^+$  such that  $A^{\dagger}|\phi_n^+\rangle = 0$  do not lead to a  $|\phi_n^-\rangle$ . Hence, eigenvalues of  $H_+$  associated with states  $\phi_n^+ \in \ker A^{\dagger}$  are in general not eigenvalues of  $H_-$
- With  $A|\phi_n^-\rangle \neq 0$  we obtain an eigenstate of  $H_+$ . Let  $H_-|\phi_n^-\rangle = E_n|\phi_n^-\rangle$  then

$$H_{+}A|\phi_{n}^{-}\rangle \stackrel{(*)}{=} AH_{-}|\phi_{n}^{-}\rangle = E_{n}A|\phi_{n}^{-}\rangle$$

•  $H_-$  may have additional eigenvalues with eigenstates  $\phi_n^- \in \ker A$ , i.e.  $A|\phi_n^-\rangle = 0$ 

**Conclusion:** From spectral properties of  $H_+$  on may conclude those of  $H_-$ .  $H_{\pm}$  are not necessarily Schrödinger operators  $\implies$  Wide fields of applications

#### 4.1 Modelling Conditionally Exactly Solvable Potentials

Let

$$H_{\pm} = -\frac{\hbar^2}{2m} \, \partial_x^2 + V_{\pm}(x)$$
 on  $\mathcal{H} = L^2(\mathbb{R})$ 

be two 1-dim. Schrödinger Hamiltonians.

#### Ansatz for A:

$$A := \sum_{k=0}^{N} f_k(x) \partial_x^k$$

with  $f_k : \mathbb{R} \to \mathbb{R}$  being at least twice differentiable.

Insert into defining relation (\*) and compare coefficients of same power of  $\partial_x^k$   $\Longrightarrow$  Solve for the  $f_k$ 's

Obviously  $f_N = const.$  for convenience we choose  $f_N := \hbar/\sqrt{2m}$ 

#### **4.1.1** The simplest non-trivial case N = 1

$$A := \frac{\hbar}{\sqrt{2m}} \, \partial_x + \Phi(x)$$
 with  $\Phi(x) := f_0(x)$ ,  $f_1 := \hbar/\sqrt{2m}$ 

Inserting into (\*) results in two coupled equations

$$V_{-}(x) = V_{+}(x) - \frac{2\hbar}{\sqrt{2m}} \Phi'(x)$$
$$\frac{\hbar}{\sqrt{2m}} V'_{-}(x) + \Phi(x)V_{-}(x) = -\frac{\hbar^{2}}{2m} \Phi''(x) + \Phi(x)V_{+}(x)$$

Elimination of  $V_{-}$  results in a non-linear Riccati equation

$$\Phi^{2}(x) + \frac{\hbar}{\sqrt{2m}}\Phi'(x) = V_{+}(x) - \varepsilon.$$

Here  $\varepsilon \in \mathbb{R}$  is a constant of integration.

Linearisation with ansatz:  $\Phi(x) =: \frac{\hbar}{\sqrt{2m}} \frac{u'(x)}{u(x)}$ 

$$\left[ -\frac{\hbar^2}{2m} \, \partial_x^2 + V_+(x) \right] u(x) = \varepsilon u(x)$$

Schrödinger-type equation BUT u is NOT required to be square integrable and  $\varepsilon$  is not necessarily an eigenvalue of  $H_+$ . See Tutorial Exercise 8.

#### Remarks:

- $H_{+} = AA^{\dagger} + \varepsilon$ ,  $H_{-} = A^{\dagger}A + \varepsilon$  shifted Witten model
- New potential  $V_{-}$  with associated Hamiltonian  $H_{-}$  whose spectral properties are basically known.

$$V_{-}(x) = \frac{\hbar^2}{m} \left(\frac{u'(x)}{u(x)}\right)^2 - V_{+}(x) + 2\varepsilon$$

• Condition:  $u(x) \neq 0$  for all  $x \in \mathbb{R}$   $\Longrightarrow$  No singularities!

$$\varepsilon \leq E_0 := \min \operatorname{spec} H_+$$
 Sturm – Liouville Theory

• Consider  $\ker A^{\dagger}$ :  $A^{\dagger}|\phi_0^{+}\rangle = 0$   $\Longrightarrow$   $-\frac{\hbar}{\sqrt{2m}}{\phi_0^{+}}'(x) + \Phi(x){\phi_0^{+}}(x) = 0$ 

$$\implies \frac{\hbar}{\sqrt{2m}} \frac{{\phi_0^+}'(x)}{{\phi_0^+}(x)} = \Phi(x) = \frac{\hbar}{\sqrt{2m}} \frac{u'(x)}{u(x)} \implies {\phi_0^+}(x) = u(x) \text{ nodeless}$$

$$\implies \varepsilon = E_0$$

From now on  $\varepsilon < E_0 \implies \ker A^{\dagger} = \emptyset$ .

Complete spectrum of  $H_+$  belongs to spectrum of  $H_-$ . spec  $H_+ \subset \operatorname{spec} H_-$ 

• Consider  $\ker A$ :  $A|\phi_{\varepsilon}^{-}\rangle = 0$   $\Longrightarrow$   $\phi_{\varepsilon}^{-'}(x) = -\frac{u'(x)}{u(x)}\phi_{\varepsilon}^{-}(x)$   $\Longrightarrow$ 

$$\phi_{\varepsilon}^{-}(x) = \frac{C}{u(x)}$$

Assume nodeless  $u(x) \to \infty$  for  $x \to \pm \infty$  such that  $\phi_{\varepsilon}^- \in L^2(\mathbb{R})$   $\Longrightarrow$ 

$$\operatorname{spec} H_{-} = \{\varepsilon, E_0, E_1, E_2 \dots\} = \{\varepsilon\} \cup \operatorname{spec} H_{+}$$

With 
$$|\phi_n^-\rangle = C_n A^{\dagger} |\phi_n^+\rangle$$
 follows  $||\phi_n^-||^2 = |C_n|^2 \langle \phi_n^+ | A A^{\dagger} |\phi_n^+\rangle = |C_n|^2 \langle \phi_n^+ | H_+ - \varepsilon |\phi_n^+\rangle$   
Hence  $|C_n|^2 = \frac{1}{E_n - \varepsilon} > 0$ .

**Summary of results:** Given: Known spectral properties  $H_+|\phi_n^+\rangle = E_n|\phi_n^+\rangle$ 

$$\Longrightarrow$$
  $H_{-}|\phi_{n}^{-}\rangle = E_{n}|\phi_{n}^{-}\rangle$  and  $H_{-}|\phi_{\varepsilon}^{-}\rangle = \varepsilon|\phi_{\varepsilon}^{-}\rangle$  with  $\varepsilon < E_{0}$ 

with conditionally exactly solvable potential

$$V_{-}(x) = \frac{\hbar^2}{2m} \left(\frac{u'(x)}{u(x)}\right)^2 - V_{+}(x) + 2\varepsilon$$

as  $\varepsilon < E_0$  and u(x) nodeless where

$$-\frac{\hbar^2}{2m}u''(x) + V_+(x)u(x) = \varepsilon u(x)$$

and spectral properties

$$\operatorname{spec} H_{-} = \{\varepsilon, E_{0}, E_{1}, E_{2}, \dots\}$$

$$\phi_{\varepsilon}^{-}(x) = \frac{C}{u(x)} \in L^{2}(\mathbb{R})$$

$$\phi_{n}^{-}(x) = \frac{1}{\sqrt{E_{n} - \varepsilon}} \left( -\frac{\hbar}{\sqrt{2m}} \phi_{n}^{+}{}'(x) + \frac{\hbar}{\sqrt{2m}} \frac{u'(x)}{u(x)} \phi_{n}^{+}(x) \right)$$

$$= \frac{\hbar}{\sqrt{2m(E_{n} - \varepsilon)}} \left( \frac{u'(x)}{u(x)} \phi_{n}^{+}(x) - \phi_{n}^{+}{}'(x) \right)$$

## 4.2 A family of SUSY partners of the linear harmonic oscillator

For simplicity we set  $\hbar = m = \omega = 1$ .

$$V_{+}(x) = \frac{1}{2}x^{2}$$
 with  $E_{n} = (n + \frac{1}{2})$ 

Obviously  $\varepsilon < \frac{1}{2}$ 

General solution of Schrödinger-like eq.

(see, e.g., Galindo & Pascual, QMI Springer 1989, p. 143 and appendix A)

$$u(x) = e^{-x^2/2} \left[ \alpha_1 F_1 \left( \frac{1 - 2\varepsilon}{4}, \frac{1}{2}, x^2 \right) + \beta x_1 F_1 \left( \frac{3 - 2\varepsilon}{4}, \frac{3}{2}, x^2 \right) \right]$$

Confluent hypergeom. function:

$$_{1}F_{1}(a,c,z) \equiv M(a,c,z) = \sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} \frac{z^{n}}{n!}$$
 with  $(a)_{n} := \frac{\Gamma(a+n)}{\Gamma(a)} = a(a+1)(a+2)\cdots(a+n-1)$ 

For a = -m,  $m \in \mathbb{N}_0$ , this is a polynomial in z of degree m



#### Remarks:

- Without loss of generality  $\alpha = 1$
- u(x) > 0 for all  $x \in \mathbb{R}$   $\Longrightarrow$   $|\beta| < \beta_c(\varepsilon) := 2\frac{\Gamma(3/4 \varepsilon/2)}{\Gamma(1/4 \varepsilon/2)}$
- $\beta = 0$ :  $V_{-}(x) = V_{-}(-x)$  sym. see figure above
- $\beta \in \mathbb{C} \setminus (]-\infty, -\beta_c] \cup [\beta_c, \infty[)$  allowed  $\Longrightarrow$  complex potential with real spectrum Area of intensive research in last 20 years

#### Spectral properties:

$$H_{+}: \operatorname{spec} H_{+} = \{E_{0}, E_{1}, E_{2}, \ldots\}, \qquad E_{n} = n + \frac{1}{2}$$

$$\phi_{n}^{+}(x) = \left(\frac{1}{\sqrt{\pi}2^{n}n!}\right)^{1/2} e^{-x^{2}/2} H_{n}(x) \qquad \text{Hermite polynomials}$$

$$V_{+}(x) = \frac{1}{2} x^{2}$$

$$\begin{split} H_{-}: & \text{ spec } H_{-} = \left\{ \varepsilon, E_{0}, E_{1}, E_{2}, \ldots \right\}, \qquad \varepsilon < \frac{1}{2} \quad \text{ arbitrary} \\ \phi_{\varepsilon}^{-}(x) &= \frac{C \operatorname{e}^{x^{2}/2}}{{}_{1}F_{1}\left(\frac{1-2\varepsilon}{4}, \frac{1}{2}; x^{2}\right) + \beta x \, {}_{1}F_{1}\left(\frac{3-2\varepsilon}{4}, \frac{3}{2}; x^{2}\right)} \\ \phi_{n}^{-}(x) &= \frac{\operatorname{e}^{-x^{2}/2}}{\left[\sqrt{\pi} \, 2^{n+1} n! (n+1/2-\varepsilon)\right]^{1/2}} \left[ H_{n+1}(x) + \left(\frac{u'(x)}{u(x)} - x\right) H_{n}(x) \right] \\ V_{-}(x) &= \left[ \left(\frac{u'(x)}{u(x)}\right)^{2} - \frac{1}{2} x^{2} + 2\varepsilon \right]. \end{split}$$

#### Special cases:

•  $\varepsilon = -\frac{1}{2}$ ,  $\beta = 0$ :

$$u(x) = e^{-x^2/2} {}_1F_1(\frac{1}{2}, \frac{1}{2}, x^2) = e^{x^2/2}, \qquad \frac{u'(x)}{u(x)} = x, \, \phi_n^-(x) = \phi_{n+1}^+(x)$$

•  $\varepsilon = -\frac{1}{2} - 2k, k \in \mathbb{N}_0, \beta = 0$ :

$$u(x) = e^{-x^2/2} {}_1F_1(k + \frac{1}{2}, \frac{1}{2}, x^2) = e_1^{x^2/2} F_1(-k, \frac{1}{2}, -x^2)$$
 (Hermite polynomial)  
Note:  ${}_1F_1(a, c, z) = e^z {}_1F_1(c - a, c, -z)$ )

$$u(x) = e^{x^2/2} \underbrace{(-1)^k \frac{k!}{(2k)!}}_{=:1/\alpha} H_{2k}(ix) = e^{x^2/2} H_{2k}(ix)$$

- -k = 0:  $H_0(ix) = 1$  previous case
- -k = 1:  $H_1(ix) = 4(ix)^2 2 = -4x^2 2$   $\implies$  Homework
- k arbitrary:  $u'(x) = xe^{x^2/2}H_{2k}(ix) + ie^{x^2/2}H'_{2k}(ix), \quad H'_{2k}(z) = 2zH_{2k}(z) - H_{2k+1}(z) \implies \frac{u'(x)}{u(x)} = x + i\frac{H'_{2k}(ix)}{H_{2k}(ix)} = x + i2ix - i\frac{H_{2k+1}(ix)}{H_{2k}(ix)} = -x - i\frac{H_{2k+1}(ix)}{H_{2k}(ix)}$

Rational potential

$$V_{-}(x) = \frac{x^2}{2} + 2ix \frac{H_{2k+1}(ix)}{H_{2k}(ix)} - \left(\frac{H_{2k+1}(ix)}{H_{2k}(ix)}\right)^2 - 4k - 1$$

generates spectrum spec  $H_{-} = \{-\frac{1}{2} - 2k, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots\}$ 

For a complete discussion for shape-invariant potentials see GJ & P. Roy, Ann. Phys. 270 (1998) 155

Homework: Find all SUSY partners of the free particle.

## Summary of section 4

- Darboux method closely related to SUSY QM but can be extended beyond
- Designing of quantum potentials with known spectral properties. More recently discussion of complex potentials (PT-symmetry)
- The family of harmonic oscillator SUSY partners also inspired new ladder operators obeying a non-linear algebra (see Exercise 9)

# 5 Classical Fields in (1+1) Dimensions

Consider a scalar field:

$$\phi: \begin{array}{c} \mathbb{R} \times \mathbb{R} \to \mathbb{R} \\ (x,t) \mapsto \phi(x,t) \end{array}$$

with vanishing variations at infinity, that is,

$$\phi' := \partial_x \phi \to 0$$
 and  $\dot{\phi} := \partial_t \phi \to 0$  for  $x, t \to \pm \infty$ .

The corresponding Lagrange density is defined as

$$\mathcal{L}(\partial \phi, \phi) := \frac{1}{2} (\partial_t \phi)^2 - \frac{1}{2} (\partial_x \phi)^2 - U(\phi) = \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - U(\phi)$$

with a real-valued field potential U bounded from below, i.e.  $U \geq 0$ .

The Euler-Lagrange equation

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} - \frac{\partial \mathcal{L}}{\partial \phi} = 0$$

then results in the classical eq. of motion

$$\partial_{\mu}\partial^{\mu}\phi + U'(\phi) = 0$$

or more explicitly

$$\ddot{\phi} - \phi'' = -\frac{\partial U}{\partial \phi}.$$

#### **Examples:**

• Klein-Gordon: 
$$U(\phi) = \frac{1}{2}\phi^2$$

$$\implies \partial_{\mu}\partial^{\mu}\phi + \phi = 0$$

KG equation for rel. scalar field with unit mass

• Sine-Gordon: 
$$U(\phi) = 1 + \cos \phi$$

$$\implies \ddot{\phi} - \phi'' + \sin \phi = 0$$
  
Instantons / Solitons

,

• 
$$\phi^4$$
-theory:  $U(\phi) = \frac{1}{2}(1 - \phi^2)^2$ 

$$\implies \ddot{\phi} - \phi'' + 2(1 - \phi^2)\phi = 0$$

Phase transitions / Higgs mechanism

#### Conserved energy functional:

$$E[\phi] := \int_{\mathbb{R}} \mathrm{d}x \, \left[ \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} \phi'^2 + U(\phi) \right] \,,$$

25

Homework: Show  $\frac{\mathrm{d}}{\mathrm{d}t}E[\phi] = 0$ 

#### Finite energy configurations:

Now in addition we assume that  $U(\phi) \to 0$  as  $x \to \pm \infty$  (vacuum configuration) That is, we assume

$$\phi_{\pm} := \lim_{x \to +\infty} \phi(x, t)$$
 with  $U(\phi_{\pm}) = 0$ 

We further assume translation invariance:

$$\phi(x,t) = \phi_{\rm st}(x - vt)$$
 st = static

These localised solutions are called *solitary waves* 

Eq. of motion for a static solution  $\phi_{\rm st}(x)$ 

$$\phi_{\rm st}''(x) = U'(\phi_{\rm st}(x))$$

$$\implies \qquad \phi_{\rm st}'(x)\phi_{\rm st}''(x) = U'(\phi_{\rm st}(x))\phi_{\rm st}'(x)$$

$$\implies \qquad \frac{1}{2} \left[\phi_{\rm st}'\right]^2 = U(\phi_{\rm st}) + \varepsilon$$

Recall  $\phi'_{\rm st} \to 0$  and  $U(\phi_{\rm st}) \to 0$  for  $x \to \pm \infty$   $\Longrightarrow$   $\varepsilon = 0$ 

Result:

$$\boxed{\frac{1}{2}{\phi_{\rm st}'}^2(x) = U(\phi_{\rm st}(x))}$$

### 5.1 Stability of static solutions

Consider fluctuations around a static solution

$$\phi(x) = \phi_{\rm st}(x) + \psi(x)$$

with small fluctuation  $\psi$  such that  $\psi(x) \to 0$  as  $x \to \pm \infty$ .

That is

$$E[\phi] \approx E[\phi_{\rm st}] + \delta E[\psi]$$

where (see tutorial)

$$\delta E[\psi] := \frac{1}{2} \int_{\mathbb{R}} dx \, \psi(x) \left[ -\partial_x^2 + U''(\phi_s(x)) \right] \psi(x)$$

Fluctuation operator:

$$H := -\partial_x^2 + U''(\phi_{\rm st}(x))$$

Schrödinger-like operator acting on  $L^2(\mathbb{R})$ .

Assume that we know the eigenmodes, that is,

$$H\psi_n = \mu_n \psi_n$$
,

then

$$\psi(x) = \sum_{n} a_n \, \psi_n(x)$$
 with  $a_n := \int_{\mathbb{R}} dx \, \psi_n^*(x) \psi(x)$ 

Hence

$$\delta E[\psi] = \frac{1}{2} \sum_{n} \mu_n |a_n|^2$$

Stability:

$$\delta E[\psi] \ge 0 \qquad \Longleftrightarrow \qquad \mu_n \ge 0$$

**Lemma:** The "lowest" mode n=0 for a stable static solution belongs to the eigenvalue  $\mu_0=0$ . This "zero" mode is given by  $\psi_0(x)=C\,\phi'_{\rm st}(x)$ .

**Proof:** We know  $\frac{1}{2}\phi'_{st}^{2}(x) = U(\phi_{st}(x))$ 

$$\partial_x \qquad \Longrightarrow \qquad \phi''_{\rm st}(x) = U'(\phi_{\rm st}(x))$$

$$\partial_x \qquad \Longrightarrow \qquad \phi'''_{\rm st}(x) = U''(\phi_{\rm st}(x))\phi'_{\rm st}(x)$$

Now

$$H\psi_0(x) = C \left[ -\partial_x^2 + U''(\phi_{\rm st}) \right] \phi_{\rm st}' = C \left( -\phi_{\rm st}''' + U''(\phi_{\rm st}) \phi_{\rm st}' \right) = 0$$

**Remark:** The zero mode is related to the translation invariance

$$\phi_{\rm st}(x + \delta x) = \phi_{\rm st}(x) + \phi'_{\rm st}(x)\delta x = \phi_{\rm st}(x) + \frac{\delta x}{C}\psi_0(x)$$

Fluctuation along zero mode is in essence a translation, here

$$\delta E[\phi_{\rm st}(x+\delta x) - \phi_{\rm st}(x)] = 0$$
 as  $\mu_0 = 0$ .

#### 5.2 SUSY construction of field models

Recall

$$H = -\partial_x^2 + U''(\phi_{\rm st}(x)) \ge 0$$

with vanishing lowest eigenvalue  $\mu_0 = 0$ . This allows to interpret

$$H \equiv H_{-} = -\partial_x^2 + W^2(x) - W'(x)$$

being a Witten partner Hamiltonian with SUSY potential W in units  $2m = 1 = \hbar$ . Here choose W such that SUSY is unbroken.

## Idea:

- Choose a SUSY potential W, e.g. one of the shape-invariant ones
- Zero mode is given by

$$\psi_0(x) = \mathcal{N} \exp\left\{-\int \mathrm{d}x \, W(x)\right\}$$

• Obtain static solution via integration

$$\phi_{\rm st}(x) = \frac{1}{C} \int \mathrm{d}x \, \psi_0(x)$$

• Use relation

$$U(\phi_{\rm st}(x)) = \frac{1}{2}{\phi'_{\rm st}}^2(x)$$

to obtain an expression  $U = U(\phi)$  by eliminating the x via previous relation  $\phi_{\rm st} = \phi_{\rm st}(x)$ . Choose parameter  $\mathcal{N}/C$  most suitable. Finally analytically continue beyond  $\phi_{\pm}$  to  $\phi \in \mathbb{R}$ .

ullet A field potential (theory) is found which has a stable static solution. In case of a shape-invariant W we in addition know all the fluctuation modes and their eigenvalues explicitly.

**Example:**  $W(x) = \tanh x$  SUSY partner of free particle, has 1 bound state  $\mu_0 = 0$ 

$$\psi_0(x) = \mathcal{N} \frac{1}{\cosh x} \quad \text{with} \quad \mathcal{N}/C = 2$$

$$\phi_{\text{st}}(x) = 2 \int dx \frac{1}{\cosh x} = 2 \arcsin(\tanh x) \quad \Longrightarrow \quad \sin \frac{\phi_{\text{st}}}{2} = \tanh x$$

$$\phi_{\text{st}}(x) \to \phi_{\pm} = \pm \pi \quad \text{for} \quad x \to \pm \infty$$

$$U(\phi_{\text{st}}) = \frac{1}{2} \phi'_{\text{st}}^2(x) = \frac{2}{\cosh^2 x} = 2(1 - \tanh^2 x)$$

$$= 2(1 - \sin^2 \frac{\phi_{\text{st}}}{2}) = 1 + (1 - 2\sin^2 \frac{\phi_{\text{st}}}{2}) = 1 + \cos \phi_{\text{st}}$$

analytical continuation leads to

Sine – Gordon 
$$U(\phi) = 1 + \cos \phi$$

**Tutorial:** 
$$W(x) = 2 \tanh x$$
  $\Longrightarrow$   $\phi_{\rm st}(x) = \tanh x$   $\Longrightarrow$   $U(\phi) = \frac{1}{2}(1 - \phi^2)^2$ 

**Homework:** 
$$W(x) = \operatorname{sgn} x \implies U(\phi) = \frac{1}{2}(1 - |\phi|)^2$$

Remarks:

•  $W(x) = 3 \tanh x$   $\implies$  no closed form for U, implicit relations are

$$U(\phi_{\rm st}) = \frac{2}{\cosh^6 x} = U(-\phi_{\rm st}), \qquad \phi_{\rm st}(x) = \frac{\tanh x}{\cosh x} + \arcsin(\tanh x), \qquad \phi_{\pm} = \pm \frac{\pi}{2}$$

•  $W(x) = 4 \tanh x \implies \text{new model}$ 

$$U(\phi) = \frac{1}{2} \left[ 1 + 2\cos\left(\frac{2}{3}\arccos(\frac{3}{2}\phi)\right) + \frac{8\pi}{4} \right]^4, \qquad \phi_{\pm} = \pm \frac{2}{3}$$

• For a complete discussion on shape-inv. SUSY potentials see GJ and P. Roy, Ann. Phys. 256(1997)302. Includes also discussion on unstable fields potentials

# 6 Supersymmetry in Stochastic Processes

Literature on stochastic processes

- 1 N.G. van Kampen, Stochastic Processes in Physics and Chemistry, (North-Holland, 1992)
- 2 C.W. Gardiner, Handbook of Stochastic Methods, (Springer-Verlag, 1990)

#### 6.1 The Langevin Equation

$$\dot{\eta} = -U'(\eta) + \xi(t)$$

Stochastic differential equation where

- $\eta$ : macroscopic degree of freedom. For example, position of a highly overdamped motion of a Brownian particle  $(\gamma\dot{\eta}\gg m\ddot{\eta})$
- U: External deterministic force F or drift  $F(\eta) = -U'(\eta)$
- $\xi$ : Stochastic force (noise). For example, simulating a coupling to heat bath





(Bi-)stable System

Meta-stable System

## Gaussian white noise:

$$\langle \xi(t) \rangle = 0$$

$$\langle \xi(t)\xi(t')\rangle = D\delta(t-t')$$

zero mean

No correlation in time

Diffusion constant D. For ideal heat bath  $D = 2k_BT$ 

Idealisation of more realistic colored noise

$$\langle \xi(t)\xi(t')\rangle = \frac{D}{2\tau_c}\exp\{-|t-t'|/\tau_c\},$$

with correlation time  $\tau_c > 0$ . Limit  $\tau_c \to 0$  = white noise. From now on only white noise.

Average via "path integral":

$$\langle \cdot \rangle := \int_{x(0)=x_0} \mathcal{D}\xi \exp\left\{-\frac{1}{2D} \int_0^\infty \mathrm{d}\tau \, \xi^2(\tau)\right\} (\cdot)$$

In general no interest in a particular solution of the Langevin equation, but on average behaviour.

## 6.2 The Fokker-Planck Equation

#### Transition probability density:

$$m_t(x, x_0) := \langle \delta(\eta(t) - x) \rangle$$
 where  $x_0 := \eta(0)$ .

Is the probability density to arrive at position x at time t > 0 for a Brownian particle starting as  $x_0$  at time 0.

#### Fokker-Planck Equation:

$$\frac{\partial}{\partial t} m_t(x, x_0) = \frac{D}{2} \frac{\partial^2}{\partial x^2} m_t(x, x_0) - \frac{\partial}{\partial x} U'(x) m_t(x, x_0)$$
 (FP)

with initial condition

$$m_0(x, x_0) = \delta(x - x_0).$$

#### The stationary distribution:

Assume the below limit exists, then

$$P_{\mathrm{st}}(x) := \lim_{t \to \infty} m_t(x, x_0)$$
 with  $\int_{-\infty}^{+\infty} \mathrm{d}x \, P_{\mathrm{st}}(x) = 1$ .

Insert in (FP):

$$0 = \frac{D}{2} \frac{\partial^2}{\partial x^2} P_{\rm st}(x) - \frac{\partial}{\partial x} U'(x) P_{\rm st}(x)$$

Integration:

$$\frac{D}{2} \frac{\partial}{\partial x} P_{\rm st}(x) - U'(x) P_{\rm st}(x) = const.$$

As  $P_{\rm st}(x)$  is normalisable we can assume  $P_{\rm st}(x) \to 0$  and  $P'_{\rm st}(x) \to 0$  as  $x \to \pm \infty$ . So constant of integration should be const. = 0

Integration:

$$P_{\rm st}(x) = C \exp\left\{-\frac{2}{D} U(x)\right\} = e^{-U(x)/k_B T}$$

The assumption that this is normalisable implies restriction on the shape of the drift potential. Typical shapes are

Meta Stable
$$\lim_{t \to \infty} m_t(x, x_0) = 0$$

Unstable 
$$\lim_{t \to \infty} m_t(x, x_0) = 0$$