4 The Darboux Method (1882)

Assumption: Let us assume we have two self-adjoint operators H4+ and one linear operator
A, all acting on common Hilbert space H obeying the condition

H{ A= AH_ — ATH, = H_AT (%)

Let’s further assume the spectral properties of H, are known (we assume a purely discrete
spectrum for simplicity)

Hiloh) = Enlef), n=0,1,23,...

Then
6y ) == Cr AT|gf) £ 0

is eigenstate of H_ with same eigenvalue E,,.
Obvious as

H_|o7) = CoH_AT|o) & CLATH 07) = Enlo7)
Remarks:

e States ¢; such that Af|¢;}) = 0 do not lead to a |¢;). Hence, eigenvalues of H
associated with states ¢ € ker AT are in general not eigenvalues of H_

e With A|¢;,) # 0 we obtain an eigenstate of Hy. Let H_|¢, ) = E,|¢;) then
—\ () _ —

e H_ may have additional eigenvalues with eigenstates ¢, € ker A, i.e. A|¢, ) =0

Conclusion: From spectral properties of H; on may conclude those of H_.
H. are not necessarily Schrodinger operators = Wide fields of applications

4.1 Modelling Conditionally Exactly Solvable Potentials

Let
2

I
Hy = —%03 +Vi(z) on  H=L*R)

be two 1-dim. Schrédinger Hamiltonians.

Ansatz for A: N
A= Z fr(x)OF
k=0

with fi : R — R being at least twice differentiable.

Insert into defining relation () and compare coefficients of same power of 9*
= Solve for the fi’s

Obviously fn = const. for convenience we choose fy := h/v/2m
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4.1.1 The simplest non-trivial case N =1

A= % O+ ®(x)  with  ®(z):= fo(z),  f1:=h/V2m

Inserting into (*) results in two coupled equations

V() = Vi (x) jf_ ()
h ! h2 1
m‘/_(m) + &(z)V_(z) = —%CID () + ®(x)Vi(x)

Elimination of V_ results in a non-linear Riccati equation

d%(x) + i<1>’(:1:) =Vi(z)—e¢.

g

Here € € R is a constant of integration.

h u(x
(z)

~—

Linearisation with ansatz: ®(z) =:

;
3
<

2
_2h_m 2+ Vi(z)| u(z) = eu(x)

Schrodinger-type equation BUT w« is NOT required to be square integrable and £ is not
necessarily an eigenvalue of H,. See Tutorial Exercise 8.

Remarks:
o Hy =AA" ¢ | H =ATA+¢ shifted Witten model

e New potential V_ with associated Hamiltonian H_ whose spectral properties are ba-
sically known.

V_(z) = %2 (Z((;)f — Vi(z) + 2

e Condition: u(z) # 0 for all x € R = No singularities!

|€ < Ep := minspec H | Sturm — Liouville Theory
h
o Consider ker AT: Afjp}) =0 = —\/T_m¢0+’(x) + ®(x)pg (z) = 0
h_ ¢ (@) h_u(x)
== —_— =®(2) = — - F(x) = u(zr) nodeless
Vmog@) T Vam uta) ) =uw)
- e=Fky
From now on € < Ey = ker AT = ().
Complete spectrum of H. belongs to spectrum of H_. spec H, C spec H_
) _ u(z)
e Consider ker A: A|¢p;) =0 = o (z) = — ( )gbs (x) =
u(x
_ C
e (x) = (@)
Assume nodeless u(z) — oo for x — Foo such that ¢_ € L*(R) =

spec H_ = {e,Eyp, E1,F> ...} = {¢} Uspec H1
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With [¢;,) = CrAf|ey) follows [|¢; |I* = |Cul* (0 |[AAT|6}) = |Cul*(5) | Ho — eloy))
1

> 0.
E, —¢

Hence |C,,|> =

Summary of results: Given: Known spectral properties Hy|p}) = E,|o)f)
= H_|¢y)=Enld,) and  H_|¢;)=clp)  with =< Ep

with conditionally exactly solvable potential

V_(x) = L (“l(x)f — Vi (x) +2¢

T 2m

as € < Fy and u(z) nodeless where
_» u(z) + Vi (z)u(z) = cu(x)
2m
and spectral properties
spec H_ = {e, Fy, F1, Es, ...}
C

oz (z) :@ELZ(R)

() — 1 __h e _h u(2) (s
010) = (- et ) + =0 w)
B h u'(x) (0 — o+ (x
- (S8 i)

4.2 A family of SUSY partners of the linear harmonic oscillator

For simplicity we set h=m =w = 1.
Vi(z) = 122 with  E,=(n+1)
Obviously ¢ < %

General solution of Schrodinger-like eq.
(see, e.g., Galindo & Pascual, QMI Springer 1989, p. 143 and appendix A)

u(z) = e /2 [a 1F1 (1 % 1,3:2) +px1Fy <—3 % §,x2>]

4 2 4 2
Confluent hypergeom. function:

o

n 2" . T
1F1(a,¢,2) = M(a, ¢, 2) = 7;) ((Cz))n % with (@), :== (;‘(—:)n) =a(a+1)(a+2)--- (a+n—1)
For a = —m, m € Ny, this is a polynomial in z of degree m
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Symmetric case 8 = 0

Remarks:

o Without loss of generality o = 1

e u(z)>0forall z e R = 18] < Bele) = 2%

e =0: V_(x) = V_(—x) sym. see figure above
e € C\ (] — o0, —f:]U][Be,00[) allowed => complex potential with real spectrum
Area of intensive research in last 20 years

Spectral properties:

H,: specH, ={Fy,F\. Es,...}, E,=n+1
+ ]. 1/2 _ 2/2 . .
on(x) = 1< \/7_1_2””!) e Hy(x) Hermite polynomials
Vi(z) = 3 z?
H_: specH_ ={e, FEy,Er,Es,...}, e < % arbitrary
3 Cem2/2
¢z ()

TR () ik O )

P (@) = Wnﬂn;iﬁ/z o) [H"“(z) * (Mw) - x) H"(m)]

V. (z) = l(g((f)))Q - %:cQ + 2|
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Special cases:

e c=—1-2k keNy, =0
u(x) =e 2 Pk +1,3,2%) = efz/ZFl(—k, 1. —2?) (Hermite polynomial)

Note: 1Fi(a,c,2) =¢e*1Fi(c —a,c,—2))

L K

u(z) = o7/ (1) m Hoy (i) = exz/Zsz(w)
=1/«
— k=0: Hy(iz) =1 previous case

— k=1: H(iz) = 4(iz)* — 2 = —42? - 2 = Homework

— k arbitrary:
() = we” 2 Hy (i) +ie” 12 HY, (ix), H}(2) = 22Hop(2) — Hopsr(2) =

w(z) _ CHY () e cHopyi (i) . Hopqa(iz)
) — I T ST T
Rational potential
2 Hojpy o (i) (H2k+1(i$)>2
V_(x) = — + 2iz - - - —4k -1
(=) 2 Hyy(ix) Hyy,(iz)

generates spectrum spec H_ = {—% — 2k, %7 %, %, .

For a complete discussion for shape-invariant potentials see GJ & P. Roy, Ann. Phys. 270
(1998) 155
Homework: Find all SUSY partners of the free particle.
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Summary of section 4

e Darboux method closely related to SUSY QM but can be extended beyond

e Designing of quantum potentials with known spectral properties. More recently dis-
cussion of complex potentials (PT-symmetry)

e The family of harmonic oscillator SUSY partners also inspired new ladder operators
obeying a non-linear algebra (see Exercise 9)

5 Classical Fields in (1 + 1) Dimensions

Consider a scalar field:
RxR—R

(x,8) = ¢z, 1)

with vanishing variations at infinity, that is,

o
¢ =00 —0 and b= —0 for x,t — £o0.

The corresponding Lagrange density is defined as

£(06,0) 1= 5 (19)" — 5 (0.0)" — U(9) = 5 (96) (0"6) ~ U(6)

with a real-valued field potential U bounded from below, i.e. U > 0.
The Euler-Lagrange equation

o _oc
"0(0u0) 0
then results in the classical eq. of motion

0,016 + T () = 0

or more explicitly

U

d-d' =55 |

Examples:

e Klein-Gordon: U(p) = 2¢?

= 0,0t +¢p=0
KG equation for rel. scalar field with unit mass

e Sine-Gordon: U(¢) =1+ cos¢

—  $—¢ +sinp=0
Instantons / Solitons

e ¢*-theory: U(p) = 5(1 —¢*)?

= 6" +2(1-¢")p=0
Phase transitions / Higgs mechanism

Conserved energy functional:
Blo) = [ de (32 + 402+ U(0)]

Homework: Show %E[qﬁ} =0
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Finite energy configurations:
Now in addition we assume that U(¢) — 0 as z — £oo (vacuum configuration)
That is, we assume

¢ = lim ¢(z,t)  with  U(ds) =0

T—F00

We further assume translation invariance:
¢($7 t) = ¢St(a? — vt) st = static

These localised solutions are called solitary waves

Eq. of motion for a static solution ¢ (z)
s (2) = U'(dst(2))
= (@) (2) = U (st (2)) 9y (2)
= 1L =Ul(a) +¢
Recall ¢/, — 0 and U(¢g) — 0 for £ — +o00 = e=0

Result:

$047(@) = U(6a(@))

5.1 Stability of static solutions

Consider fluctuations around a static solution

¢(x) = ¢si(w) + ()

with small fluctuation ¢ such that ¢)(z) -0 as z — +oo.
That is
E[¢] = Els] + 0E[Y]

where (see tutorial)

B[] = 5 [ deota) [02 + U (6] (o)

Fluctuation operator:
H = ~02 + U"(64(x))
Schrédinger-like operator acting on L?(R).

Assume that we know the eigenmodes, that is,

Hwn - ann )
then
Q/J(CC) = Z Qn d)n(x) with On = /R dz 7/};(1)77/}(5[)
Hence 1
5E[?,[)] = 5 Z:Un |an‘
Stability:



Lemma: The "lowest” mode n = 0 for a stable static solution belongs to the eigenvalue
1o = 0. This ”zero”mode is given by ¢o(z) = C ¢l ().

Proof: We know 3¢/, %(z) = U(¢px(z))
O = st(7) = U'(¢si(x))

O = i (@) = U"(9st (7)) 54 ()

Now

Hupo(x) = C [-07 + U"(dst)] ¢ = C (=04 + U"(¢st)) =0

Remark: The zero mode is related to the translation invariance
, ox
st (7 +01) = dst () + by (2)02 = ¢st(2) + 5 o (@)
Fluctuation along zero mode is in essence a translation, here
5E[(/)st($ + 6'L) - ﬁbst(Jd)] =0 as po = 0.

5.2 SUSY construction of field models

Recall
H=—07+U"(¢x(2)) > 0

with vanishing lowest eigenvalue g = 0. This allows to interpret
H=H_ =-0>+W?x)-W|(x)

being a Witten partner Hamiltonian with SUSY potential W in units 2m =1 = h.
Here choose W such that SUSY is unbroken.

Idea:
e Choose a SUSY potential W, e.g. one of the shape-invariant ones

e Zero mode is given by

o(z) = N exp {— /dx W(:L')}

¢St z C dl 0 x

Use relation

U(9u(2)) = 501°(2)

to obtain an expression U = U(¢) by eliminating the x via previous relation ¢g =
¢st(x). Choose parameter N'/C most suitable. Finally analytically continue beyond
¢+ to ¢ € R.
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e A field potential (theory) is found which has a stable static solution. In case of a
shape-invariant W we in addition know all the fluctuation modes and their eigenvalues
explicitly.

Example: W(z) = tanhx SUSY partner of free particle, has 1 bound state g =0

dolz) = N with  N/C =2

cosh x

ost() = 2/dx

dst(x) = g = *7 for T — 400

(,bst

= 2arcsin(tanh x) - sin 5 = tanh x

cosh x

U(pst) = % L2 () = ﬁrx =2(1- tanh? x)

=2(1 —sin? %) = 1+ (1 — 2sin® &) = 1 + cos

analytical continuation leads to

Sine — Gordon U(p) =1+ cos¢
Tutorial: W (z) = 2tanhz = ¢st(x) = tanh = U(g) =4(1— ¢%)?

Homework: W (z) =sgnaz = U(p) = %(1 — |¢])?

Remarks:
e W(x)=3tanhz - no closed form for U, implicit relations are
U(pst) = ﬁ =U(—odg), dst(x) = tczlslﬁi + arcsin(tanh x) , Ot = :tg
e W(x)=4tanhz = new model
U(p) = % [1+ 2cos (2 arccos(3¢)) + %]4 , bt = :l:;

e For a complete discussion on shape-inv. SUSY potentials see GJ and P. Roy, Ann.
Phys. 256(1997)302. Includes also discussion on unstable fields potentials

28



6 Supersymmetry in Stochastic Processes

Literature on stochastic processes

1 N.G. van Kampen, Stochastic Processes in Physics and Chemistry, (North-Holland,
1992)

2 C.W. Gardiner, Handbook of Stochastic Methods, (Springer-Verlag, 1990)

6.1 The Langevin Equation

i =—U'(n) + ()|

Stochastic differential equation where

7: macroscopic degree of freedom.
For example, position of a highly overdamped motion of a Brownian particle

(y1) > mij)
U: External deterministic force F' or drift
F(n) =-U'(n)
&: Stochastic force (noise). For example, simulating a coupling to heat bath
Un) U(n)
AT Y
7 7
\. s \. -
U]
(Bi-)stable System Meta-stable System

Gaussian white noise:
(&) =0 (€()EE) = Dot — 1)
Z€ero mean No correlation in time
Diffusion constant D. For ideal heat bath D = 2kgT

Idealisation of more realistic colored noise

ey = 2 exp{ |t — /7).

27,

with correlation time 7. > 0. Limit 7. — 0 = white noise. From now on only white noise.

Average via ”path integral”:

o= [ pen{—g5 [Tarem)o

In general no interest in a particular solution of the Langevin equation, but on average
behaviour.
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6.2 The Fokker-Planck Equation
Transition probability density:
my(x, z0) = (d(n(t) — x)) where zo :=1(0).

Is the probability density to arrive at position z at time ¢ > 0 for a Brownian particle
starting as zg at time 0.

Fokker-Planck Equation:

—m(wx)—Ba—Qm(:ﬁx)—iU’(x)m(xx) (FP)
315 t s Q) — 2 8&72 t y L0 81’ t y L0
with initial condition mo(x,z0) = d(z — x0).

The stationary distribution:
Assume the below limit exists, then

+o0
Py (x) :== tliglo my(z, zo) with / dz Py(z) =1.

—00

Insert in (FP):

D 8?2 o .,
0= 5 @Pst(l’) — % U (.’II)PSt(LL’)
Integration:
20 puw) - U'(@)Pula) = const
7 it (T x) Pyt (x) = const.

As Py (x) is normalisable we can assume Py (2) — 0 and P/ (z) — 0 as 2 — +o0.
So constant of integration should be const. =0

Integration:

Py(z) = Cexp {—% U(x)} — ¢~ U@)/kBT

The assumption that this is normalisable implies restriction on the shape of the drift po-
tential. Typical shapes are

Stable Meta Stable Unstable
Py (x) exists tlim my(x,29) =0 tlim my(x,29) =0
—00 —00
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