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Supersymmetric Quantum Mechanics:

SUSY QM = QM+ Supercharges

Supercharges are conserved quantities obeying a SUSY algebra

Aim of lecture:
Supersymmetry (SUSY) as an algebraic tool with many applications in theoretical and
mathematical physics and beyond.
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1 Historical Background

SUSY idea originates in quantum field theory (gauge theories)

• Structure:

Space− Time Sym. Internal (Gauge) Sym.
(Poincare Algebra) (Lie Algebra)

Matter Fields Gauge Fields
(Fermions) (Bosons)

• SUSY idea: Unify space-time and internal symmetries

=⇒ Unification of Fermions and Bosons

NoGo-Theorem of Coleman and Mandula
Within the context of Lie algebras NOT possible

=⇒ Super (or graded) Lie algebras close under

Commutator [A,B] := AB −BA

and

Anticommutator {A,B} := AB +BA

• 1976: H. Nicolai invented SUSY QM as (0 + 1)-dim. QFT

• 1981: E. Witten introduced a simple QM model (Witten model)
=⇒ popularization

• More background is given in ”The Book”

Content

� Supersymmetric Quantum Mechanics (definitions and properties)

� The Witten Model (non-relativistic SUSY QM)

� Darboux Method (construct problem with known solution)

� Classical Field in (1 + 1) Dimensions (SUSY in classical systems)

� Supersymmetry in Stochastic Processes (SUSY in classical stochastic systems)

� Supersymmetry and Pauli Hamiltonians (Aharonov-Casher; Pauli paramagnetism)

� Supersymmetry and Dirac Hamiltonians (SUSY in rel. QM systems; Graphene)
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2 Supersymmetric Quantum Mechanics

2.1 Definitions

Assumptions:

Hilbert space: H
Hamiltonian: H = H†

Observables: Qi = Q†
i , i = 1, 2, 3 . . . , N

Definition 2.1: A quantum system characterised by the set {H,Q1, . . . , QN ;H}, is called
supersymmetric if the following anticommutation relation is valid for all i, j = 1, 2, . . . , N :

{Qi, Qj} = Hδij , (1)

where δij denotes Kronecker’s delta symbol. The self-adjoint operators Qi are called super-
charges and the Hamiltonian H is called SUSY Hamiltonian. The symmetry described by
the superalgebra (1) is called N -extended supersymmetry.

Remarks:

� H = 2Q2
1 = 2Q2

2 = · · · = 2Q2
N =

2

N

N∑
i=1

Q2
i ≥ 0

no negative energy eigenvalues

Qi =
√
H/2 square root of Hamiltonian

� [H,Qi] = 0 supercharges Qi are constants of motion if
∂Qi

∂t
= 0

� For N ≥ 2 we may introduce complex supercharges

Q̃k :=
1√
2
[Q2k−1 + iQ2k]

{
Q̃k, Q̃

†
l

}
= Hδkl , Q̃2

k = 0 =
(
Q̃†

k

)2

Show that
{
Q̃k, Q̃l

}
= 0 for all k, l.

Let E0 := inf specH ≥ 0 be ground state energy of H with

H|ψj
0⟩ = E0|ψj

0⟩ , j = 1, 2, 3, . . . , g (g = degeneracy of E0)

Definition:

SUSY unbroken : ⇐⇒ E0 = 0

SUSY broken : ⇐⇒ E0 > 0

Remarks: E0 = ⟨ψj
0|H|ψj

0⟩ =
2

N

N∑
i=1

⟨ψj
0|Q

2
i |ψ

j
0⟩ =

2

N

N∑
i=1

||Qi|ψj
0⟩||

2

E0 = 0 ⇐⇒ Qi|ψj
0⟩ = 0 for all (i, j)

E0 > 0 ⇐⇒ ∃ pair (i, j) such that Qi|ψj
0⟩ ≠ 0

ground state is NOT invariant under SUSY transformations and SUSY is broken
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2.2 The Supersymmetric Harmonic Oscillator

Consider 1-dim. quantum particle with spin 1
2 and unit mass m = 1

Hilbert space: H = L2(R)⊗ C2

”Bosonic” degree of freedom: a := 1√
2
(∂x + x) =⇒ [a, a†] = 1

”Fermionic” degree of freedom: b :=

(
0 0
1 0

)
=⇒ {b, b†} = 1 , b2 = 0 = (b†)2

Complex Supercharge: Use no longer tilde Q̃ ≡ Q

Q := a⊗ b† =

(
0 a
0 0

)
, Q† = a† ⊗ b =

(
0 0
a† 0

)
SUSY Hamiltonian:

H := {Q,Q†} = a†a+ b†b

= 1
2(−∂

2
x + x2 − 1)⊗ 1 + 1⊗

(
1 0
0 0

)
= 1

2(−∂
2
x + x2)⊗ 1 + 1⊗

(
1
2 0
0 −1

2

)
Spectral properties of H:

� Eigenstates

|n, ↓⟩ := |n⟩ ⊗
(

0
1

)
, |n, ↑⟩ := |n⟩ ⊗

(
1
0

)
, n ∈ N0 ,

where
a|n⟩ =

√
n|n− 1⟩ , a†|n⟩ =

√
n+ 1|n+ 1⟩

and

b|n, ↑⟩ = |n, ↓⟩ , b|n, ↓⟩ = 0 , b†|n, ↓⟩ = |n, ↑⟩ , b†|n, ↑⟩ = 0 .

� Eigenvalues: ⟨a†a⟩ = n , n = 0, 1, 2, 3, . . .

6

E0 = 0

E1 = 1

E2 = 2

E3 = 3

E ⟨b†b⟩ = 0 ⟨b†b⟩ = 1

↓

↓ ↑

↓ ↑

↓ ↑
Q
=⇒

Q†

⇐=

� SUSY unbroken as E0 = 0

� E > 0 pairwise degenerate

SUSY Transformations:

Q|n, ↓⟩ =
√
n|n− 1, ↑⟩ , Q|n, ↑⟩ = 0 ,

Q†|n, ↑⟩ =
√
n+ 1|n+ 1, ↓⟩ , Q†|n, ↓⟩ = 0 .

Q and Q† transform between spin-down and spin-up state with SAME energy eigenvalue.
Is generic property for all N ≥ 2 SUSY QM systems as there exists a Witten parity operator.
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2.3 Properties of N = 2 SUSY QM

Consider N = 2 SUSY QM: {H,Q1, Q2;H}

Recall: Q1Q2 = −Q2Q1, H = 2Q2
1 = 2Q2

2 = Q2
1 +Q2

2

Complex Supercharge: Q := 1√
2
(Q1 + iQ2), Q† = 1√

2
(Q1 − iQ2)

SUSY algebra:

Q2 = 0 = (Q†)2 , {Q,Q†} = H

2.3.1 The Witten parity

Let us assume there exists a self-adjoint operator W such that

[W,H] = 0, {W,Q} = 0 = {W,Q†}, W 2 = 1.

Definition: A self-adjoint operatorW which obeys above relations is called Witten parity
or Witten operator. The quantum system {H,Q,Q†,W ;H} will be called a supersymmetric
quantum system with Witten parity.

Remarks: See Tutorial Exercise 2 and 3

� specW = {−1,+1} non-trivial unitary involution on H
[Q,H] = 0 = [Q†, H] constant of motion

� For N ≥ 2 formal construction on H\ ker(H) via

W :=
2

H
QQ† − 1 =

1

iH
[Q1, Q2] =

[Q,Q†]

{Q,Q†}

� ”Fermionic” annihilation operator

b := Q†/
√
H on H\ ker(H)

obeying the relations

{b, b†} = 1, b2 = 0 =
(
b†
)2

.

� ”Fermion” number operator

F := b†b = QQ†/H = F† = F2

obeys the algebra

[F , H] = 0 , [F , Q] = Q , [F , Q†] = −Q† ,

and is related to the Witten parity by

W = 2F − 1 = (−1)F+1 .

2.3.2 Witten parity subspaces

Definition: Let P± := 1
2(1±W ) be the orthogonal projection of H onto the eigenspace

of the Witten operator with eigenvalue ±1, respectively.
The subspace

H± := P±HP± = {|ψ⟩ ∈ H : W |ψ⟩ = ±|ψ⟩}

is called space of positive (H+) and negative (H−) Witten parity, respectively.
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Remarks:

� Projectors:

P±P± = 1
4(1±W )(1±W ) = 1

4(1± 2W +W 2) = 1
2(1±W ) = P± projector

P±P∓ = 1
4(1±W )(1∓W ) = 1

4(1−W 2) = 0 orthogonal

P+ + P− = 1 complete

=⇒ H = H+ ⊕H− grading of H induced by W .

� Matrix representation

W =

(
1 0
0 −1

)
, P+ =

(
1 0
0 0

)
, P− =

(
0 0
0 1

)
.

|ψ+⟩ =
(

|ϕ+⟩
0

)
, |ψ−⟩ =

(
0

|ϕ−⟩

)
, |ϕ±⟩ ∈ H±

� Supercharges: {Q,W} = 0

=⇒ ±Q|ψ±⟩ = QW |ψ±⟩ = −WQ|ψ±⟩ =⇒ WQ|ψ±⟩ = ∓Q|ψ±⟩

Hence Q|ψ±⟩ ∈ H∓ or Q|ψ±⟩ = 0

Similar Q†|ψ±⟩ ∈ H∓ or Q†|ψ±⟩ = 0

Q and Q† transform between H+ and H− =⇒ SUSY transformations

Hence QH− ⊂ H+, Q†H+ ⊂ H−

� Without loss of generality (see Tutorial Exercise 4):

Q =

(
0 A
0 0

)
, Q† =

(
0 0
A† 0

)
,

with A : H− → H+ and A† : H+ → H−

Observe Q†H− = 0 = QH+

� SUSY partner Hamiltonians:

H = Q†Q+QQ† =

(
AA† 0
0 A†A

)
=

(
H+ 0
0 H−

)
with SUSY partner Hamiltonians

H+ := AA† ≥ 0, H− := A†A ≥ 0.

� Even and odd operators:
An arbitrary operator O acting on H can be decomposed into its diagonal (even) part
Oe and its off-diagonal (odd) part Oo. That is, O = Oe +Oo with

[W,Oe] = 0, {W,Oo} = 0.

In general

O =

(
O++ O+−
O−+ O−−

)
with O++ and O−− forming the even part and O+− and O−+ the odd part of O.
In particular, the SUSY Hamiltonian H is an even operator, whereas the supercharges
Q and Q† are odd operators.
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2.3.3 SUSY Transformations

Definition: Eigenstates of W are called positive and negative (Witten-) parity states,
respectively. They are denoted by |ψ±⟩:

W |ψ±⟩ = ±|ψ±⟩ , |ψ±⟩ ∈ H± .

For simplicity we will call them also positive and negative states.

Proposition: To each positive (negative) eigenstate |ψ+
E⟩ (|ψ

−
E⟩) of the SUSY Hamiltonian

H with eigenvalue E > 0 there exists a negative (positive) eigenstate of H with the same
eigenvalue. These eigenstates are related by the SUSY transformations

|ψ−
E⟩ =

1√
E
Q†|ψ+

E⟩, |ψ+
E⟩ =

1√
E
Q|ψ−

E⟩,

where
W |ψ±

E⟩ = ±|ψ±
E⟩ and H|ψ±

E⟩ = E|ψ±
E⟩ .

Proof: As [W,H] = 0 =⇒ common eigenbasis

Let H|ψ−
E⟩ = E|ψ−

E⟩ =⇒ HQ|ψ−
E⟩ = QH|ψ−

E⟩ = EQ|ψ−
E⟩ ∈ H+.

=⇒ |ψ+
E⟩ :=

1√
E
Q|ψ−

E⟩ is positive eigenstate of H for the same eigenvalue E > 0.

Norm: ||ψ+
E ||2 =

1
E ⟨ψ−

E |Q†Q|ψ−
E⟩ =

1
E ⟨ψ−

E |Q†Q+QQ†|ψ−
E⟩ =

1
E ⟨ψ−

E |H|ψ−
E⟩ = 1

Corollary: The spectra of the two SUSY partner Hamiltonians H+ and H− are identical
away from zero:

spec (H+)\{0} = spec (H−)\{0}.
We say, Hamiltonians H+ and H− are essentially isospectral.
That is, the strictly positive eigenvalues of the SUSY partner Hamiltonians H± coincide.

Remarks:

� Let |ϕ±E⟩ ∈ H± with E > 0, then

|ϕ−E⟩ =
1√
E
A†|ϕ+E⟩, |ϕ+E⟩ =

1√
E
A|ϕ−E⟩.

� Spectral Properties of N = 2 SUSY QM

6

E0

E1

E2

E3

E

↑↓↑

↑↓↑↓

↑↓

↑↓
good SUSY
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0

E0

E1

E2

E

↑↓↑↓

↑↓

↑↓

broken SUSY

Symbolic notation: |ψ+
E⟩ =

(
|ϕ+E⟩
0

)
= |E, ↑⟩ |ψ−

E⟩ =
(

0
|ϕ−E⟩

)
= |E, ↓⟩

� Requirement for unbroken SUSY: ∃ |ψ0⟩ such that Q|ψ0⟩ = 0 or Q†|ψ0⟩ = 0

For negative ground state: |ψ−
0 ⟩ =

(
0

|ϕ−0 ⟩

)
=⇒ A|ϕ−0 ⟩ = 0

For positive ground state: |ψ+
0 ⟩ =

(
|ϕ+0 ⟩
0

)
=⇒ A†|ϕ+0 ⟩ = 0
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2.3.4 The Witten Index

Definition: Let us denote by n± the number of zero modes (zero eigenvalues) of H± in
the subspace H±. For finite n+ and n− the quantity

∆ := n− − n+ (2)

is called the Witten index.

Remarks:

� ∆ ̸= 0 =⇒ SUSY is unbroken as at least one, n+ or n−, is non-zero
∆ = 0 =⇒ SUSY can be broken (n+ = n− = 0) or unbroken (n+ = n− ̸= 0)

� Relation to Fredholm index of A, which is defined by

indA := dimkerA− dimkerA†

= dimkerA†A− dimkerAA†

= dimkerH− − dimkerH+

= n− − n+
= ∆

� Connection with Witten parity:

Formally: ∆ = Tr (−W ) = TrH−(1)− TrH+(1) = dimH− − dimH+ = n− − n+

Cancelation of the E > 0 contributions due to SUSY degeneracy!

Regularised indices:

∆̄(β) := Tr
(
−W e−βH

)
= Tr−

(
e−βA†A

)
− Tr+

(
e−βAA†

)
, β > 0

∆̂(z) := Tr
(
−W z

H−z

)
= Tr−

(
z

A†A−z

)
− Tr+

(
z

AA†−z

)
, z < 0

∆̃(ε) := Tr
(
−WΘ(ε−H)

)
= Tr−

(
Θ(ε−A†A)

)
− Tr+

(
Θ(ε−AA†)

)
, ε > 0

For purely discrete spectrum and finite n± follows ∆ = ∆̄(β) = ∆̂(z) = ∆̃(ε).
Otherwise on defines

∆ := lim
β→∞

∆̄(β) or ∆ := lim
z↑0

∆̂(z) or ∆ := lim
ε↓0

∆̃(ε)

whenever the right-hand-side is well defined.
Problems arise when n± = ∞ and/or continuous spectrum (see Pauli paramagnetism
later)

� Partition functions and internal energy:

Let Z±(β) := Tr e−βH± and U±(β) := −∂β lnZ±(β) then

Z−(β) = ∆+ Z+(β) and U−(β)Z−(β) = U+(β)Z+(β).

if A is Fredholm, i.e. indA is well-defined.

� The Witten index is a topological invariant, that is, it is
NOT sensitive against smooth variations of parameters in the theory
=⇒ Witten model next section
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Summary of Section 2

N = 2 SUSY QM with Witten parity:

System {H,Q,Q†,W ;H} obeying

{Q,Q†} = H , Q2 = 0 = (Q†)2 , W 2 = 1

[W,H] = 0 , {W,Q} = 0 = {W,Q†} , W =W †

Matrix representation:

Grading of Hilbert space H = H+ ⊕H− into Witten parity eigen-subspaces of

W =

(
1 0
0 −1

)
, Q =

(
0 A
0 0

)
, Q† =

(
0 0
A† 0

)
,

H =

(
H+ 0
0 H−

)
=

(
AA† 0
0 A†A

)
,

A : H− → H+

A† : H+ → H−

Eigenstates:
W |ψ±

E⟩ = ±|ψ±
E⟩

H|ψ±
E⟩ = E|ψ±

E⟩ E ≥ 0

SUSY transformations: Eigenvalue E > 0 is pairwise degenerate

|ψ−
E⟩ =

1√
E
Q†|ψ+

E⟩

|ψ+
E⟩ =

1√
E
Q|ψ−

E⟩
modulo phase factors

SUSY unbroken: E = 0 is eigenvalue of H, no SUSY transformation for ground state(s)

SUSY broken: H has only strictly positive eigenvalues E > 0, E is pairwise degenerate
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