Supersymmetric Quantum Mechanics

Lecture Notes

Georg Junker

Friedrich-Alexander-Universität Erlangen-Nürnberg

Summer Semester 2023

Preliminaries

Dates:

Six Mondays 17.04.23, 24.04.23, 08.05.23, 15.05.23, 22.05.23, 29.05.23, 05.06.23 (Test?) Lecture 9 - 12, Tutorial 13 - 15, Homework Problems Script and other details are available at <https://www.eso.org/~gjunker/VorlesungSS2023.html>

Literature:

- Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer-Verlag) 1st edition
- Kalka H and Soff G 1997 Supersymmetrie (Stuttgart: Teubner)
- Cooper F, Khare A and Sukhatme U 2001 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)
- **Bagchi B 2001 Supersymmetry in Quantum and Classical Mechanics (Boca Raton:** Chapman & Hall/CRC)
- Gangopadhyaya A, Mallow J V and Rasinariu C 2011 Supersymmetric Quantum Mechanics: An Introduction (Singapore: World Scientific)
- Junker G 2019, Supersymmetric Methods in Quantum, Statistical and Solid State Physics (Bristol: IOP) \implies "The Book"
- ...

Supersymmetric Quantum Mechanics:

 $SUSY$ $OM = OM + Supercharges$

Supercharges are conserved quantities obeying a SUSY algebra

Aim of lecture:

Supersymmetry (SUSY) as an algebraic tool with many applications in theoretical and mathematical physics and beyond.

1 Historical Background

SUSY idea originates in quantum field theory (gauge theories)

• Structure:

- SUSY idea: Unify space-time and internal symmetries
	- =⇒ Unification of Fermions and Bosons

NoGo-Theorem of Coleman and Mandula Within the context of Lie algebras NOT possible

=⇒ Super (or graded) Lie algebras close under

Commutator $[A, B] := AB - BA$

and

Anticommutator
$$
\{A, B\} := AB + BA
$$

- 1976: H. Nicolai invented SUSY QM as $(0 + 1)$ -dim. QFT
- 1981: E. Witten introduced a simple QM model (Witten model) \implies popularization
- More background is given in "The Book"

Content

- Supersymmetric Quantum Mechanics (definitions and properties)
- The Witten Model (non-relativistic SUSY QM)
- Darboux Method (construct problem with known solution)
- Classical Field in $(1 + 1)$ Dimensions (SUSY in classical systems)
- Supersymmetry in Stochastic Processes (SUSY in classical stochastic systems)
- Supersymmetry and Pauli Hamiltonians (Aharonov-Casher; Pauli paramagnetism)
- Supersymmetry and Dirac Hamiltonians (SUSY in rel. QM systems; Graphene)

2 Supersymmetric Quantum Mechanics

2.1 Definitions

Assumptions:

Hilbert space: \mathcal{H} Hamiltonian: Observables: † $i_i^{\dagger}, \quad i = 1, 2, 3 \ldots, N$

Definition 2.1: A quantum system characterised by the set $\{H, Q_1, \ldots, Q_N; \mathcal{H}\}\)$, is called supersymmetric if the following anticommutation relation is valid for all $i, j = 1, 2, \ldots, N$:

$$
\boxed{\{Q_i, Q_j\} = H\delta_{ij}},\tag{1}
$$

where δ_{ij} denotes Kronecker's delta symbol. The self-adjoint operators Q_i are called super*charges* and the Hamiltonian H is called $SUSY$ *Hamiltonian*. The symmetry described by the superalgebra [\(1\)](#page-2-0) is called N-extended supersymmetry.

N

Remarks:

•
$$
H = 2Q_1^2 = 2Q_2^2 = \dots = 2Q_N^2 = \frac{2}{N} \sum_{i=1}^N Q_i^2 \ge 0
$$

no negative energy eigenvalues

 $Q_i = \sqrt{H/2}$ square root of Hamiltonian

- $[H, Q_i] = 0$ *supercharges* Q_i are constants of motion if $\frac{\partial Q_i}{\partial t} = 0$
- For $N \geq 2$ we may introduce complex supercharges

$$
\tilde{Q}_k := \frac{1}{\sqrt{2}} \left[Q_{2k-1} + i Q_{2k} \right]
$$
\n
$$
\left\{ \tilde{Q}_k, \tilde{Q}_l^{\dagger} \right\} = H \delta_{kl}, \qquad \tilde{Q}_k^2 = 0 = \left(\tilde{Q}_k^{\dagger} \right)^2
$$
\nShow that $\left\{ \tilde{Q}_k, \tilde{Q}_l \right\} = 0$ for all k, l .

Let $E_0 := \inf \operatorname{spec} H \ge 0$ be ground state energy of H with

$$
H|\psi_0^j\rangle = E_0|\psi_0^j\rangle, \qquad j = 1, 2, 3, \dots, g \qquad (g = \text{degeneracy of } E_0)
$$

Definition:

SUSY unbroken :
$$
\iff E_0 = 0
$$

SUSY broken : $\iff E_0 > 0$

 ${\bf Remarks:}\,\, E_0=\langle \psi^j_0$ $j_0^j|H|\psi_0^j$ $\frac{j}{0}\rangle=\frac{2}{\lambda}$ N \sum N $i=1$ $\langle \psi_0^j$ $j_0^j |Q_i^2|\psi_0^j$ $\frac{j}{0}\rangle=\frac{2}{\Lambda}$ N \sum N $i=1$ $||Q_i|\psi_0^j$ $\ket{1}^{j}$ $E_0 = 0 \qquad \Longleftrightarrow \qquad Q_i |\psi_0^j$ $\langle 0 \rangle = 0$ for all (i, j)

 $E_0 > 0 \qquad \Longleftrightarrow \qquad \exists \text{ pair } (i, j) \text{ such that } Q_i | \psi_0^j$ $\langle 0^J_0 \rangle \neq 0$

ground state is NOT invariant under SUSY transformations and SUSY is broken

2.2 The Supersymmetric Harmonic Oscillator

Consider 1-dim. quantum particle with spin $\frac{1}{2}$ and unit mass $m = 1$ Hilbert space: $^{2}(\mathbb{R})\otimes\mathbb{C}^{2}$ "Bosonic" degree of freedom: 1 $\frac{1}{2}(\partial_x + x) \Rightarrow [a, a^{\dagger}] = 1$ \lq Fermionic" degree of freedom: $\left\{\begin{matrix} 0 & 0 \ 1 & 0 \end{matrix} \right\} \qquad \Longrightarrow \qquad \{b, b^{\dagger}\} = 1 \,, \quad b^2 = 0 = (b^{\dagger})^2$

Complex Supercharge: Use no longer tilde $\tilde{Q} \equiv Q$

$$
Q := a \otimes b^{\dagger} = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}, \qquad Q^{\dagger} = a^{\dagger} \otimes b = \begin{pmatrix} 0 & 0 \\ a^{\dagger} & 0 \end{pmatrix}
$$

SUSY Hamiltonian:

$$
H := \{Q, Q^{\dagger}\} = a^{\dagger}a + b^{\dagger}b
$$

= $\frac{1}{2}(-\partial_x^2 + x^2 - 1) \otimes 1 + 1 \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
= $\frac{1}{2}(-\partial_x^2 + x^2) \otimes 1 + 1 \otimes \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$

Spectral properties of H:

Eigenstates

$$
|n,\downarrow\rangle := |n\rangle \otimes \left(\begin{array}{c} 0\\1 \end{array}\right), \qquad |n,\uparrow\rangle := |n\rangle \otimes \left(\begin{array}{c} 1\\0 \end{array}\right), \qquad n \in \mathbb{N}_0,
$$

where

$$
a|n\rangle = \sqrt{n}|n-1\rangle
$$
, $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$

and

$$
b|n,\uparrow\rangle = |n,\downarrow\rangle
$$
, $b|n,\downarrow\rangle = 0$, $b^{\dagger}|n,\downarrow\rangle = |n,\uparrow\rangle$, $b^{\dagger}|n,\uparrow\rangle = 0$.

• Eigenvalues: $\langle a \rangle$ $\langle a^{\dagger}a \rangle = n$, $n = 0, 1, 2, 3, \ldots$

- SUSY unbroken as $E_0 = 0$
- $E > 0$ pairwise degenerate

SUSY Transformations:

$$
Q|n,\downarrow\rangle = \sqrt{n}|n-1,\uparrow\rangle, \qquad Q|n,\uparrow\rangle = 0,
$$

$$
Q^{\dagger}|n,\uparrow\rangle = \sqrt{n+1}|n+1,\downarrow\rangle, \qquad Q^{\dagger}|n,\downarrow\rangle = 0.
$$

 Q and Q^{\dagger} transform between spin-down and spin-up state with SAME energy eigenvalue. Is generic property for all $N \geq 2$ SUSY QM systems as there exists a Witten parity operator.

2.3 Properties of $N = 2$ SUSY QM

2.3.1 The Witten parity

Let us assume there exists a self-adjoint operator W such that

 $[W,H]=0,\qquad \{W,Q\}=0=\{W,Q^\dagger\},\qquad W^2={\bf 1}.$

Definition: A self-adjoint operator W which obeys above relations is called Witten parity or Witten operator. The quantum system $\{H, Q, Q^{\dagger}, W; \mathcal{H}\}$ will be called a supersymmetric quantum system with Witten parity.

Remarks: See Tutorial Exercise 2 and 3

- spec $W = \{-1, +1\}$ non-trivial unitary involution on H $[Q, H] = 0 = [Q^{\dagger}, H]$ constant of motion
- For $N \geq 2$ formal construction on $\mathcal{H}\backslash \text{ker}(H)$ via

$$
W := \frac{2}{H}QQ^{\dagger} - \mathbf{1} = \frac{1}{iH} [Q_1, Q_2] = \frac{[Q, Q^{\dagger}]}{\{Q, Q^{\dagger}\}}
$$

"Fermionic" annihilation operator

$$
b := Q^{\dagger}/\sqrt{H} \qquad \text{on} \qquad \mathcal{H} \backslash \ker(H)
$$

obeying the relations

$$
\{b, b^{\dagger}\} = \mathbf{1}, \qquad b^2 = 0 = \left(b^{\dagger}\right)^2.
$$

"Fermion" number operator

$$
\mathcal{F}:=b^{\dagger}b=QQ^{\dagger}/H=\mathcal{F}^{\dagger}=\mathcal{F}^2
$$

obeys the algebra

$$
[\mathcal{F}, H] = 0, \qquad [\mathcal{F}, Q] = Q, \qquad [\mathcal{F}, Q^{\dagger}] = -Q^{\dagger},
$$

and is related to the Witten parity by

$$
W=2\mathcal{F}-\mathbf{1}=(-1)^{\mathcal{F}+1}.
$$

2.3.2 Witten parity subspaces

Definition: Let $P^{\pm} := \frac{1}{2}(1 \pm W)$ be the orthogonal projection of H onto the eigenspace of the Witten operator with eigenvalue ± 1 , respectively. The subspace

$$
\mathcal{H}^{\pm} := P^{\pm} \mathcal{H} P^{\pm} = \{ |\psi \rangle \in \mathcal{H} : W | \psi \rangle = \pm | \psi \rangle \}
$$

is called space of *positive* (\mathcal{H}^+) and *negative* (\mathcal{H}^-) Witten parity, respectively.

Remarks:

• Projectors:

$$
P^{\pm}P^{\pm} = \frac{1}{4}(1 \pm W)(1 \pm W) = \frac{1}{4}(1 \pm 2W + W^2) = \frac{1}{2}(1 \pm W) = P^{\pm}
$$
 projector
\n
$$
P^{\pm}P^{\mp} = \frac{1}{4}(1 \pm W)(1 \mp W) = \frac{1}{4}(1 - W^2) = 0
$$
 orthogonal
\n
$$
P^+ + P^- = 1
$$
 complete

 \implies $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ grading of H induced by W.

Matrix representation

$$
W = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad P^{+} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad P^{-} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.
$$

$$
|\psi^{+}\rangle = \begin{pmatrix} |\phi^{+}\rangle \\ 0 \end{pmatrix}, \qquad |\psi^{-}\rangle = \begin{pmatrix} 0 \\ |\phi^{-}\rangle \end{pmatrix}, \qquad |\phi^{\pm}\rangle \in \mathcal{H}^{\pm}
$$

• Supercharges: $\{Q, W\} = 0$ $\implies \qquad \pm Q|\psi^{\pm}\rangle = QW|\psi^{\pm}\rangle = -WQ|\psi^{\pm}\rangle \qquad \implies \qquad WQ|\psi^{\pm}\rangle = \mp Q|\psi^{\pm}\rangle$

Hence
$$
Q|\psi^{\pm}\rangle \in \mathcal{H}^{\mp}
$$
 or $Q|\psi^{\pm}\rangle = 0$
\nSimilar $Q^{\dagger}|\psi^{\pm}\rangle \in \mathcal{H}^{\mp}$ or $Q^{\dagger}|\psi^{\pm}\rangle = 0$

Q and Q^{\dagger} transform between \mathcal{H}^+ and $\mathcal{H}^ \implies$ SUSY transformations Hence $QH^- \subset H^+$, $Q^{\dagger}H^+ \subset H^-$

Without loss of generality (see Tutorial Exercise 4):

$$
Q = \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}, \qquad Q^{\dagger} = \begin{pmatrix} 0 & 0 \\ A^{\dagger} & 0 \end{pmatrix},
$$

\n
$$
\rightarrow \mathcal{H}^{+} \qquad \text{and} \qquad A^{\dagger} : \mathcal{H}^{+} \rightarrow \mathcal{H}^{-}
$$

with $A : \mathcal{H}^-$ -Observe $Q^{\dagger} \mathcal{H}^- = 0 = Q \mathcal{H}^+$

• SUSY partner Hamiltonians:

$$
H = Q^{\dagger} Q + Q Q^{\dagger} = \begin{pmatrix} A A^{\dagger} & 0 \\ 0 & A^{\dagger} A \end{pmatrix} = \begin{pmatrix} H_{+} & 0 \\ 0 & H_{-} \end{pmatrix}
$$

with SUSY partner Hamiltonians

$$
H_+ := AA^{\dagger} \ge 0, \qquad H_- := A^{\dagger} A \ge 0.
$$

Even and odd operators:

An arbitrary operator O acting on H can be decomposed into its diagonal (even) part O_e and its off-diagonal (odd) part O_o . That is, $O = O_e + O_o$ with

$$
[W, O_e] = 0, \qquad \{W, O_o\} = 0.
$$

In general

$$
O=\left(\begin{array}{cc} O_{++} & O_{+-} \\ O_{-+} & O_{--} \end{array}\right)
$$

with O_{++} and O_{--} forming the even part and O_{+-} and O_{-+} the odd part of O. In particular, the SUSY Hamiltonian H is an even operator, whereas the supercharges Q and Q^{\dagger} are odd operators.

2.3.3 SUSY Transformations

Definition: Eigenstates of W are called *positive* and *negative* (Witten-) parity states, respectively. They are denoted by $|\psi^{\pm}\rangle$:

$$
W|\psi^{\pm}\rangle = \pm |\psi^{\pm}\rangle \,, \qquad |\psi^{\pm}\rangle \in \mathcal{H}^{\pm} \,.
$$

For simplicity we will call them also positive and negative states.

Proposition: To each positive (negative) eigenstate $|\psi_E^+|$ $\stackrel{+}{E} \rangle$ $(|\psi_{E}^{-}$ $\langle \overline{E} \rangle$ of the SUSY Hamiltonian H with eigenvalue $E > 0$ there exists a negative (positive) eigenstate of H with the same eigenvalue. These eigenstates are related by the SUSY transformations

$$
|\psi_E^-\rangle=\frac{1}{\sqrt{E}}Q^\dagger|\psi_E^+\rangle,\qquad |\psi_E^+\rangle=\frac{1}{\sqrt{E}}Q|\psi_E^-\rangle,
$$

where

 $W|\psi_E^{\pm}$ $\ket{\frac{\pm}{E}} = \pm \ket{\psi_E^{\pm}}$ $\langle E \rangle$ and $H|\psi_E^{\pm}$ $\ket{E} = E \ket{\psi_E^\pm}$ $\ket{\overset{\pm}{E}}$.

Proof: As $[W, H] = 0$ \implies common eigenbasis Let $H|\psi_{E}^{-}$ $\vert E^{\cdot} \rangle = E \vert \psi_E^- \rangle$ $\langle E \rangle \qquad \Longrightarrow \qquad H Q |\psi_{E}^{-} \rangle$ $\langle \overline{E} \rangle = QH |\psi_E^ \langle \overline{E} \rangle = EQ|\psi_{E}^{-}$ $\overline{E}\rangle\in\mathcal{H}^{+}.$ \implies $|\psi_{E}^{+}|$ $\vert _{E}^{+}\rangle :=\frac{1}{\sqrt{2}}% \vert _{E}^{E}|\psi _{E}^{+}\rangle$ $\frac{1}{\overline{E}}Q|\psi_{E}^{-}$ $\vert E \vert$ is positive eigenstate of H for the same eigenvalue $E > 0$. Norm: $||\psi_E^+||$ $\frac{1}{E}$ ||² = $\frac{1}{E}$ $\frac{1}{E} \langle \psi_E^ _E^-|Q^\dagger Q|\psi^-_E$ $\bar{\bar{E}}\rangle=\frac{1}{E}$ $\frac{1}{E} \langle \psi_E^ \bar{Q}_{E}^{-}|Q^{\dagger}Q + QQ^{\dagger}|\psi_{E}^{-}|$ $\bar{\vphantom{a}}_E\rangle=\frac{1}{E}$ $\frac{1}{E} \langle \psi_E^ \frac{1}{E}|H|\psi_{E}^{-}$ $\langle \overline{E} \rangle = 1$

Corollary: The spectra of the two SUSY partner Hamiltonians H_+ and H_- are identical away from zero:

$$
spec (H_{+})\backslash \{0\} = spec (H_{-})\backslash \{0\}.
$$

We say, Hamiltonians H_+ and $H_-\$ are *essentially isospectral*. That is, the strictly positive eigenvalues of the SUSY partner Hamiltonians H_{\pm} coincide.

Remarks:

• Let $|\phi_E^{\pm}\rangle$ $\langle E \rangle \in \mathcal{H}^{\pm}$ with $E > 0$, then

$$
|\phi_{E}^{-}\rangle=\frac{1}{\sqrt{E}}\,A^{\dagger}|\phi_{E}^{+}\rangle,\qquad |\phi_{E}^{+}\rangle=\frac{1}{\sqrt{E}}\,A|\phi_{E}^{-}\rangle.
$$

• Spectral Properties of $N = 2$ SUSY QM

+ $\ket{\phi_E^+} = \left(\begin{array}{c} \ket{\phi_E^+} \ 0 \end{array}\right)$ $^+_E\rangle$ 0 $= |E, \uparrow\rangle$ $|\psi_{E}^{-}|$ $\langle \overline{E} \rangle = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$ $|\phi_E^ \ket^-_E$ $\Big) = |E, \downarrow\rangle$

• Requirement for unbroken SUSY: $\exists |\psi_0\rangle$ such that $Q|\psi_0\rangle = 0$ or $Q^{\dagger}|\psi_0\rangle = 0$ For negative ground state: $|\psi_0^-\rangle = \begin{pmatrix} 0 \\ |\phi_0^-\rangle \end{pmatrix}$ $|\phi_0^-\rangle$ $\Big) \qquad \Longrightarrow \qquad A|\phi_0^-\rangle = 0$ For positive ground state: $|\psi_0^+\rangle = \begin{pmatrix} |\phi_0^+\rangle \\ 0 \end{pmatrix}$ 0 $\left.\begin{array}{lll} \ & \longrightarrow & A^\dagger |\phi_0^+\rangle = 0 \end{array}\right.$

2.3.4 The Witten Index

Definition: Let us denote by n_{\pm} the number of zero modes (zero eigenvalues) of H_{\pm} in the subspace \mathcal{H}^{\pm} . For finite n_{+} and n_{-} the quantity

$$
\Delta := n_- - n_+\tag{2}
$$

is called the Witten index.

Remarks:

- $\bullet \ \Delta \neq 0$ SUSY is unbroken as at least one, n_+ or $n_-,$ is non-zero $\Delta = 0 \Rightarrow$ SUSY can be broken $(n_{+} = n_{-} = 0)$ or unbroken $(n_{+} = n_{-} \neq 0)$
- Relation to Fredholm index of A , which is defined by

$$
\text{ind } A := \dim \ker A - \dim \ker A^{\dagger} \n= \dim \ker A^{\dagger} A - \dim \ker AA^{\dagger} \n= \dim \ker H_{-} - \dim \ker H_{+} \n= n_{-} - n_{+} \n= \Delta
$$

• Connection with Witten parity:

Formally:
$$
\Delta = \text{Tr}(-W) = \text{Tr}_{\mathcal{H}_-}(1) - \text{Tr}_{\mathcal{H}_+}(1) = \dim \mathcal{H}_- - \dim \mathcal{H}_+ = n_- - n_+
$$

Cancelation of the $E > 0$ contributions due to SUSY degeneracy!

Regularised indices:

$$
\bar{\Delta}(\beta) := \text{Tr} \left(-W e^{-\beta H} \right) = \text{Tr}_{-} \left(e^{-\beta A^{\dagger} A} \right) - \text{Tr}_{+} \left(e^{-\beta A A^{\dagger}} \right), \qquad \beta > 0
$$
\n
$$
\hat{\Delta}(z) := \text{Tr} \left(-W \frac{z}{H - z} \right) = \text{Tr}_{-} \left(\frac{z}{A^{\dagger} A - z} \right) - \text{Tr}_{+} \left(\frac{z}{A A^{\dagger} - z} \right), \qquad z < 0
$$

$$
\widetilde{\Delta}(\varepsilon) := \text{Tr}\left(-W\Theta(\varepsilon - H)\right) = \text{Tr}_{-}\left(\Theta(\varepsilon - A^{\dagger}A)\right) - \text{Tr}_{+}\left(\Theta(\varepsilon - A A^{\dagger})\right), \quad \varepsilon > 0
$$

For purely discrete spectrum and finite n_{\pm} follows $\Delta = \bar{\Delta}(\beta) = \hat{\Delta}(z) = \tilde{\Delta}(\varepsilon)$. Otherwise on defines

$$
\Delta := \lim_{\beta \to \infty} \bar{\Delta}(\beta) \quad \text{or} \quad \Delta := \lim_{z \uparrow 0} \hat{\Delta}(z) \quad \text{or} \quad \Delta := \lim_{\varepsilon \downarrow 0} \tilde{\Delta}(\varepsilon)
$$

whenever the right-hand-side is well defined.

Problems arise when $n_{\pm} = \infty$ and/or continuous spectrum (see Pauli paramagnetism later)

Partition functions and internal energy:

Let $Z_{\pm}(\beta) := \text{Tr} e^{-\beta H_{\pm}}$ and $U_{\pm}(\beta) := -\partial_{\beta} \ln Z_{\pm}(\beta)$ then $Z_-(\beta) = \Delta + Z_+(\beta)$ and $U_-(\beta)Z_-(\beta) = U_+(\beta)Z_+(\beta).$

if A is Fredholm, i.e. ind A is well-defined.

 The Witten index is a topological invariant, that is, it is NOT sensitive against smooth variations of parameters in the theory =⇒ Witten model next section

Summary of Section 2

 $N=2$ SUSY QM with Witten parity:

System $\{H, Q, Q^{\dagger}, W; \mathcal{H}\}$ obeying

$$
\begin{cases} Q, Q^{\dagger} \} = H, & Q^2 = 0 = (Q^{\dagger})^2, & W^2 = 1 \\ [W, H] = 0, & \{W, Q\} = 0 = \{W, Q^{\dagger}\}, & W = W^{\dagger} \end{cases}
$$

Matrix representation:

Grading of Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ into Witten parity eigen-subspaces of

$$
W = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad Q = \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}, \qquad Q^{\dagger} = \begin{pmatrix} 0 & 0 \\ A^{\dagger} & 0 \end{pmatrix},
$$

$$
H = \begin{pmatrix} H_{+} & 0 \\ 0 & H_{-} \end{pmatrix} = \begin{pmatrix} AA^{\dagger} & 0 \\ 0 & A^{\dagger}A \end{pmatrix}, \qquad A : H^{-} \rightarrow H^{+}
$$

Eigenstates:

$$
W|\psi_{E}^{\pm}\rangle = \pm |\psi_{E}^{\pm}\rangle
$$

$$
H|\psi_{E}^{\pm}\rangle = E|\psi_{E}^{\pm}\rangle \qquad E \ge 0
$$

SUSY transformations: Eigenvalue $E > 0$ is pairwise degenerate

$$
|\psi_E^-\rangle = \frac{1}{\sqrt{E}} Q^{\dagger} |\psi_E^+\rangle
$$
 modulo phase factors

$$
|\psi_E^+\rangle = \frac{1}{\sqrt{E}} Q |\psi_E^-\rangle
$$

SUSY unbroken: $E = 0$ is eigenvalue of H, no SUSY transformation for ground state(s)

SUSY broken: H has only strictly positive eigenvalues $E > 0$, E is pairwise degenerate