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Supersymmetric Quantum Mechanics:

SUSY QM = QM+ Supercharges

Supercharges are conserved quantities obeying a SUSY algebra

Aim of lecture:
Supersymmetry (SUSY) as an algebraic tool with many applications in theoretical and
mathematical physics and beyond.
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1 Historical Background

SUSY idea originates in quantum field theory (gauge theories)

• Structure:

Space− Time Sym. Internal (Gauge) Sym.
(Poincare Algebra) (Lie Algebra)

Matter Fields Gauge Fields
(Fermions) (Bosons)

• SUSY idea: Unify space-time and internal symmetries

=⇒ Unification of Fermions and Bosons

NoGo-Theorem of Coleman and Mandula
Within the context of Lie algebras NOT possible

=⇒ Super (or graded) Lie algebras close under

Commutator [A,B] := AB −BA

and

Anticommutator {A,B} := AB +BA

• 1976: H. Nicolai invented SUSY QM as (0 + 1)-dim. QFT

• 1981: E. Witten introduced a simple QM model (Witten model)
=⇒ popularization

• More background is given in ”The Book”

Content

� Supersymmetric Quantum Mechanics (definitions and properties)

� The Witten Model (non-relativistic SUSY QM)

� Darboux Method (construct problem with known solution)

� Classical Field in (1 + 1) Dimensions (SUSY in classical systems)

� Supersymmetry in Stochastic Processes (SUSY in classical stochastic systems)

� Supersymmetry and Pauli Hamiltonians (Aharonov-Casher; Pauli paramagnetism)

� Supersymmetry and Dirac Hamiltonians (SUSY in rel. QM systems; Graphene)
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2 Supersymmetric Quantum Mechanics

2.1 Definitions

Assumptions:

Hilbert space: H
Hamiltonian: H = H†

Observables: Qi = Q†
i , i = 1, 2, 3 . . . , N

Definition 2.1: A quantum system characterised by the set {H,Q1, . . . , QN ;H}, is called
supersymmetric if the following anticommutation relation is valid for all i, j = 1, 2, . . . , N :

{Qi, Qj} = Hδij , (1)

where δij denotes Kronecker’s delta symbol. The self-adjoint operators Qi are called super-
charges and the Hamiltonian H is called SUSY Hamiltonian. The symmetry described by
the superalgebra (1) is called N -extended supersymmetry.

Remarks:

� H = 2Q2
1 = 2Q2

2 = · · · = 2Q2
N =

2

N

N∑
i=1

Q2
i ≥ 0

no negative energy eigenvalues

Qi =
√
H/2 square root of Hamiltonian

� [H,Qi] = 0 supercharges Qi are constants of motion if
∂Qi

∂t
= 0

� For N ≥ 2 we may introduce complex supercharges

Q̃k :=
1√
2
[Q2k−1 + iQ2k]

{
Q̃k, Q̃

†
l

}
= Hδkl , Q̃2

k = 0 =
(
Q̃†

k

)2
Show that

{
Q̃k, Q̃l

}
= 0 for all k, l.

Let E0 := inf specH ≥ 0 be ground state energy of H with

H|ψj
0⟩ = E0|ψj

0⟩ , j = 1, 2, 3, . . . , g (g = degeneracy of E0)

Definition:

SUSY unbroken : ⇐⇒ E0 = 0

SUSY broken : ⇐⇒ E0 > 0

Remarks: E0 = ⟨ψj
0|H|ψj

0⟩ =
2

N

N∑
i=1

⟨ψj
0|Q

2
i |ψ

j
0⟩ =

2

N

N∑
i=1

||Qi|ψj
0⟩||

2

E0 = 0 ⇐⇒ Qi|ψj
0⟩ = 0 for all (i, j)

E0 > 0 ⇐⇒ ∃ pair (i, j) such that Qi|ψj
0⟩ ≠ 0

ground state is NOT invariant under SUSY transformations and SUSY is broken
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2.2 The Supersymmetric Harmonic Oscillator

Consider 1-dim. quantum particle with spin 1
2 and unit mass m = 1

Hilbert space: H = L2(R)⊗ C2

”Bosonic” degree of freedom: a := 1√
2
(∂x + x) =⇒ [a, a†] = 1

”Fermionic” degree of freedom: b :=

(
0 0
1 0

)
=⇒ {b, b†} = 1 , b2 = 0 = (b†)2

Complex Supercharge: Use no longer tilde Q̃ ≡ Q

Q := a⊗ b† =

(
0 a
0 0

)
, Q† = a† ⊗ b =

(
0 0
a† 0

)
SUSY Hamiltonian:

H := {Q,Q†} = a†a+ b†b

= 1
2(−∂

2
x + x2 − 1)⊗ 1 + 1⊗

(
1 0
0 0

)
= 1

2(−∂
2
x + x2)⊗ 1 + 1⊗

(
1
2 0
0 −1

2

)
Spectral properties of H:

� Eigenstates

|n, ↓⟩ := |n⟩ ⊗
(

0
1

)
, |n, ↑⟩ := |n⟩ ⊗

(
1
0

)
, n ∈ N0 ,

where
a|n⟩ =

√
n|n− 1⟩ , a†|n⟩ =

√
n+ 1|n+ 1⟩

and

b|n, ↑⟩ = |n, ↓⟩ , b|n, ↓⟩ = 0 , b†|n, ↓⟩ = |n, ↑⟩ , b†|n, ↑⟩ = 0 .

� Eigenvalues: ⟨a†a⟩ = n , n = 0, 1, 2, 3, . . .

6

E0 = 0

E1 = 1

E2 = 2

E3 = 3

E ⟨b†b⟩ = 0 ⟨b†b⟩ = 1

↓

↓ ↑

↓ ↑

↓ ↑
Q
=⇒

Q†

⇐=

� SUSY unbroken as E0 = 0

� E > 0 pairwise degenerate

SUSY Transformations:

Q|n, ↓⟩ =
√
n|n− 1, ↑⟩ , Q|n, ↑⟩ = 0 ,

Q†|n, ↑⟩ =
√
n+ 1|n+ 1, ↓⟩ , Q†|n, ↓⟩ = 0 .

Q and Q† transform between spin-down and spin-up state with SAME energy eigenvalue.
Is generic property for all N ≥ 2 SUSY QM systems as there exists a Witten parity operator.
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2.3 Properties of N = 2 SUSY QM

Consider N = 2 SUSY QM: {H,Q1, Q2;H}

Recall: Q1Q2 = −Q2Q1, H = 2Q2
1 = 2Q2

2 = Q2
1 +Q2

2

Complex Supercharge: Q := 1√
2
(Q1 + iQ2), Q† = 1√

2
(Q1 − iQ2)

SUSY algebra:

Q2 = 0 = (Q†)2 , {Q,Q†} = H

2.3.1 The Witten parity

Let us assume there exists a self-adjoint operator W such that

[W,H] = 0, {W,Q} = 0 = {W,Q†}, W 2 = 1.

Definition: A self-adjoint operatorW which obeys above relations is called Witten parity
or Witten operator. The quantum system {H,Q,Q†,W ;H} will be called a supersymmetric
quantum system with Witten parity.

Remarks: See Tutorial Exercise 2 and 3

� specW = {−1,+1} non-trivial unitary involution on H
[Q,H] = 0 = [Q†, H] constant of motion

� For N ≥ 2 formal construction on H\ ker(H) via

W :=
2

H
QQ† − 1 =

1

iH
[Q1, Q2] =

[Q,Q†]

{Q,Q†}

� ”Fermionic” annihilation operator

b := Q†/
√
H on H\ ker(H)

obeying the relations

{b, b†} = 1, b2 = 0 =
(
b†
)2

.

� ”Fermion” number operator

F := b†b = QQ†/H = F† = F2

obeys the algebra

[F , H] = 0 , [F , Q] = Q , [F , Q†] = −Q† ,

and is related to the Witten parity by

W = 2F − 1 = (−1)F+1 .

2.3.2 Witten parity subspaces

Definition: Let P± := 1
2(1±W ) be the orthogonal projection of H onto the eigenspace

of the Witten operator with eigenvalue ±1, respectively.
The subspace

H± := P±HP± = {|ψ⟩ ∈ H : W |ψ⟩ = ±|ψ⟩}

is called space of positive (H+) and negative (H−) Witten parity, respectively.
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Remarks:

� Projectors:

P±P± = 1
4(1±W )(1±W ) = 1

4(1± 2W +W 2) = 1
2(1±W ) = P± projector

P±P∓ = 1
4(1±W )(1∓W ) = 1

4(1−W 2) = 0 orthogonal

P+ + P− = 1 complete

=⇒ H = H+ ⊕H− grading of H induced by W .

� Matrix representation

W =

(
1 0
0 −1

)
, P+ =

(
1 0
0 0

)
, P− =

(
0 0
0 1

)
.

|ψ+⟩ =
(

|ϕ+⟩
0

)
, |ψ−⟩ =

(
0

|ϕ−⟩

)
, |ϕ±⟩ ∈ H±

� Supercharges: {Q,W} = 0

=⇒ ±Q|ψ±⟩ = QW |ψ±⟩ = −WQ|ψ±⟩ =⇒ WQ|ψ±⟩ = ∓Q|ψ±⟩

Hence Q|ψ±⟩ ∈ H∓ or Q|ψ±⟩ = 0

Similar Q†|ψ±⟩ ∈ H∓ or Q†|ψ±⟩ = 0

Q and Q† transform between H+ and H− =⇒ SUSY transformations

Hence QH− ⊂ H+, Q†H+ ⊂ H−

� Without loss of generality (see Tutorial Exercise 4):

Q =

(
0 A
0 0

)
, Q† =

(
0 0
A† 0

)
,

with A : H− → H+ and A† : H+ → H−

Observe Q†H− = 0 = QH+

� SUSY partner Hamiltonians:

H = Q†Q+QQ† =

(
AA† 0
0 A†A

)
=

(
H+ 0
0 H−

)
with SUSY partner Hamiltonians

H+ := AA† ≥ 0, H− := A†A ≥ 0.

� Even and odd operators:
An arbitrary operator O acting on H can be decomposed into its diagonal (even) part
Oe and its off-diagonal (odd) part Oo. That is, O = Oe +Oo with

[W,Oe] = 0, {W,Oo} = 0.

In general

O =

(
O++ O+−
O−+ O−−

)
with O++ and O−− forming the even part and O+− and O−+ the odd part of O.
In particular, the SUSY Hamiltonian H is an even operator, whereas the supercharges
Q and Q† are odd operators.
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2.3.3 SUSY Transformations

Definition: Eigenstates of W are called positive and negative (Witten-) parity states,
respectively. They are denoted by |ψ±⟩:

W |ψ±⟩ = ±|ψ±⟩ , |ψ±⟩ ∈ H± .

For simplicity we will call them also positive and negative states.

Proposition: To each positive (negative) eigenstate |ψ+
E⟩ (|ψ

−
E⟩) of the SUSY Hamiltonian

H with eigenvalue E > 0 there exists a negative (positive) eigenstate of H with the same
eigenvalue. These eigenstates are related by the SUSY transformations

|ψ−
E⟩ =

1√
E
Q†|ψ+

E⟩, |ψ+
E⟩ =

1√
E
Q|ψ−

E⟩,

where
W |ψ±

E⟩ = ±|ψ±
E⟩ and H|ψ±

E⟩ = E|ψ±
E⟩ .

Proof: As [W,H] = 0 =⇒ common eigenbasis

Let H|ψ−
E⟩ = E|ψ−

E⟩ =⇒ HQ|ψ−
E⟩ = QH|ψ−

E⟩ = EQ|ψ−
E⟩ ∈ H+.

=⇒ |ψ+
E⟩ :=

1√
E
Q|ψ−

E⟩ is positive eigenstate of H for the same eigenvalue E > 0.

Norm: ||ψ+
E ||2 =

1
E ⟨ψ−

E |Q†Q|ψ−
E⟩ =

1
E ⟨ψ−

E |Q†Q+QQ†|ψ−
E⟩ =

1
E ⟨ψ−

E |H|ψ−
E⟩ = 1

Corollary: The spectra of the two SUSY partner Hamiltonians H+ and H− are identical
away from zero:

spec (H+)\{0} = spec (H−)\{0}.
We say, Hamiltonians H+ and H− are essentially isospectral.
That is, the strictly positive eigenvalues of the SUSY partner Hamiltonians H± coincide.

Remarks:

� Let |ϕ±E⟩ ∈ H± with E > 0, then

|ϕ−E⟩ =
1√
E
A†|ϕ+E⟩, |ϕ+E⟩ =

1√
E
A|ϕ−E⟩.

� Spectral Properties of N = 2 SUSY QM

6

E0

E1

E2

E3

E

↑↓↑

↑↓↑↓

↑↓

↑↓
good SUSY

6

0

E0

E1

E2

E

↑↓↑↓

↑↓

↑↓

broken SUSY

Symbolic notation: |ψ+
E⟩ =

(
|ϕ+E⟩
0

)
= |E, ↑⟩ |ψ−

E⟩ =
(

0
|ϕ−E⟩

)
= |E, ↓⟩

� Requirement for unbroken SUSY: ∃ |ψ0⟩ such that Q|ψ0⟩ = 0 or Q†|ψ0⟩ = 0

For negative ground state: |ψ−
0 ⟩ =

(
0

|ϕ−0 ⟩

)
=⇒ A|ϕ−0 ⟩ = 0

For positive ground state: |ψ+
0 ⟩ =

(
|ϕ+0 ⟩
0

)
=⇒ A†|ϕ+0 ⟩ = 0
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2.3.4 The Witten Index

Definition: Let us denote by n± the number of zero modes (zero eigenvalues) of H± in
the subspace H±. For finite n+ and n− the quantity

∆ := n− − n+ (2)

is called the Witten index.

Remarks:

� ∆ ̸= 0 =⇒ SUSY is unbroken as at least one, n+ or n−, is non-zero
∆ = 0 =⇒ SUSY can be broken (n+ = n− = 0) or unbroken (n+ = n− ̸= 0)

� Relation to Fredholm index of A, which is defined by

indA := dimkerA− dimkerA†

= dimkerA†A− dimkerAA†

= dimkerH− − dimkerH+

= n− − n+
= ∆

� Connection with Witten parity:

Formally: ∆ = Tr (−W ) = TrH−(1)− TrH+(1) = dimH− − dimH+ = n− − n+

Cancelation of the E > 0 contributions due to SUSY degeneracy!

Regularised indices:

∆̄(β) := Tr
(
−W e−βH

)
= Tr−

(
e−βA†A

)
− Tr+

(
e−βAA†

)
, β > 0

∆̂(z) := Tr
(
−W z

H−z

)
= Tr−

(
z

A†A−z

)
− Tr+

(
z

AA†−z

)
, z < 0

∆̃(ε) := Tr
(
−WΘ(ε−H)

)
= Tr−

(
Θ(ε−A†A)

)
− Tr+

(
Θ(ε−AA†)

)
, ε > 0

For purely discrete spectrum and finite n± follows ∆ = ∆̄(β) = ∆̂(z) = ∆̃(ε).
Otherwise on defines

∆ := lim
β→∞

∆̄(β) or ∆ := lim
z↑0

∆̂(z) or ∆ := lim
ε↓0

∆̃(ε)

whenever the right-hand-side is well defined.
Problems arise when n± = ∞ and/or continuous spectrum (see Pauli paramagnetism
later)

� Partition functions and internal energy:

Let Z±(β) := Tr e−βH± and U±(β) := −∂β lnZ±(β) then

Z−(β) = ∆+ Z+(β) and U−(β)Z−(β) = U+(β)Z+(β).

if A is Fredholm, i.e. indA is well-defined.

� The Witten index is a topological invariant, that is, it is
NOT sensitive against smooth variations of parameters in the theory
=⇒ Witten model next section
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Summary of Section 2

N = 2 SUSY QM with Witten parity:

System {H,Q,Q†,W ;H} obeying

{Q,Q†} = H , Q2 = 0 = (Q†)2 , W 2 = 1

[W,H] = 0 , {W,Q} = 0 = {W,Q†} , W =W †

Matrix representation:

Grading of Hilbert space H = H+ ⊕H− into Witten parity eigen-subspaces of

W =

(
1 0
0 −1

)
, Q =

(
0 A
0 0

)
, Q† =

(
0 0
A† 0

)
,

H =

(
H+ 0
0 H−

)
=

(
AA† 0
0 A†A

)
,

A : H− → H+

A† : H+ → H−

Eigenstates:
W |ψ±

E⟩ = ±|ψ±
E⟩

H|ψ±
E⟩ = E|ψ±

E⟩ E ≥ 0

SUSY transformations: Eigenvalue E > 0 is pairwise degenerate

|ψ−
E⟩ =

1√
E
Q†|ψ+

E⟩

|ψ+
E⟩ =

1√
E
Q|ψ−

E⟩
modulo phase factors

SUSY unbroken: E = 0 is eigenvalue of H, no SUSY transformation for ground state(s)

SUSY broken: H has only strictly positive eigenvalues E > 0, E is pairwise degenerate
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3 The Witten Model

Simple 1-dim. model with N = 2 SUSY for quantum particle with mass m > 0.

Definitions:

� Hilbert space: H := L2(R)⊗ C2 = H+ ⊕H−, H± = L2(R)

� Super charge: Q :=

(
0 A
0 0

)
with A :=

i√
2m

P +Φ(x) =
ℏ√
2m

∂x +Φ(x)

� SUSY potential: Φ : x 7→ Φ(x) piecewise continous diff. on R

� Hamiltonian: H := {Q,Q†} =

(
H+ 0
0 H−

)
=

(
AA† 0
0 A†A

)
� SUSY partner Hamiltonians:

H± =
P 2

2m
+Φ2(x)± ℏ√

2m
Φ′(x) =

P 2

2m
+ V±(x)

� SUSY Partner potentials: V±(x) := Φ2(x)± ℏ√
2m

Φ′(x)

Remarks:

� Partner Hamiltonians are standard 1-dim. Schrödinger Hamiltonians with special form
of the potential

� Φ(x) =
√

m
2 ω x represents the supersymmetric harmonic oscillator

� Conf. space may be replaced by a subspace M ⊂ R with suitable boundary conditions
M = R+ positive half line, radial problems
M = [a, b] finite interval, particle in a box

3.1 Ground state for unbroken SUSY

SUSY unbroken =⇒ there exists a |ϕ+0 ⟩ and/or |ϕ
−
0 ⟩ such that

H+|ϕ+0 ⟩ = 0 and/or H−|ϕ−0 ⟩ = 0

⇐⇒ A†|ϕ+0 ⟩ = 0 and/or A|ϕ−0 ⟩ = 0

⇐⇒
(
∓ ℏ√

2m
∂x +Φ(x)

)
ϕ±0 (x) = 0

⇐⇒ ϕ±0 (x) = N exp

{
±
√
2m

ℏ

∫ x

x0

dzΦ(z)

}
= N e±U(x) ∈ H±

with superpotential:

U(x) :=

√
2m

ℏ

∫ x

x0

dzΦ(z)

Conclusion:
Only asymptotic behaviour of SUSY potential relevant for SUSY being broken or unbroken!
Let

Φ± := lim
x→±∞

Φ(x)

then

∆ =
1

2
(sgnΦ+ − sgnΦ−)

Witten index is topological invariant as it does NOT depend on the details of Φ!
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Graphical discussion:

SUSY unbroken: ∆ = +1 ϕ−0 ∈ H−

SUSY unbroken: ∆ = −1 ϕ+0 ∈ H+

SUSY broken: ∆ = 0

11



3.2 Spectral properties and SUSY transformations

Let us assume both partner Hamiltonians have a purely discrete spectrum, that is,

H±|ϕ±n ⟩ = E±
n |ϕ±n ⟩ , E±

n < E±
n+1 , n = 0, 1, 2, 3, . . .

• Good SUSY

0

sp
ec
H

±

∆ = +1

E−
0 = 0

ϕ−0

E−
1

ϕ−1

E−
2

ϕ−2

E+
0

ϕ+0

E+
1

ϕ+1

A
=⇒

A†
⇐=

0

sp
ec
H

±

∆ = −1

E+
0 = 0

ϕ+0

E−
0

ϕ−0

E−
1

ϕ−1

E+
1

ϕ+1

E+
2

ϕ+2

A
=⇒

A†
⇐=

E−
0 = 0 , E−

n+1 = E+
n > 0 E+

0 = 0 , E+
n+1 = E−

n > 0

ϕ−0 (x) = N exp

{
−
√
2m

ℏ

∫
dxΦ(x)

}
ϕ+0 (x) = N exp

{√
2m

ℏ

∫
dxΦ(x)

}
|ϕ−n+1⟩ =

1√
E+

n

A†|ϕ+n ⟩ |ϕ+n+1⟩ =
1√
E−

n

A|ϕ−n ⟩

|ϕ+n ⟩ =
1√
E−

n+1

A|ϕ−n+1⟩ |ϕ−n ⟩ =
1√
E+

n+1

A†|ϕ+n+1⟩

A|ϕ−0 ⟩ = 0 A†|ϕ+0 ⟩ = 0

Sign convention Φ ↔ −Φ such that for good SUSY ∆ = +1

=⇒ sgnΦ− < 0 < sgnΦ+

• Broken SUSY

0

sp
ec
H

±

∆ = 0

E−
0

ϕ−0

E−
1

ϕ−1

E−
2

ϕ−2

E+
0

ϕ+0

E+
1

ϕ+1

E+
2

ϕ+2

A
=⇒

A†
⇐=

E−
n = E+

n > 0

|ϕ−n ⟩ =
1√
E+

n

A†|ϕ+n ⟩

|ϕ+n ⟩ =
1√
E−

n

A|ϕ−n ⟩q

Examples:

� Unbroken SUSY ∆ = +1

Φ(x) =
aℏ√
2m

sgn (x)|x|α , a > 0 , α > 0

V±(x) =
ℏ2a2

2m

(
|x|2α ± α

a
|x|α−1

)
[draw graphs]

ϕ−0 (x) = N exp
{
− a

α+1 |x|
α+1
}
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� Broken SUSY ∆ = 0

Φ(x) =
aℏ√
2m

|x|α , a > 0 , α > 0

V±(x) =
ℏ2a2

2m

(
|x|2α ± α

a
sgn (x)|x|α−1

)
[draw graphs]

� More examples =⇒ Tutorial

3.3 Shape invariance and exact solutions

Assumption: SUSY potential depends on some parameter a, that is,

Φ(·, x) : a 7→ Φ(a, x) , a ∈ I ⊆ R

Hence,

V±(a, x) = Φ2(a, x)± ℏ√
2m

∂

∂x
Φ(a, x).

Definition: The partner potentials V±(a0, x) are called shape-invariant if they are related
by

V+(a0, x) = V−(a1, x) +R(a1) , ∀x ∈ R ,

where a1 is a new set of parameters uniquely determined from the old set a0 via the mapping
F : a0 7→ a1 = F (a0) and the residual term R(a1) is independent of the variable x.

Example:

Φ(a, x) :=
ℏ√
2m

a tanhx, a > 0.

V±(a, x) =
ℏ2

2m

[
a2 − a(a∓ 1)

cosh2 x

]
Obviously

V+(a0, x) = V−(a0 − 1, x) +
ℏ2

2m

[
a20 − (a0 − 1)2

]
.

Therefore

a1 = F (a0) = a0 − 1, R(a1) =
ℏ2

2m

[
a20 − a21

]
=

ℏ2

2m

[
a20 − (a0 − 1)2

]
> 0 ,

and

ϕ−0 (a0, x) =
N

cosha0 x
.

Let us assume we have a family of pairwise shape invariant potentials

{Φ(as, x)} , s = 0, 1, 2, . . . , n

such that for all ∆ = +1.
Some obvious relations follow from graph on next page:

E0 = 0 , En =

n∑
s=1

R(as)

ϕ−0 (as, x) = N exp

{
−
√
2m

ℏ

∫ x

0
dzΦ(as, z)

}

Φ−
n−s(as, x) =

1√
En − Es

A†(as)Φ
−
n−(s+1)(as, x)
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Conclusion: Spectral properties of H = P 2

2m + V−(a0, x) are given by

En =

n∑
s=1

R(as),

ϕ−n (a0, x) =
A†(a0)

[En − E0]1/2
· · · A†(an−1)

[En − En−1]1/2
ϕ−0 (an, x),

ϕ−0 (an, x) = N exp

−
√
2m

ℏ

x∫
0

dzΦ(an, z)

 ,

with

A†(as) := − ℏ√
2m

∂

∂x
+Φ , and as = F (as−1(as, x)

The eigenvalue problem (discrete part) of a family of shape invariant Hamiltonians is ex-
actly solvable

Remark:
This is not a new result due to SUSY QM but basically the well-known Schrödinger-Infeld-
Hull factorization method [Rev. Mod. Phys. 23 (1951) 21]

Table of shape invariant potentials:

SUSY potential config. parameter range partner potentials

Φ(x)/ ℏ√
2m

spacea for good SUSYb V±(x)/
ℏ2
2m

A tanhx+B/ coshx R A > 0 A2 + B2−A(A∓1)+B(2A∓1) sinhx

cosh2 x

A cothx−B/ sinhx R+ B > A > 0 A2 + B2+A(A∓1)−B(2A±1) coshx

sinh2 x

−A cotx+B/ sinx [0, π] A > B > 0 −A2 + B2+A(A±1)−B(2A∓1) cosx

sin2 x

A tanx−B cotx [0, π/2] A > 0, B > 0c −(A+B)2 + A(A±1)
cos2 x

+ B(B±1)

sin2 x

A tanhx−B cothx R+ A > B > 0c (A−B)2 − A(A∓1)

cosh2 x
+ B(B±1)

sinh2 x

A tanhx+B/A R A > B ≥ 0 A2 + B2

A2 − A(A∓1)

cosh2 x
+ 2B tanhx

−A cothx+B/A R+ B > A > 0 A2 + B2

A2 + A(A±1)

sinh2 x
− 2B cothx

−A cotx+B/A [0, π] A > 0 −A2 + B2

A2 + A(A±1)

sin2 x
− 2B cotx

Ax−B/x R+ A > 0, B > 0c −A(2B ∓ 1) +A2x2 + B(B±1)
x2

−A/x+B/A R+ A > 0, B > 0 B2

A2 − 2B
x + A(A±1)

x2

−Ae−x +B R A > 0, B > 0 B2 +A2e−2x −A(2B ∓ 1)e−x

Ax+B R A > 0 (Ax+B)2 ±A

a For x ∈ R+, x ∈ [0, π/2], and x ∈ [0, π] we impose Dirichlet boundary conditions
on the wave functions at x = 0, x = 0, π/2, and x = 0, π, respectively.

b With our convention that the ground state is an eigenstate of H−.
c These examples belong to class 2 of Gendensthêın and will give rise to a broken
SUSY potential if B is replaced by −B.
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Our Example:

Φ(a, x) :=
ℏ√
2m

a tanhx, a > 0

V±(a0, x) =
ℏ2
2m

[
a20 −

a0(a0±1)

cosh2 x

]
as = F (as−1) = as−1 − 1 = a0 − s

R(as) =
ℏ2

2m

[
a2s−1 − a2s

]
,

SUSY ground state normalizable for n < a0

ϕ−0 (an, x) = ϕ−0 (a0 − n, x) = C coshn−a0 x

Eigenvalues

En =
ℏ2

2m

n∑
s=1

(a2s−1 − a2s) =
ℏ2

2m
[a20 − (a0 − n)2], n = 0, 1, 2, . . . < a0.

Eigenfunctions

ϕ−n (a0, x) = Cn [−∂x + a0 tanhx] · · · [−∂x + (a0 − n+ 1) tanhx] coshn−a0 x

where

Cn := N
n−1∏
s=0

[
(a0 − s)2 − (a0 − n)2

]−1/2
, n = 1, 2, 3, . . . < a0.

3.4 Quasi classical approximation

3.4.1 The WKB approximation

Consider single-well potential with classical left and right turning points qL(E) and qR(E)
for given energy E: E = V (qL) = V (qR)

x

V (x)

qL qR

E

The WKB formula (good for small ℏ) reads∫ qR

qL

dx
√
2m(E − V (x) = ℏπ

(
n+ 1

2

)
, n = 0, 1, 2, 3, . . .

and provides an approximation for the quantum energy eigenvalues En

Remarks:

� In general a good approximation for large n.

� For the ground state energy less useful.
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3.4.2 The SUSY version

Consider

V±(x) = Φ2(x)± ℏ√
2m

Φ′(x)

and interpret last term as quantum correction to the classical potential Vclass(x) = Φ2(x).
Apply WKB formula

I :=
√
2m

∫ qR

qL

dx

√
E − Φ2(x)∓ ℏ√

2m
Φ′(x)

≈
√
2m

∫ xR

xL

dx
√
E − Φ2(x)

(
1∓ ℏ√

2m

1

2

Φ′(x)√
E − Φ2(x)

)
here qL/R → xL/R where Φ2(xL/R) = E

=

∫ xR

xL

dx
√

2m(E − Φ2(x))∓ ℏ
2

∫ xR

xL

dx
Φ′(x)√
E − Φ2(x)

=

∫ xR

xL

dx
√

2m(E − Φ2(x))∓ ℏ
2

∫ Φ(xR)

Φ(xL)
dΦ

1√
E − Φ2︸ ︷︷ ︸

=:J

Four cases for the integral J

J =

∫ Φ(xR)

Φ(xL)
dΦ

1√
E − Φ2

= arcsin
Φ(xR)√

E
− arcsin

Φ(xL)√
E

Case ∆ = 0: Φ(xL) = Φ(xR) = ±
√
E =⇒ J = 0

Case ∆ = +1: Φ(xL) = −Φ(xR) = −
√
E =⇒ J = +π

Case ∆ = −1: Φ(xL) = −Φ(xR) = +
√
E =⇒ J = −π

x

Φ(x)

+
√
E

−
√
E

xL xR

Result:

I =

∫ xR

xL

dx
√
2m(E − Φ2(x))∓ ℏ

2
π∆

Hence, via WKB formula we arrive at the Supersymmetric version of WKB for both V±(x)∫ xR

xL

dx
√

2m(E − Φ2(x)) = ℏπ
(
n+

1

2
± ∆

2

)
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Remarks:

� ∆ = +1: E−
0 = 0 is exact! E−

n+1 = E+
n > 0 spectral symmetry conserved!

� ∆ = −1: E+
0 = 0 is exact! E+

n+1 = E−
n > 0 spectral symmetry conserved!

� ∆ = 0: E+
n = E−

n > 0 spectral symmetry conserved!

� For all shape invariant potentials ALL E±
n are exact for all ∆!

� For other systems supersymmetric version usually provides better approximations!
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Summary of section 3

1-dim. Witten model fully characterised by SUSY potential Φ
Partner potentials

V±(x) = Φ2(x)± ℏ√
2m

Φ′(x)

Witten index given by

∆ =
1

2
(Φ+ − Φ−)

Shape invariance
V+(a0, x) = V−(a1, x) +R(a1)

provides exact solutions
Quasi classical SUSY approximation for spectrum of H±∫ xR

xL

dx
√

2m(E − Φ2(x)) = ℏπ
(
n+

1

2
± ∆

2

)
SUSY transformations for continuous states (scattering) =⇒ Tutorial Exercise 5
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4 The Darboux Method (1882)

Assumption: Let us assume we have two self-adjoint operators H± and one linear operator
A, all acting on common Hilbert space H obeying the condition

H+A = AH− =⇒ A†H+ = H−A
† (∗)

Let’s further assume the spectral properties of H+ are known (we assume a purely discrete
spectrum for simplicity)

H+|ϕ+n ⟩ = En|ϕ+n ⟩ , n = 0, 1, 2, 3, . . .

Then
|ϕ−n ⟩ := CnA

†|ϕ+n ⟩ ≠ 0

is eigenstate of H− with same eigenvalue En.
Obvious as

H−|ϕ−n ⟩ = CnH−A
†|ϕ+n ⟩

(∗)
= CnA

†H+|ϕ+n ⟩ = En|ϕ−n ⟩

Remarks:

� States ϕ+n such that A†|ϕ+n ⟩ = 0 do not lead to a |ϕ−n ⟩. Hence, eigenvalues of H+

associated with states ϕ+n ∈ kerA† are in general not eigenvalues of H−

� With A|ϕ−n ⟩ ≠ 0 we obtain an eigenstate of H+. Let H−|ϕ−n ⟩ = En|ϕ−n ⟩ then

H+A|ϕ−n ⟩
(∗)
= AH−|ϕ−n ⟩ = EnA|ϕ−n ⟩

� H− may have additional eigenvalues with eigenstates ϕ−n ∈ kerA, i.e. A|ϕ−n ⟩ = 0

Conclusion: From spectral properties of H+ on may conclude those of H−.
H± are not necessarily Schrödinger operators =⇒ Wide fields of applications

4.1 Modelling Conditionally Exactly Solvable Potentials

Let

H± = − ℏ2

2m
∂2x + V±(x) on H = L2(R)

be two 1-dim. Schrödinger Hamiltonians.

Ansatz for A:

A :=

N∑
k=0

fk(x)∂
k
x

with fk : R → R being at least twice differentiable.

Insert into defining relation (∗) and compare coefficients of same power of ∂kx
=⇒ Solve for the fk’s

Obviously fN = const. for convenience we choose fN := ℏ/
√
2m
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4.1.1 The simplest non-trivial case N = 1

A :=
ℏ√
2m

∂x +Φ(x) with Φ(x) := f0(x) , f1 := ℏ/
√
2m

Inserting into (∗) results in two coupled equations

V−(x) = V+(x)−
2ℏ√
2m

Φ′(x)

ℏ√
2m

V ′
−(x) + Φ(x)V−(x) = − ℏ2

2m
Φ′′(x) + Φ(x)V+(x)

Elimination of V− results in a non-linear Riccati equation

Φ2(x) +
ℏ√
2m

Φ′(x) = V+(x)− ε .

Here ε ∈ R is a constant of integration.

Linearisation with ansatz: Φ(x) =:
ℏ√
2m

u′(x)

u(x)[
− ℏ2

2m
∂2x + V+(x)

]
u(x) = εu(x)

Schrödinger-type equation BUT u is NOT required to be square integrable and ε is not
necessarily an eigenvalue of H+. See Tutorial Exercise 8.

Remarks:

� H+ = AA† + ε , H− = A†A+ ε shifted Witten model

� New potential V− with associated Hamiltonian H− whose spectral properties are ba-
sically known.

V−(x) =
ℏ2

m

(
u′(x)

u(x)

)2

− V+(x) + 2ε

� Condition: u(x) ̸= 0 for all x ∈ R =⇒ No singularities!

ε ≤ E0 := min specH+ Sturm− Liouville Theory

� Consider kerA†: A†|ϕ+0 ⟩ = 0 =⇒ − ℏ√
2m

ϕ+0
′
(x) + Φ(x)ϕ+0 (x) = 0

=⇒ ℏ√
2m

ϕ+0
′
(x)

ϕ+0 (x)
= Φ(x) =

ℏ√
2m

u′(x)

u(x)
=⇒ ϕ+0 (x) = u(x) nodeless

=⇒ ε = E0

From now on ε < E0 =⇒ kerA† = ∅.
Complete spectrum of H+ belongs to spectrum of H−. specH+ ⊂ specH−

� Consider kerA: A|ϕ−ε ⟩ = 0 =⇒ ϕ−ε
′
(x) = −u

′(x)

u(x)
ϕ−ε (x) =⇒

ϕ−ε (x) =
C

u(x)

Assume nodeless u(x) → ∞ for x→ ±∞ such that ϕ−ε ∈ L2(R) =⇒

specH− = {ε, E0, E1, E2 . . .} = {ε} ∪ specH+
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With |ϕ−n ⟩ = CnA
†|ϕ+n ⟩ follows ||ϕ−n ||2 = |Cn|2⟨ϕ+n |AA†|ϕ+n ⟩ = |Cn|2⟨ϕ+n |H+ − ε|ϕ+n ⟩

Hence |Cn|2 =
1

En − ε
> 0.

Summary of results: Given: Known spectral properties H+|ϕ+n ⟩ = En|ϕ+n ⟩

=⇒ H−|ϕ−n ⟩ = En|ϕ−n ⟩ and H−|ϕ−ε ⟩ = ε|ϕ−ε ⟩ with ε < E0

with conditionally exactly solvable potential

V−(x) =
ℏ2

2m

(
u′(x)

u(x)

)2

− V+(x) + 2ε

as ε < E0 and u(x) nodeless where

− ℏ2

2m
u′′(x) + V+(x)u(x) = εu(x)

and spectral properties

specH− = {ε, E0, E1, E2, . . .}

ϕ−ε (x) =
C

u(x)
∈ L2(R)

ϕ−n (x) =
1√

En − ε

(
− ℏ√

2m
ϕ+n

′
(x) +

ℏ√
2m

u′(x)

u(x)
ϕ+n (x)

)
=

ℏ√
2m(En − ε)

(
u′(x)

u(x)
ϕ+n (x)− ϕ+n

′
(x)

)

4.2 A family of SUSY partners of the linear harmonic oscillator

For simplicity we set ℏ = m = ω = 1.

V+(x) =
1
2 x

2 with En = (n+ 1
2)

Obviously ε < 1
2

General solution of Schrödinger-like eq.
(see, e.g., Galindo & Pascual, QMI Springer 1989, p. 143 and appendix A)

u(x) = e−x2/2

[
α 1F1

(
1− 2ε

4
,
1

2
, x2
)
+ β x 1F1

(
3− 2ε

4
,
3

2
, x2
)]

Confluent hypergeom. function:

1F1(a, c, z) ≡M(a, c, z) =

∞∑
n=0

(a)n
(c)n

zn

n!
with (a)n :=

Γ(a+ n)

Γ(a)
= a(a+1)(a+2) · · · (a+n−1)

For a = −m, m ∈ N0, this is a polynomial in z of degree m
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Symmetric case β = 0

Remarks:

� Without loss of generality α = 1

� u(x) > 0 for all x ∈ R =⇒ |β| < βc(ε) := 2Γ(3/4−ε/2)
Γ(1/4−ε/2)

� β = 0: V−(x) = V−(−x) sym. see figure above

� β ∈ C\ (]−∞,−βc] ∪ [βc,∞[) allowed =⇒ complex potential with real spectrum
Area of intensive research in last 20 years

Spectral properties:

H+ : specH+ = {E0, E1, E2, . . .} , En = n+ 1
2

ϕ+n (x) =

(
1√
π2nn!

)1/2

e−x2/2Hn(x) Hermite polynomials

V+(x) =
1

2
x2

H− : specH− = {ε, E0, E1, E2, . . .} , ε < 1
2 arbitrary

ϕ−ε (x) =
C ex

2/2

1F1

(
1−2ε
4 , 12 ;x

2
)
+ βx 1F1

(
3−2ε
4 , 32 ;x

2
)

ϕ−n (x) =
e−x2/2

[
√
π 2n+1n!(n+ 1/2− ε)]

1/2

[
Hn+1(x) +

(
u′(x)

u(x)
− x

)
Hn(x)

]
V−(x) =

[(
u′(x)

u(x)

)2

− 1

2
x2 + 2ε

]
.
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Special cases:

� ε = −1
2 , β = 0:

u(x) = e−x2/2
1F1(

1
2 ,

1
2 , x

2) = ex
2/2 , u′(x)

u(x) = x , ϕ−n (x) = ϕ+n+1(x)

� ε = −1
2 − 2k, k ∈ N0, β = 0:

u(x) = e−x2/2
1F1(k +

1
2 ,

1
2 , x

2) = e
x2/2
1 F1(−k, 12 ,−x

2) (Hermite polynomial)

Note: 1F1(a, c, z) = ez 1F1(c− a, c,−z))

u(x) = ex
2/2 (−1)k

k!

(2k)!︸ ︷︷ ︸
=:1/α

H2k(ix) = ex
2/2H2k(ix)

– k = 0: H0(ix) = 1 previous case

– k = 1: H1(ix) = 4(ix)2 − 2 = −4x2 − 2 =⇒ Homework

– k arbitrary:
u′(x) = xex

2/2H2k(ix)+ iex
2/2H ′

2k(ix) , H ′
2k(z) = 2zH2k(z)−H2k+1(z) =⇒

u′(x)
u(x) = x+ i

H′
2k(ix)

H2k(ix)
= x+ i2ix− i

H2k+1(ix)
H2k(ix)

= −x− i
H2k+1(ix)
H2k(ix)

Rational potential

V−(x) =
x2

2
+ 2ix

H2k+1(ix)

H2k(ix)
−
(
H2k+1(ix)

H2k(ix)

)2

− 4k − 1

generates spectrum specH− = {−1
2 − 2k, 12 ,

3
2 ,

5
2 , . . .}

For a complete discussion for shape-invariant potentials see GJ & P. Roy, Ann. Phys. 270
(1998) 155
Homework: Find all SUSY partners of the free particle.
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Summary of section 4

� Darboux method closely related to SUSY QM but can be extended beyond

� Designing of quantum potentials with known spectral properties. More recently dis-
cussion of complex potentials (PT-symmetry)

� The family of harmonic oscillator SUSY partners also inspired new ladder operators
obeying a non-linear algebra (see Exercise 9)

5 Classical Fields in (1 + 1) Dimensions

Consider a scalar field:

ϕ :
R× R → R
(x, t) 7→ ϕ(x, t)

with vanishing variations at infinity, that is,

ϕ′ := ∂xϕ→ 0 and ϕ̇ := ∂tϕ→ 0 for x, t→ ±∞.

The corresponding Lagrange density is defined as

L(∂ϕ, ϕ) := 1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2 − U(ϕ) =
1

2
(∂µϕ) (∂

µϕ)− U(ϕ)

with a real-valued field potential U bounded from below, i.e. U ≥ 0.
The Euler-Lagrange equation

∂µ
∂L

∂(∂µϕ)
− ∂L
∂ϕ

= 0

then results in the classical eq. of motion

∂µ∂
µϕ+ U ′(ϕ) = 0

or more explicitly

ϕ̈− ϕ′′ = −∂U
∂ϕ

.

Examples:

� Klein-Gordon: U(ϕ) = 1
2ϕ

2

=⇒ ∂µ∂
µϕ+ ϕ = 0

KG equation for rel. scalar field with unit mass

� Sine-Gordon: U(ϕ) = 1 + cosϕ

=⇒ ϕ̈− ϕ′′ + sinϕ = 0
Instantons / Solitons

� ϕ4-theory: U(ϕ) = 1
2(1− ϕ2)2

=⇒ ϕ̈− ϕ′′ + 2(1− ϕ2)ϕ = 0
Phase transitions / Higgs mechanism

Conserved energy functional:

E[ϕ] :=

∫
R
dx
[
1
2 ϕ̇

2 + 1
2ϕ

′2 + U(ϕ)
]
,

Homework: Show
d

dt
E[ϕ] = 0
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Finite energy configurations:
Now in addition we assume that U(ϕ) → 0 as x→ ±∞ (vacuum configuration)
That is, we assume

ϕ± := lim
x→±∞

ϕ(x, t) with U(ϕ±) = 0

We further assume translation invariance:

ϕ(x, t) = ϕst(x− vt) st = static

These localised solutions are called solitary waves

Eq. of motion for a static solution ϕst(x)

ϕ′′st(x) = U ′(ϕst(x))

=⇒ ϕ′st(x)ϕ
′′
st(x) = U ′(ϕst(x))ϕ

′
st(x)

=⇒ 1
2 [ϕ

′
st]

2 = U(ϕst) + ε

Recall ϕ′st → 0 and U(ϕst) → 0 for x→ ±∞ =⇒ ε = 0

Result:
1

2
ϕ′st

2(x) = U(ϕst(x))

5.1 Stability of static solutions

Consider fluctuations around a static solution

ϕ(x) = ϕst(x) + ψ(x)

with small fluctuation ψ such that ψ(x) → 0 as x→ ±∞.
That is

E[ϕ] ≈ E[ϕst] + δE[ψ]

where (see tutorial)

δE[ψ] :=
1

2

∫
R
dxψ(x)

[
−∂2x + U ′′(ϕs(x))

]
ψ(x)

Fluctuation operator:
H := −∂2x + U ′′(ϕst(x))

Schrödinger-like operator acting on L2(R).

Assume that we know the eigenmodes, that is,

Hψn = µnψn ,

then

ψ(x) =
∑
n

an ψn(x) with an :=

∫
R
dxψ∗

n(x)ψ(x)

Hence

δE[ψ] =
1

2

∑
n

µn |an|2

Stability:
δE[ψ] ≥ 0 ⇐⇒ µn ≥ 0
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Lemma: The ”lowest” mode n = 0 for a stable static solution belongs to the eigenvalue
µ0 = 0. This ”zero”mode is given by ψ0(x) = C ϕ′st(x).

Proof: We know 1
2ϕ

′
st
2(x) = U(ϕst(x))

∂x =⇒ ϕ′′st(x) = U ′(ϕst(x))

∂x =⇒ ϕ′′′st(x) = U ′′(ϕst(x))ϕ
′
st(x)

Now
Hψ0(x) = C

[
−∂2x + U ′′(ϕst)

]
ϕ′st = C

(
−ϕ′′′st + U ′′(ϕst)ϕ

′
st

)
= 0

Remark: The zero mode is related to the translation invariance

ϕst(x+ δx) = ϕst(x) + ϕ′st(x)δx = ϕst(x) +
δx

C
ψ0(x)

Fluctuation along zero mode is in essence a translation, here

δE[ϕst(x+ δx)− ϕst(x)] = 0 as µ0 = 0.

5.2 SUSY construction of field models

Recall
H = −∂2x + U ′′(ϕst(x)) ≥ 0

with vanishing lowest eigenvalue µ0 = 0. This allows to interpret

H ≡ H− = −∂2x +W 2(x)−W ′(x)

being a Witten partner Hamiltonian with SUSY potential W in units 2m = 1 = ℏ.
Here choose W such that SUSY is unbroken.

Idea:

� Choose a SUSY potential W , e.g. one of the shape-invariant ones

� Zero mode is given by

ψ0(x) = N exp

{
−
∫

dxW (x)

}
� Obtain static solution via integration

ϕst(x) =
1

C

∫
dxψ0(x)

� Use relation

U(ϕst(x)) =
1

2
ϕ′st

2(x)

to obtain an expression U = U(ϕ) by eliminating the x via previous relation ϕst =
ϕst(x). Choose parameter N/C most suitable. Finally analytically continue beyond
ϕ± to ϕ ∈ R.
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� A field potential (theory) is found which has a stable static solution. In case of a
shape-invariantW we in addition know all the fluctuation modes and their eigenvalues
explicitly.

Example: W (x) = tanhx SUSY partner of free particle, has 1 bound state µ0 = 0

ψ0(x) = N 1

coshx
with N/C = 2

ϕst(x) = 2

∫
dx

1

coshx
= 2arcsin(tanhx) =⇒ sin

ϕst
2

= tanhx

ϕst(x) → ϕ± = ±π for x→ ±∞

U(ϕst) =
1
2ϕ

′
st
2(x) = 2

cosh2 x
= 2(1− tanh2 x)

= 2(1− sin2 ϕst

2 ) = 1 + (1− 2 sin2 ϕst

2 ) = 1 + cosϕst

analytical continuation leads to

Sine−Gordon U(ϕ) = 1 + cosϕ

Tutorial: W (x) = 2 tanhx =⇒ ϕst(x) = tanhx =⇒ U(ϕ) = 1
2(1− ϕ2)2

Homework: W (x) = sgnx =⇒ U(ϕ) = 1
2(1− |ϕ|)2

Remarks:

� W (x) = 3 tanhx =⇒ no closed form for U , implicit relations are

U(ϕst) =
2

cosh6 x
= U(−ϕst) , ϕst(x) =

tanhx

coshx
+ arcsin(tanhx) , ϕ± = ±π

2

� W (x) = 4 tanhx =⇒ new model

U(ϕ) =
1

2

[
1 + 2 cos

(
2
3 arccos(

3
2ϕ)
)
+ 8π

4

]4
, ϕ± = ±2

3

� For a complete discussion on shape-inv. SUSY potentials see GJ and P. Roy, Ann.
Phys. 256(1997)302. Includes also discussion on unstable fields potentials
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6 Supersymmetry in Stochastic Processes

Literature on stochastic processes

1 N.G. van Kampen, Stochastic Processes in Physics and Chemistry, (North-Holland,
1992)

2 C.W. Gardiner, Handbook of Stochastic Methods, (Springer-Verlag, 1990)

6.1 The Langevin Equation

η̇ = −U ′(η) + ξ(t)

Stochastic differential equation where

η: macroscopic degree of freedom.
For example, position of a highly overdamped motion of a Brownian particle
(γη̇ ≫ mη̈)

U : External deterministic force F or drift
F (η) = −U ′(η)

ξ: Stochastic force (noise). For example, simulating a coupling to heat bath

η

U(η)

•
η

U(η)

•

(Bi-)stable System Meta-stable System

Gaussian white noise:

⟨ξ(t)⟩ = 0 ⟨ξ(t)ξ(t′)⟩ = Dδ(t− t′)

zero mean No correlation in time

Diffusion constant D. For ideal heat bath D = 2kBT

Idealisation of more realistic colored noise

⟨ξ(t)ξ(t′)⟩ = D

2τc
exp{−|t− t′|/τc},

with correlation time τc > 0. Limit τc → 0 = white noise. From now on only white noise.

Average via ”path integral”:

⟨·⟩ :=
∫
x(0)=x0

Dξ exp
{
− 1

2D

∫ ∞

0
dτ ξ2(τ)

}
(·)

In general no interest in a particular solution of the Langevin equation, but on average
behaviour.
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6.2 The Fokker-Planck Equation

Transition probability density:

mt(x, x0) := ⟨δ(η(t)− x)⟩ where x0 := η(0).

Is the probability density to arrive at position x at time t > 0 for a Brownian particle
starting as x0 at time 0.

Fokker-Planck Equation:

∂

∂t
mt(x, x0) =

D

2

∂2

∂x2
mt(x, x0)−

∂

∂x
U ′(x)mt(x, x0) (FP )

with initial condition m0(x, x0) = δ(x− x0).

The stationary distribution:
Assume the below limit exists, then

Pst(x) := lim
t→∞

mt(x, x0) with

∫ +∞

−∞
dxPst(x) = 1 .

Insert in (FP ):

0 =
D

2

∂2

∂x2
Pst(x)−

∂

∂x
U ′(x)Pst(x)

Integration:
D

2

∂

∂x
Pst(x)− U ′(x)Pst(x) = const.

As Pst(x) is normalisable we can assume Pst(x) → 0 and P ′
st(x) → 0 as x→ ±∞.

So constant of integration should be const. = 0

Integration:

Pst(x) = C exp

{
− 2

D
U(x)

}
= e−U(x)/kBT

The assumption that this is normalisable implies restriction on the shape of the drift po-
tential. Typical shapes are

Stable Meta Stable Unstable
Pst(x) exists lim

t→∞
mt(x, x0) = 0 lim

t→∞
mt(x, x0) = 0
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6.3 Supersymmetry of the FP equation

Consider pair of drift potentials U± defined via forces U ′
± = F± := ∓Φ(x) or

U±(x) := ∓
∫ x

0
dzΦ(z) = −U∓(x).

x

U−(x)

x

U+(x)

stable meta stable

FP equation:

∂tm
±
t (x, x0) =

D

2
∂2xm

±
t (x, x0)∓ ∂xΦ(x)m

±
t (x, x0) with m±

0 (x, x0) = δ(x− x0)

Ansatz:

m±
t (x, x0) =: exp

{
− 1

D
[U±(x)− U±(x0)]

}
K±

t (x, x0) with K±
0 (x, x0) = δ(x− x0)

leads to

∂xm
±
t (x, x0) = e−[···]/D

(
− 1

D
U ′
±(x)K

±
t (x, x0) + ∂xK

±
t (x, x0)

)
= e−[···]/D

(
∂xK

±
t (x, x0)±

1

D
Φ(x)K±

t (x, x0)

)
∂2xm

±
t (x, x0) = e−[···]/D

(
∂2xK

±
t (·)± 2

D
Φ(x)K±

t (·) + Φ2(x)

D2
K±

t (·)± Φ′(x)

2
K±

t (·)
)

In FP equation multiplied by D

−D∂tK±
t (x, x0) =

(
−D

2

2
∂2x +

1

2
Φ2(x)± D

2
Φ′(x)

)
K±

t (x, x0)

Time-dependent imaginary-time Schrödinger eq. for pair of Hamiltonians

HFP
± := −D

2

2
∂2x +

1

2
Φ2(x)± D

2
Φ′(x)

One-to-one correspondence with partner Hamiltonians of Witten model

Witten Model ⇐⇒ Pair of FP

H± ≥ 0 HFP
± ≥ 0

it t
ℏ D
m 1
Φ 1√

2
Φ
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Solution: Is given by the Euclidean time evolution operator (density matrix)

K±
t (x, x0) = ⟨x|e−tHFP

± /D|x0⟩

Assume: Purely discrete spectrum for simplicity, that is,

HFP
± |ϕ±n ⟩ = λ±n |ϕ±n ⟩ , n ∈ N0,

Then

m±
t (x, x0) = exp

{
− 1

D
[U±(x)− U±(x0)]

} ∞∑
n=0

exp

{
− 1

D
tλ±n

}
ϕ±n (x)ϕ

±∗
n (x0).

Remarks:

� λ±n ≥ 0 are the decay rates for U±

� ϕ±n (x) are the corresponding decay modes

Stationary distribution: ⇐⇒ λ±0 = 0 ⇐⇒ unbroken SUSY with ∆ = ∓1

P±
st (x) = lim

t→∞
m±

t (x, x0) = exp

{
− 1

D
[U±(x)− U±(x0)]

}
ϕ±0 (x)ϕ

±∗
0 (x0)

Recall

ϕ±0 (x) = N exp

{
±
√
2m

ℏ

∫
dxΦ(x)

}
= N exp

{
± 1

D

∫
dxΦ(x)

}
= N exp

{
− 1

D
U±(x)

}
Hence

P±
st (x) = |ϕ±0 (x)|

2

Is normalisable in case of unbroken SUSY, i.e. U±(x) → ∞ fast enough.
Note, in the case of unbroken SUSY only one of below cases exist

∆ = +1: P−
st (x) = |ϕ−0 (x)|2 exists, U− is stable, U+ is unstable

∆ = −1: P+
st (x) = |ϕ+0 (x)|2 exists, U+ is stable, U− is unstable

Obviously ”P−
st (x) =

1

P+
st (x)

”

Factorisation:
Recall A = ℏ√

2m
∂x +Φ(x) =⇒ A = 1√

2
(D∂x +Φ(x)) , A† = 1√

2
(−D∂x +Φ(x))

=⇒ HFP
+ = AA† ≥ 0 HFP

− = A†A ≥ 0
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Good versus broken SUSY Examples: Drift and SUSY potentials
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Good versus broken SUSY Examples: Corresponding Witten partner potentials

Symmetric case β = 0
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6.3.1 Implications of unbroken SUSY

We use convention ∆ = +1, hence U− is the stable potential and U+ is unstable.

� Stationary distribution: λ−0 = 0

Pst(x) = |N |2e−
2
D

U−(x) = |ϕ−0 (x)|
2

� Decay rates:
λn := λ−n = λ+n−1 > 0 , n = 1, 2, 3, . . .

Note: U+ and U− = −U+ have identical decay rates!

� SUSY transformations: Relation between decay modes

ϕ+n−1(x) =
1√
2λn

(
D

∂

∂x
+Φ(x)

)
ϕ−n (x),

ϕ−n (x) =
1√
2λn

(
−D ∂

∂x
+Φ(x)

)
ϕ+n−1(x),

� Transition probability density: Spectral representation

m−
t (x, x0) = |ϕ−0 (x)|

2 +
ϕ−0 (x)

ϕ−0 (x0)

∞∑
n=1

e−λnt/Dϕ−n (x)ϕ
−∗
n (x0),

m+
t (x, x0) =

ϕ−0 (x0)

ϕ−0 (x)

∞∑
n=1

e−λnt/Dϕ+n−1(x)ϕ
+∗
n−1(x0).

τ := D/λ1: time scale for decay of U+ = time scale of U− to reach Pst.

6.3.2 Implications of broken SUSY

� Decay rates:
λn := λ−n = λ+n > 0 , n = 0, 1, 2, 3, . . .

As before: U+ and U− = −U+ have identical decay rates! No stationary distribution.

� SUSY transformations:

ϕ±n (x) =
1√
2λn

(
±D ∂

∂x
+Φ(x)

)
ϕ∓n (x).

� Transition probability density: Spectral representation

m±
t (x, x0) = exp

{
± 1

D
[U−(x)− U−(x0)]

} ∞∑
n=0

e−λnt/Dϕ±n (x)ϕ
±∗
n (x0),

Note: exp
{
± 1

D [U−(x)− U−(x0)]
}
= exp

{
− 1

D [U±(x)− U±(x0)]
}

6.3.3 Some examples

Φ1(x) = a sgnx

Φ2(x) = a tanhx

Φ3(x) = a− e−x

 for a > 0 unbroken SUSY (Homework)
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Case 3:

Zero mode: ϕ−0 (x) = N exp

{
−
∫

dxΦ3(x)

}
= N exp

{
−ax− e−x

}
Stationary distribution: Pst(x) = |ϕ−0 (x)|

2 = N 2 exp
{
−2ax− 2e−x

}
Drift potential: U−(x) =

∫
dxΦ3(x) = ax+ e−x

Partner potentials: V±(a, x) =
1
2Φ

2
3(x)± 1

2Φ
′
3(x) =

1
2e

−2x − (a∓ 1
2)e

−x + 1
2a

2

Note: V+(a, x) = V−(a− 1, x) + a− 1
2 (shape-inv. Morse potential)

Obviously λ1 = a− 1
2 if a > 1 or λ1 =

a2

2 if 0 < a < 1 (V− has only 1 bound state).
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Additional Homework: Discuss Φ(x) = x

As for the Witten model one can construct conditionally exactly solvable drift potentials
(see Book)

Family of stable drift potentials related to the harmonic oscillator

Summary of Section 6

� SUSY naturally appears in Fokker-Planck equation.

� Also for the Langevin equation (see the book section 7.3)

� Diffusion in drift potential U− and in its inverted potential U+ = −U− are closely
related.

� For broken SUSY both have same decay rates.

� For unboken SUSY (U− stable) equilibrium distribution is given by the SUSY ground
state, relaxation times into equilibrium are also the decay rates for U+.

� ”Supersymmetric theory of stochastic dynamics” first introduced (1979-1982)
by G. Parisi (Nobel price 2021) and N. Sourlas.
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7 Supersymmetry in the Pauli-Hamiltonian

7.1 N = 1 SUSY of Pauli-Hamiltonian in 3 Dimensions

Spin 1
2 particle with mass m > 0 and charge e (e < 0 for electron) in external el.-magn.

field characterised by

Vector potential: A⃗(r⃗, t)
Scalar potential: ϕ(r⃗, t)
Hilbert space: H = L2(R3)⊗ C2

Phenomenological Pauli-Hamiltonian

H :=
1

2m

(
P⃗ − e

c
A⃗(r⃗, t)

)2
− µ⃗S · B⃗(r⃗, t) + eϕ(r⃗, t)

Magnetic field: B⃗(r⃗, t) = ∇⃗ × A⃗(r⃗, t)
Electric field: E⃗(r⃗, t) = ∇⃗ϕ(r⃗, t)
Gauge transformations:

ϕ̃(r⃗, t) = ϕ(r⃗, t)− 1

c
χ̇(r⃗, t) ,

˜⃗
A(r⃗, t) = A⃗(r⃗, t) + ∇⃗χ(r⃗, t) , ψ̃(r⃗, t) = e

ie
ℏcχ(r⃗,t)ψ(r⃗, t)

Spin: S⃗ := ℏ
2 σ⃗ with Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ⃗ =

 σ1
σ2
σ3

 .

Magnetic moment: µ⃗S := g e
2mc S⃗ = g eℏ

4mc σ⃗ = g
2 sgn e µB σ⃗

Bohr magenton: µB := |e|ℏ
2mc g: Landé g-factor interaction term HS := −µ⃗S · B⃗

For electrons e < 0:
non-relativistic SUSY: g = 2
relativistic Dirac SUSY theory: g = 2
standard model theory: g = 2.002 319 304 363 22(46)
experiment: g = 2.002 319 304 363 56(35)

We know from Tutorial 1: From now on ϕ = 0 and
˙⃗
A = 0

N = 1 SUSY with Q = 1√
4m

(
P⃗ − e

c A⃗
)
· σ⃗ = Q†

No Witten operator but helicity operator Λ = mV⃗ ·σ⃗√
2mH

= sgnQ

Velocity operator V⃗ = ˙⃗r = i
ℏ [H, r⃗] =

1
m

(
P⃗ − e

c A⃗
)

SUSY Pauli-Hamiltonian:

H = 1
2m

(
P⃗ − e

c A⃗
)2

− eℏ
2mc σ⃗ · B⃗

Homework:

Show Λ† = Λ, Λ2 = 1, [Λ, H] = 0, Q = sgnQ |Q| =
√

H
2 Λ

7.2 N = 2 SUSY of Pauli-Hamiltonian in 2 Dimensions

Vector potential: A⃗(x1, x2) =

(
a1(x1, x2)
a2(x1, x2)

)
Magnetic field: B⃗(x1, x2) = B(x1, x2)e⃗3 , B(x1, x2) = ∂1a2(x1, x2)− ∂2a1(x1, x2)

Hilbert space: H = L2(R2)⊗ C2 = H+ ⊕H−

Witten operator: W = σ3 , H± = L2(R2) spin up/down subspace
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Supercharge:

Q := A⊗ σ+ =

(
0 A
0 0

)
, W =

(
1 0
0 −1

)
with

A :=
1√
2m

[(
P1 −

e

c
a1

)
∓i
(
P2 −

e

c
a2

)]
=⇒ N = 2 SUSY as Q ̸= Q†

Hamiltonian: H := {Q,Q†} =

(
AA† 0
0 A†A

)
Calculation:

AA† = 1
2m

[(
P1 − e

ca1
)
∓i
(
P2 − e

ca2
)] [(

P1 − e
ca1
)
±i
(
P2 − e

ca2
)]

= 1
2m

[(
P1 − e

ca1
)2

+
(
P2 − e

ca2
)2∓i

[(
P2 − e

ca2
) (
P1 − e

ca1
)
−
(
P1 − e

ca1
) (
P2 − e

ca2
)]]

= 1
2m

(
P⃗ − e

c A⃗
)2

∓i e
2mc ([P1, a2] + [a1, P2])

= 1
2m

(
P⃗ − e

c A⃗
)2

∓i eℏ
2mci (∂1a2 − ∂2a1)

= 1
2m

(
P⃗ − e

c A⃗
)2

∓ eℏ
2mcB(x1, x2)

Similarly A†A = 1
2m

(
P⃗ − e

c A⃗
)2

± eℏ
2mcB(x1, x2)

Result:

H =
1

2m

(
P⃗ − e

c
A⃗
)2

∓ eℏ
2mc

B(x1, x2)σ3

=⇒ N = 2 SUSY of Pauli-Hamiltonian with g = ±2.

Witten parity eigenstates are eignestates of S3.

From now on we consider only upper sign g = +2 and electrons e = −|e|.

H =
1

2m

(
P⃗ − e

c
A⃗
)2

+ µBB(x1, x2)σ3

Magnetic flux:

F :=

∫
R2

dx1dx2B(x1, x2)

and assume |F | <∞, that is, B is bounded with compact support

Aharonov-Casher theorem: (see Tutorial 14)

� Ground state energy: E0 = 0 =⇒ SUSY unbroken

� Degeneracy of E0: d =
[[
|F |
Φ0

]]
Here [[z]] := max

n∈N0

{n|n < z}, largest integer stricly less then z.

And Φ0 := 2π ℏc
|e| represents the flux quantum.

� All d ground states belong either
to H− for F > 0, spin-down states
or H+ for F < 0, spin-up states

� SUSY implies that all states with E > 0 are pairwise (↑↓) degenerate due to existing
SUSY transformations. Unpaired spins can only exist on the ground state level.

� Witten index:

∆ = dimkerA†A− dimkerAA† = d sgnF ≈ F

Φ0

Topological invariant as details of B are irrelevant and only total flux through R2 is
essential!
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7.3 Paramagnetism of non-interacting electrons in 2D

Consider a 2-dim. gas of N non-interacting electrons at T = 0

� Ground state: Is characterised by integrated density of states

Θ(εF −H)

With 1-particle Hamiltonian H = 1
2m

(
P⃗ − e

c A⃗
)2

+ µBB(x1, x2)σ3

and Fermi energy εF defined via TrΘ(εF −H) = N .
All states up to εF are occupied.

� Typical N-particle ground state:
Assumption that εF is between two Landau levels (case B = const.)
All levels either fully occupied or empty

6

0

E1

E2

E3

E

↓↓↓↓↓↓ . . .

↓↑↓↑↓↑↓↑↓↑↓↑. . .

↓↑↓↑↓↑↓↑↓↑↓↑. . .

↓↑↓↑↓↑↓↑↓↑↓↑. . .

� Magnetisation: Recall magnetic moment of single electron µ⃗S = −µBσ⃗

M := µB (N↓ −N↑) N↑↓ : No. of occupied ↑↓ states
= −µBTr [σ3Θ(εF −H)]

= µB∆̃(εF ) IDOS regulated Witten index
= µB∆ under above assumption

= µB d sgnF ≈ µB
F
Φ0

topological invariant

� Simplifying assumptions: B(x1, x2) = B > 0 constant magn. field on finite area A
A ⊂ R2 with A := {(x1, x2) ∈ R2| − ℓ/2 ≤ xi ≤ ℓ/2, i = 1, 2} =⇒ F = Bℓ2 > 0

magnetisation: M = µB
Bℓ2

Φ0

specific magnetisation:
M

ℓ2
= µB

B

Φ0
= µB

|e|B
2πℏc

� Paramagnetic Susceptibility: of the 2-dim. electron gas

χ :=
1

ℓ2
∂M

∂B
= µB

|e|
2πℏc

=
e2

4πmc2

Remarks:

� Result independent of electron density (εf ) and magnetic field strength (B)!

� Derivation uses full single-particle Pauli-Hamiltonian

H ≡ H(2) =
1

2m

(
P⃗ − e

c
A⃗
)2

+ µBBσ3

Standard textbook use the free Hamiltonian with spin term

H0 :=
1

2m
P⃗ 2 + µBBσ3

but arrive at same result!!! =⇒ ”Topological Invariance”
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7.4 Paramagnetism of non-interacting electrons in 3D

Homogeneous magnetic field: B⃗ = Be⃗3 on A as before
Macroscopic Volume: V = ℓ2ℓ3 ℓ3 is extension in x3-direction
Single particle Hamiltonian:

H(3) =
P 2
3

2m
+H(2)

Free motion in x3-direction but eigenvalues of P3 are quantised as ℓ3 <∞
periodic boundary conditions allow only certain wavelengths

p3 = ℏk3 with k3 =
2π

ℓ3
n , n ∈ Z

For the non-interaction electron gas all k3 are occupied where

|k3| < kF :=

√
2mεf

ℏ
Fermi wave number

Number of occupied k3: 2nmax = kF ℓ3
π , −nmax < n < nmax

Each eigenvalue k3 contributes to magnetisation the 2-dim. result

M (2) = µB
Bℓ2

Φ0

Total magnetisation:

M (3) = 2nmaxM
(2) =

kF ℓ3
π

µB
Bℓ2

Φ0

Specific magnetisation:

M (3)

V
=
kFB

π

µB
Φ0

=
e2

4π2mc2
kF B

Paramagnetic Susceptibility: Is dimensionless!

χ(3) =
1

V

∂M (3)

∂B
=

e2

4π2mc2
kF =

( α
2π

)2
a0 kF

Bohr radius: a0 :=
ℏ2
me2

Fine structure constant: α := e2

ℏc

7.5 The textbook approach

Calculate spectral density of a free particle in a box: V = L3 using H0 =
P⃗ 2

2m

� Eigenfunctions:

ψ(r⃗) =
(

1
2π

)3/2
ei⃗k·r⃗ , kj =

2π
L nj , nj ∈ Z , j = 1, 2, 3

� Volume taken by one state in k-space: Ω0 :=
(
2π
L

)3
� Volume of sphere in k-space: dΩ = 4πk2dk

with ε(k⃗) = ℏ2k⃗2
2m ⇒ k = |⃗k| =

√
2mε
ℏ2 ⇒ dε = ℏ2k

m dk

Hence dΩ = 4π 2mε
ℏ2

m
ℏ2kdε = 4πm

ℏ2

√
2mε
ℏ2 dε

� Spectral density: number of states in the sphere

D(ε) :=
1

Ω0

dΩ

dε
=

V

8π3
4π
m

ℏ2

√
2mε

ℏ2
=

V m

2π2ℏ2

√
2mε

ℏ2
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� Specific spectral density:

ρ(ε) :=
D(ε)

V
=

m

2π2ℏ2

√
2mε

ℏ2
=

m

2π2ℏ2
k

Graphical representation for spin-up/-down electrons

ε

ρ↑(ε)

ρ↓(ε)

εF

Switch on magnetic field: Using free Hamiltonian with spin term only

H0 ⇒ H0 =
P⃗ 2

2m
+ µBBσ3

ε

ρ↑(ε)

ρ↓(ε)

εF

N↑ → N↑ − µBBρ(εF )V
N↓ → N↓ − µBBρ(εF )V
Magnetisation: M (3) = µB(N↓ −N↑) = 2µ2Bρ(εF )V B

Susceptibility: χ(3) = 2µ2Bρ(εF ) =
e2ℏ2
4m2c2

m
π2ℏ2 kF = e2

4π2mc2
kF

Result is identical to the SUSY derivation.
Surprisingly the wrong use of the free Hamiltonian with spin term is sufficient.
The spectral free density actually changes drastically to Landau levels.
Nevertheless the net magnetisation is NOT sensitive to such approximation.

Recall M = µB ∆ is related to the Witten index, i.e. a topological invariant.
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8 Supersymmetry in the Dirac-Hamiltonian

8.1 The Dirac equation

Problem: (see e.g. F. Schwabl, ”QM für Fortgeschrittene”)
Schrödinger eq. allows for a probabilistic interpretation but is no relativistic description.
Klein-Gordon eq. E2 = p⃗ 2c2 +m2c4 is covariant and relativistic, but does not allow for a
probabilistic interpretation.

Dirac’s ansatz:
H := cα⃗ · p⃗+ βmc2

with α⃗ = (α1, α2, α3)
T and β being arbitrary, not necessarily, numbers.

Quantisation: E → H and p⃗→ −iℏ∇⃗ results in

H2 = −c2ℏ2αkαl∂k∂l − iℏmc2(αkβ + βαk)∂k + β2m2c4

= −1
2c

2ℏ2(αkαl + αlαk)∂k∂l − iℏmc2(αkβ + βαk)∂k + β2m2c4

Compare with KG relation E2 = p⃗ 2c2 +m2c4 led Dirac to the conclusion

{αk, αl} = 2δkl

{αk, β} = 0

β2 = 1

 Dirac matrices, Dirac algebra

Further properties: H = H† =⇒ αk = α†
k and β = β†

Consider: Trαk = Trαkβ
2 = −Trβαkβ = −Trαk =⇒ Trαk = 0

Similar Trβ = Trβα2
k = −Trαkβαk = −Trβ =⇒ Trβ = 0

� Pauli representation: 4× 4-matrices

αk =

(
0 σk
σk 0

)
or α⃗ =

(
0 σ⃗
σ⃗ 0

)
and β =

(
1 0
0 −1

)
� Weyl representation:

α⃗ =

(
σ⃗ 0
0 −σ⃗

)
and β =

(
0 1
1 0

)
via UW =

1√
2

(
1 1
1 −1

)
� Supersymmetric representation:

α⃗ =

(
0 σ⃗
σ⃗ 0

)
and β =

(
0 −i
i 0

)
via US =

1√
2

(
1 i
i 1

)
� Free Dirac equation: H = iℏ∂t

iℏ∂tΨ(r⃗, t) = (cα⃗ · p⃗+ βmc2)Ψ(r⃗, t)

Ψ: Dirac spinor, lives in H = L2(R3)⊗ C4

Ψ(r⃗, t) =


ψ1(r⃗, t)
ψ2(r⃗, t)
ψ3(r⃗, t)
ψ4(r⃗, t)


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� Free Dirac Hamiltonian: (Pauli representation)

H0 := cα⃗ · p⃗+ βmc2 =

(
mc2 cσ⃗ · p⃗
cσ⃗ · p⃗ −mc2

)
� Free massless Dirac Hamiltonian: (Weyl representation)

H0 = cα⃗ · p⃗ =
(
cσ⃗ · p⃗ 0
0 −cσ⃗ · p⃗

)
=⇒ Weyl eq. iℏ∂tΨ = cσ⃗ · p⃗Ψ , Ψ ∈ L2(R3)⊗ C2

� Free Dirac Hamiltonian in 1D and 2D:

H0 = −iℏc (σ1∂1 + σ2∂2) + σ3mc
2

� Charged Dirac particle in electromagnetic potentials:
via minimal coupling p⃗→ p⃗− e

c A⃗ and iℏ∂t → iℏ∂t − eϕel

H = cα⃗ ·
(
p⃗− e

c
A⃗
)
+ βmc2 + eϕel

� Scalar potentials: V (r⃗) = βϕsc(r⃗)

� Dirac oscillator:

H = cα⃗ · (p⃗+ βimωr⃗) + βmc2 =

(
mc2 cσ⃗ · (p⃗− imωr⃗)

cσ⃗ · (p⃗+ imωr⃗) −mc2
)

More details: B. Thaller, ”The Dirac Equation” (Springer, Berlin, 1992)

8.2 Supersymmetric Dirac operators

Recall: N = 2 SUSY with Witten operator now on H = L2(R3)⊗ C4

Q =

(
0 A
0 0

)
, Q† =

(
0 0
A† 0

)
, W =

(
1 0
0 −1

)
.

SUSY Hamiltonian:

HS := {Q,Q†} =

(
AA† 0
0 A†A

)
=

(
H+ 0
0 H−

)
Definition:
Let

Q1 := Q+Q† =

(
0 A
A† 0

)
= Q†

1 and M :=

(
M+ 0
0 M−

)
= M† ≥ 0

then
HD := Q1 +MW

is called supersymmetric Dirac operator if [Q1,M] = 0 = [W,M].
That is,

HD =

(
M+ A
A† −M−

)
with AM− =M+A , A†M+ =M−A

† .

Example: A := cσ⃗ · (p⃗− e
c A⃗) = A† , M± = mc2 ⊗ 1

HD =

(
mc2 cσ⃗ · (p⃗− e

c A⃗)

cσ⃗ · (p⃗− e
c A⃗) −mc2

)
= cα⃗ ·

(
p⃗− e

c
A⃗
)
+ βmc2

Charged Dirac particle in magnetic field.
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Properties:

� Consider

H2
D = (Q1 +MW )2 =

(
M+ A
A† −M−

)(
M+ A
A† −M−

)
=

(
AA† +M2

+ M+A−AM−
A†M+ −M−A

† A†A+M2
−

)
=

(
AA† +M2

+ 0
0 A†A+M2

−

)
Let m > 0 be an arbitrary mass-like parameter and define

H+ :=
1

2mc2
AA† , H− :=

1

2mc2
A†A ,

Rescale supercharges

Q :=
1√
2mc2

(
0 A
0 0

)
, Q† =

1√
2mc2

(
0 0
A† 0

)
and set

HSUSY :=
1

2mc2
(
H2

D −M2
)
=

(
H+ 0
0 H−

)
.

Then we obtain a N = 2 SUSY QM system with W = β

HSUSY = {Q,Q†} , {Q,W} = 0 , Q2 = 0 = (Q†)2 .

� Let UFW := a+ +W sgnQ1 a− be unitary transformation with a± :=
√

1
2 ± M

2|HD|
Then (see tutorial)

HFW
D := UFWHDU

†
FW =

 √
AA† +M2

+ 0

0 −
√
A†A+M2

−

 = β|HD|

UFW diagonalises HD and is called Foldy–Wouthuysen transformation.

Hence with

HFW
D Ψ̃±

n = E±
n Ψ̃

±
n and Ψ±

n := U †
FW Ψ̃±

n =⇒ HDΨ
±
n = E±

n Ψ
±
n

The subspaces H± are the eigenspaces of HD for positive and negative energies, re-
spectively.

Observation: In many cases M± = mc2 and A = A†, that is HNR := H± = A2

2mc2

HFW
D = βmc2

√
1 +

HNR

2mc2

Hence HNR is the non-relativistic limit of HD in those cases as

HFW
D

∣∣
H+ = mc2 +HNR +O

(
1/mc2

)
� Spectral properties: Note [H+,M+] = 0 = [H−,M−]

Let H±ϕ
±
n = εnϕ

±
n and M±ϕ

±
n = mnc

2ϕ±n with εn,mn > 0

Hence we have

E±
n = ±

√
2mc2εn +mnc2 , Ψ̃+

n =

(
ϕ+n
0

)
, Ψ̃−

n =

(
0
ϕ−n

)
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For unbroken SUSY (ε0 = 0) in addition we have

E+
0 = ⟨ϕ+0 |M+|ϕ+0 ⟩ if ϕ+0 ∈ H+exists with A†ϕ+0 = 0

and/or

E−
0 = −⟨ϕ−0 |M−|ϕ−0 ⟩ if ϕ−0 ∈ H−exists with Aϕ−0 = 0

The spectrum of a supersymmetric Dirac Hamiltonian is symmetric about zero with
the exception at E+

0 and/or E−
0 if SUSY is unbroken.

E

E−
0

0

E+
0

good SUSY broken SUSY

The spectral properties of HD follow from those of the SUSY partners H± and M±.
In all most all case, M± = mc2 or M± = 0.

Note: In general A ∼ p⃗, hence H± ∼ p⃗ 2, i.e. the relativistic problem may be reduced
to a non-relativistic Pauli-like problem.

Example: Electron in magnetic field results in HFW
D = βmc2

√
1 + 2HP

mc2

Dirac: HD = cα⃗ ·
(
p⃗− e

c A⃗
)
+ βmc2

Pauli: HP = 1
2m

(
P⃗ − e

c A⃗
)2

− eℏ
2mc σ⃗ · B⃗

� SUSY transformations for εn > 0:

Recall ϕ+n =
1√

2mc2εn
Aϕ−n and ϕ−n =

1√
2mc2εn

A†ϕ+n .

Hence Ψ̃+
n =

1
√
εn
QΨ̃−

n and Ψ̃−
n =

1
√
εn
Q†Ψ̃+

n

Obvious as

Q Ψ̃−
n =

1√
2mc2

(
0 A
0 0

)(
0
ϕ−n

)
=

1√
2mc2

(
Aϕ−n
0

)
=

√
εn Ψ̃+

n

Q† Ψ̃+
n =

1√
2mc2

(
0 0
A† 0

)(
ϕ+n
0

)
=

1√
2mc2

(
0

A†ϕ+n

)
=

√
εn Ψ̃−

n

8.3 The free Dirac Hamiltonian

Choose: A := cσ⃗ · p⃗ = A† , M± := mc2 on H± = L2(R2)⊗ C2

HD =

(
mc2 cσ⃗ · p⃗
cσ⃗ · p⃗ −mc2

)
Pauli reps.

With A†A = c2(σ⃗ · p⃗)(σ⃗ · p⃗) = c2p⃗ 2 = AA† we have

H± =
1

2mc2
c2p⃗ 2 =

p⃗ 2

2m
free non-rel. particle on H±
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ε0 = 0 ∈ specH± =⇒ SUSY unbroken

Eigenspinors: Plane waves

ϕ±
k⃗λ
(r⃗) =

(
1

2πℏ

)3/2

ei⃗k·r⃗ χλ(k⃗) , k⃗ ∈ R3 , λ ∈ {−1,+1} ,

with eigenvalues ε
k⃗
=

ℏ2k⃗ 2

2m
and 2-spinor χλ(k⃗)

Helicity eigenspinors: Let k := |⃗k| and

χ+1(k⃗) :=
1√

2k(k − k3)

(
k1 − ik2
k − k3

)
and χ+1(ke⃗3) :=

(
1
0

)
,

χ−1(k⃗) :=
1√

2k(k − k3)

(
k3 − k
k1 + ik2

)
and χ−1(ke⃗3) :=

(
0
1

)
,

Recall helicity operator Λ :=
σ⃗ · p⃗
|p⃗|

in eigenspace with fixed k⃗, Λ
k⃗
:=

σ⃗ · k⃗
k

Lemma: Above spinors are ortho-normal eigenspinors of Λ
k⃗
, that is,

Λ
k⃗
χλ(k⃗) = λχλ(k⃗) , λ = ±1 , ||χλ||2 = (χ∗

λ)
Tχλ = 1 , (χ∗

−1)
Tχ+1 = 0 .

Proof:

Consider σ⃗ · k⃗ =

(
k3 k1 − ik2

k1 + ik2 −k3

)
=⇒

σ⃗ · k⃗χ+1(k⃗) = 1√
2k(k−k3)

(
k3 k1 − ik2

k1 + ik2 −k3

)(
k1 − ik2
k − k3

)
= 1√

2k(k−k3)

(
k3(k1 − ik2) + (k1 − ik2)(k − k3)

k21 + k22 − k3(k − k3)

)
= 1√

2k(k−k3)

(
k(k1 − ik2)
k(k − k3)

)
= kχ+1(k⃗)

σ⃗ · k⃗χ−1(k⃗) = 1√
2k(k−k3)

(
k3 k1 − ik2

k1 + ik2 −k3

)(
k3 − k
k1 + ik2

)
= 1√

2k(k−k3)

(
k3(k3 − k) + k21 + k22

(k1 + ik2)(k3 − k)− k3(k1 + ik2)

)
= 1√

2k(k−k3)

(
k(k − k3)

−k(k1 + ik2)

)
= −kχ−1(k⃗)

The ortho-normal part is homework.

Summary:

H± ϕ±
k⃗λ
(r⃗) = ε

k⃗
ϕ±
k⃗λ
(r⃗) with ε

k⃗
= ℏ2k⃗ 2

2m , k⃗ ∈ R3 ,

Λ ϕ±
k⃗λ
(r⃗) = λ ϕ±

k⃗λ
(r⃗) with λ = ±1 .

E±
k⃗λ

= ±
√
ℏ2c2k⃗ 2 +m2c4 , Ψ̃+

k⃗λ
(r⃗) =

(
ϕ+
k⃗λ
(r⃗)

0

)
, Ψ̃−

k⃗λ
(r⃗) =

(
0

ϕ−
k⃗λ
(r⃗)

)

Explicit form of FW transformation:
Consider subspace with fixed k⃗ and λ and set ϵ(k) :=

√
ℏ2c2k2 +m2c4
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� With |HD|Ψ̃±
k⃗λ

= ϵ(k)Ψ̃±
k⃗λ

=⇒ a± =
√

1
2 ± mc2

2ϵ(k)

� sgnQ1 =
Q1√
Q2

1

, Q1 =

(
0 cσ⃗ · p⃗

cσ⃗ · p⃗ 0

)
, Q2

1 =

(
c2p⃗ 2 0
0 c2p⃗ 2

)
= c2p⃗ 2 ⊗ 1

sgnQ1 =
1√
c2p⃗ 2

(
0 cσ⃗ · p⃗

cσ⃗ · p⃗ 0

)
=

(
0 Λ
Λ 0

)
= Λ

(
0 1
1 0

)

� W sgnQ1 = Λ

(
1 0
0 −1

)(
0 1
1 0

)
= Λ

(
0 1
−1 0

)

� UFW = a+ +W sgnQ1a− = a+ + a−Λ

(
0 1
−1 0

)
, U †

FW = a+ − a−Λ

(
0 1
−1 0

)
� The ”electron” solution

Ψ+

k⃗λ
(r⃗) = U †

FW Ψ̃+

k⃗λ
(r⃗) =

[
a+ − λa−

(
0 1
−1 0

)](
ϕ+
k⃗λ
(r⃗)

0

)

Ψ+

k⃗λ
(r⃗) =

(
a+ϕ

+

k⃗λ
(r⃗)

λa−ϕ
+

k⃗λ
(r⃗)

)

� The ”positron” solution

Ψ−
k⃗λ
(r⃗) =

(
−λa−ϕ−

k⃗λ
(r⃗)

a+ϕ
−
k⃗λ
(r⃗)

)

� SUSY transformations: A = cσ⃗ · p⃗ = A† , ε
k⃗
= ℏ2k2

2m

A ϕ±
k⃗λ

= cℏσ⃗ · k⃗ ϕ±
k⃗λ

= cℏkλ ϕ∓
k⃗λ

= λ
√
2mc2ε

k⃗
ϕ∓
k⃗λ

(λ is phase only!)

Q†Ψ̃+

k⃗λ
= 1√

2mc2

(
0 0
A† 0

)(
ϕ+
k⃗λ
0

)
= λ

√
ε
k⃗

(
0
ϕ−
k⃗λ

)
= λ

√
ε
k⃗
Ψ̃−

k⃗λ

QΨ̃−
k⃗λ

= · · · = λ
√
ε
k⃗
Ψ̃+

k⃗λ

� Free Dirac particle in SUSY representation:

Now α⃗ =

(
0 σ⃗
σ⃗ 0

)
and β =

(
0 −i
i 0

)

HD = cα⃗ · p⃗+ βmc2 =

(
0 cσ⃗ · p⃗− imc2

cσ⃗ · p⃗+ imc2 0

)
Hence

A := cσ⃗ · p⃗− imc2 and M± := 0 =⇒

H+ =
AA†

2mc2
=

A†A

2mc2
= H− or H± =

c2p⃗ 2

2mc2
+
m2c4

2mc2
≥ 1

2
mc2 > 0

Here SUSY is broken with

ε
k⃗
= ℏ2k⃗ 2

2m + 1
2mc

2 shifted SUSY spectrum

ϕ±
k⃗λ
(r⃗) =

(
1

2πℏ
)3/2

ei⃗k·r⃗ χλ(k⃗) same eigenspinors

E±
k⃗
= ±

√
2mc2ε

k⃗
= ±

√
c2ℏ2k2 +m2c4 same Dirac spectrum
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8.4 The Dirac oscillator

H =

(
mc2 cσ⃗ · (p⃗− imωr⃗)

cσ⃗ · (p⃗+ imωr⃗) −mc2
)

Is obviously SUSY Dirac Hamiltonian

A = cσ⃗ · (p⃗− imωr⃗) , M± = mc2 =⇒ AM− =M+A , A†M+ =M−A
†

Homework: Show

AA† = c2
(
p⃗ 2 +m2ω2r⃗ 2 + 3mc3ℏω + 2mc2ωL⃗ · σ⃗

)
= 2mc2H+

A†A = c2
(
p⃗ 2 +m2ω2r⃗ 2 − 3mc3ℏω − 2mc2ωL⃗ · σ⃗

)
= 2mc2H−

Partner Hamitonians are SUSY Pauli Hamiltonians

H± = p⃗ 2

2m + m
2 ω

2r⃗ 2 ±
(
3
2ℏω + ℏωL⃗ · σ⃗

)
= p⃗ 2

2m + m
2 ω

2r⃗ 2 ± ℏω
(
K + 1

2

)
Recall spin orbit operator K := L⃗ · σ⃗ + 1

Eigenvalues of K are given by: −κ = s|κ| = s(j+ 1
2) =

{
ℓ+ 1 for s = +1
−ℓ for s = −1

or j = ℓ+ s
2

Eigenvalues of H±:
ε±njs = ℏω

(
2n+ ℓ+ 3

2

)
± ℏω

[
s(j + 1

2) +
1
2

]
More explicit

ε−njs = ℏω
(
2n+ j − s

2 + 3
2 − sj − s

2 − 1
2

)
= ℏω [2n+ j + 1− s(j + 1)]

ε+njs = ℏω
(
2n+ j − s

2 + 3
2 + sj + s

2 + 1
2

)
= ℏω [2(n+ 1) + j + sj] > 0

SUSY unbroken with ground state energy

ε−0j1 = 0 ∞−degenerate as j = 1
2 ,

3
2 ,

5
2 , . . .

Spectral relation between SUSY partners

ε+njs = ε−n+1,j−1,−s

Eigenvalues of the Dirac oscillator

E−
njs = −mc2

[
1 +

2ℏω
mc2

[2n+ j + 1− s(j + 1)]

]1/2
E+

njs = mc2
[
1 +

2ℏω
mc2

[2(n+ 1) + j + sj]

]1/2
8.5 One-dimensional Dirac Hamiltonians

� The free Dirac particle on the real line

H = cσ1p+ σ3mc
2 =

(
mc2 cp
cp −mc2

)
on H = L2(R)⊗ C2

Obvious: A = cp = A† , M± = mc2 , H± = A2

2mc2
= p2

2m ≥ 0
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� The Dirac oscillator on the real line

H = cσ1(p+ imωxσ3) + σ3mc
2 =

(
mc2 c(p− imωx)

c(p+ imωx) −mc2
)

Obvious: A = c(p− imωx) = −i
√
2mc2ℏω a , M± = mc2

H± = p2

2m + m
2 ω

2x2 ± 1
2ℏω = ℏω

(
a†a+ 1

2 ± 1
2

)
Hence

ϕ+n = ⟨x|n− 1⟩ , ϕ−n = ⟨x|n⟩ , εn := ℏωn , n = 1, 2, 3, . . .

in addition n = 0 for H− only.

E±
n = ±

√
m2c4 + 2mc2εn = ±mc2

√
1 +

2εn
mc2

� The relativistic Witten model
Generalisation of Dirac oscillator with mωx→

√
2mΦ(x)

H = cσ1(p+ i
√
2mΦ(x)σ3) + σ3mc

2 =

(
mc2 c(p− i

√
2mΦ(x))

c(p+ i
√
2mΦ(x)) −mc2

)
Obvious: A = c(p− i

√
2mΦ(x)) , M± = mc2

H± =
p2

2m
+Φ(x)2 ± ℏ√

2m
Φ′(x)

Assume unbroken SUSY with ε0 = 0 ∈ specH− and εn > 0 ∈ specH+ then

E−
0 = −mc2 and E±

n = ±mc2
√
1 +

2εn
mc2

Remarks:

– Whenever the non-relativistic Witten model can be solved, one also has a solution
of the relativistic Witten model.

– Application of the SUSY WKB formula results in an approximation for the
relativistic Witten model via E2 = 2mc2ε+m2c4.
Let W (x) :=

√
2mc2Φ(x), then A = cp− iW (x) and∫ xR

xL

dx
√
E2 −m2c4 −W 2(x) = cℏπ

(
n+

1

2
± ∆

2

)
with W 2(xR/L) = E2 −m2c4.

For a general discussion see GJ, Eur. Phys. J. Plus 135 (2020) 464 (13pp)

8.6 Relativistic Hamiltonians with arbitray spin

The Dirac Hamiltonian describes the relativistic dynamics of spin-12 particles.
How about particles with other spin?
Goal is to find relativistic eq. allowing for a probability interpretation, that is, being of the
form

iℏ∂tΨ = HΨ , H = L2(R3)⊗ C2(2s+1) , s = 0, 12 , 1,
3
2 , . . .

The general form of such a Hamiltonian is given by

H = βm+ E +O , with β2 = 1 .
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Here m denotes the mass of the particle.
E and O denote the even and odd parts of the Hamiltonian, respectively. That is,

[β, E ] = 0 , {β,O} = 0 .

With M := m+ βE the general Hamiltonian then reads

Hs = βM+O with
Hs = H†

s for s = 1
2 ,

3
2 , . . . , F ermions

Hs = βH†
sβ for s = 0, 1, 2, . . . , Bosons

Choose matrix representation where

β =

(
1 0
0 −1

)
=⇒ M =

(
M+ 0
0 M−

)
, O =

(
0 A

(−1)2s+1A† 0

)
,

Note: The matrix elements here are (2s+ 2)× (2s+ 2) submatrices.

Definition:
Above Hamiltonian Hs is called a supersymmetric relativistic arbitrary-spin Hamiltonian if

M+A = AM− , A†M+ =M−A
† .

Note: For s = 1/2 this is identical to the definition of a supersymmetric Dirac Hamiltonian.

Properties:

� Consider

H2
s =

(
(−1)2s+1AA† +M2

+ 0
0 (−1)2s+1A†A+M2

−

)
Let m > 0 be an arbitrary mass-like parameter and define

H+ :=
1

2mc2
AA† ≥ 0 , H− :=

1

2mc2
A†A ≥ 0 ,

Define supercharges by

Q :=
1√
2mc2

(
0 A
0 0

)
, Q† =

1√
2mc2

(
0 0
A† 0

)
and the SUSY Hamiltonian by

HSUSY :=
(−1)2s+1

2mc2
(
H2

s −M2
)
=

(
H+ 0
0 H−

)
results in a N = 2 SUSY QM system with W = β

HSUSY = {Q,Q†} , {Q,W} = 0 , Q2 = 0 = (Q†)2 .

� As for the Dirac case one can show that for such supersymmetricHs exists a Foldy–Wouthuysen
transformation U which diagonalises Hs

HFW
s := UHsU

† =

 √
M2

+ + (−1)2s+1AA† 0

0 −
√
M2

− + (−1)2s+1A†A

 = β|Hs|

The transformation explicitly reads (without proof)

U =
|Hs|+ βHs√
2H2

s + 2M|Hs|
=

1 + β sgnHs√
2 + {sgnHs, β}
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� Due to the SUSY requirement we have [H±,M±] = 0 and we can introduce a joint set
of eigenfunctions ϕ±ε , this is a (2s+ 1)-spinor, with

H±ϕ
±
ε = εϕ±ε , M±ϕ

±
ε = mεc

2ϕ±ε , ε ≥ 0 .

Hence the spectral properties of HFM
s can be expressed in terms of ϕ±ε and ε

E± = ±
√
m2

εc
4 + (−1)2s+12mc2ε , Ψ̃+

ε =

(
ϕ+ε
0

)
, Ψ̃−

ε =

(
0
ϕ−ε

)
,

The SUSY transformations explicitly read for ε > 0

ϕ+ε =
1√

2mc2ε
Aϕ−ε , ϕ−ε =

1√
2mc2ε

A† ϕ+ε .

The spectrum is symmetric about zerowith possible exception at m0c
2 and/or −m0c

2

in case of unbroken SUSY with kerA† and/or kerA being not empty, respectively.

Examples
We consider spin-s particles with mass m > 0 and charge e in external magnetic field
B⃗ = ∇⃗ × A⃗.

� The Klein-Gordon Hamiltonian s = 0:
The non-relativistic quantum dynamics is provided by the Landau Hamiltonian

HL :=
1

2m

(
p⃗− e

c
A⃗
)2

acting on L2(R3)

In 1958 Feshbach and Villars showed that the relativistic Klein-Gordon Hamiltonian
is given by

H0 =

(
mc2 +HL HL

−HL −(mc2 +HL)

)
acting on L2(R3)⊗ C2

Obviously we may identify

M± = HL +mc2 , A = HL = A† =⇒ [M±, A] = 0

Hence it is a supersymmetric spin-zero Hamiltonian with

H± =
1

2mc2
H2

L

The diagonlised FW Hamiltonian reads

HFW
0 =

 √
(mc2 +HL)2 −H2

L 0

0 −
√

(mc2 +HL)2 −H2
L

 = βmc2
√
1 +

2HL

mc2

For a constant magnetic field B⃗ = Be⃗z the eigenvalues ofHL are the well-know Landau
levels

ϵ := ℏωc

(
n+

1

2

)
+

ℏ2k2z
2m

, n ∈ N0 , kz ∈ R , ωc :=
|eB|
mc

.

Note, the eigenvalues of H± =
H2

L
2mc2

are given by ε = ϵ2

2mc2
> 0 and SUSY is broken.

The eigenvalues of M± are given by mε = ϵ+mc2 = mc2
(
1 +

√
2ε
mc2

)
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� The Dirac Hamiltonian s = 1/2:
The non-relativistic quantum dynamics is provided by the Pauli Hamiltonian with
g = 2

HP :=
1

2m

[
σ⃗ ·
(
p⃗− e

c
A⃗
)]2

acting on L2(R3)⊗ C2

The relativistic Dirac Hamiltonian is given by

H1/2 =

 mc2 cσ⃗ ·
(
p⃗− e

c A⃗
)

cσ⃗ ·
(
p⃗− e

c A⃗
)

−mc2

 acting on L2(R3)⊗ C2

We already know that it is supersymmetric with M± = mc2 and A = cσ⃗ ·
(
p⃗− e

c A⃗
)
.

The partner Hamiltonians are given by

H± =
1

2mc2
A2 = HP

The diagonlised FW Hamiltonian reads

HFW
1/2 =

( √
m2c4 + 2mc2HP 0

0 −
√
m2c4 + 2mc2HP

)
= βmc2

√
1 +

2HP

mc2

For a constant magnetic field B⃗ = Be⃗z the eigenvalues of HP are shifted Landau levels

ε := ℏωc

(
n+ 1

2 + sz
)
+ ℏ2k2z

2m , n ∈ N0 , kz ∈ R , sz = ±1
2 .

SUSY is unbroken here due to the shift!

� The vector boson Hamiltonian s = 1:
The non-relativistic quantum dynamics is provided by the ”vector” Hamiltonian for
g = 2

HV :=
1

2m

(
p⃗− e

c
A⃗
)2

− eℏ
mc

(S⃗ · B⃗) acting on L2(R3)⊗ C3

Here S⃗ = (S1, S2, S3)
T are the spin-1 matrices obeying [Si, Sj ] = iεijkSk,

S1 =
1√
2

 0 1 0
1 0 1
0 1 0

 , S2 =
1√
2

 0 −i 0
i 0 −i
0 i 0

 , S3 =

 1 0 0
0 0 0
0 0 −1

 .

The relativistic Hamiltonian describing a vector boson with g = 2 is given by

H1 =

 mc2 +HV
(p⃗− e

c
A⃗)

2

2m − ((p⃗− e
c
A⃗)·S⃗)

2

m

−(p⃗− e
c
A⃗)

2

2m +
((p⃗− e

c
A⃗)·S⃗)

2

m −(mc2 +HV )

 on L2(R3)⊗ C6

With M± = mc2 +HV and A =
(p⃗− e

c
A⃗)

2

2m − ((p⃗− e
c
A⃗)·S⃗)

2

m = A† one can show that, for a
constant magnetic field [M±, A] = 0, leading to a supersymmetric relativistic spin-1
Hamiltonian. In addition one may show that H2

V = A2.
The diagonalised FW Hamiltonian then reads

HFW
1 =

 √
(mc2 +HV )2 −H2

V 0

0 −
√

(mc2 +HV )2 −H2
V

 = βmc2
√
1 +

2HV

mc2

The eigenvalues of HV = HL − sgn(eB) ℏωc S3 are again given by the Landau levels

ϵ := ℏωc

(
n+ 1

2 + sz
)
+ ℏ2k2z

2m , n ∈ N0 , kz ∈ R , sz ∈ {−1, 0, 1} .
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The partner Hamiltonians H± = 1
2mc2

H2
V have the eigenvalues ε = ϵ2

2mc2
.

The eigenvalues of M± are given by mε = ϵ+mc2 = mc2
(
1 +

√
2ε
mc2

)
.

Note that ε = 0 when ϵ = 0, which is the case for n = 0 , sz = −1 and kz = ±1/λL.
λL :=

√
ℏ/mωc =

√
ℏc/|eB| is the Larmor wavelength.

Hence SUSY is unbroken, but ∆ = 0 as H+ = H−.

The corresponding eigenvalues of H1 are then given by

E± = ±
√
m2c4 + ℏ2c2k2z + 2mc2ℏωc(n+ 1/2 + sz)

Note: For kz = 0, n = 0 and sz = −1, the above eigenvalue would become complex if
|B| > m2c3/|e|ℏ. Such large magnetic fields would imply λL < λ̄C := ℏ/mc. That is,
the Larmor wavelength is small than the reduced Compton wavelength.

Let’s confine a particle to such a small area ∆x ∼ λ̄C .
Then uncertainty relation implies ∆p ∼ ℏ/∆x = mc. At such large energies a single
particle description is no longer appropriate. In other words for such large magnetic
fields a description via quantum field theory must be applied.

For details see GJ, Symmetry 12 (2020) 1590 (14pp)
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Summary Section 8

Supersymmetric Dirac Hamiltonians are of the form

HD =

(
M+ A
A† −M−

)
with M+A = AM− , M−A

† = A†M+ .

The N = 2 SUSY is explicated via (m > 0 is a free parameter with dimension of a mass)

Q =
1√
2mc2

(
0 A
0 0

)
, Q† =

1√
2mc2

(
0 0
A† 0

)
, M =

(
M+ 0
0 M−

)
,

HSUSY = {Q,Q†} =
1

2mc2
(
H2

D −M2
)
=

1

2mc2

(
H+ 0
0 H−

)
, W = β =

(
1 0
0 −1

)
.

Note

H+ =
AA†

2mc2
, H− =

A†A

2mc2
, [M+, H+] = 0 = [M−, H−]

Supersymmetric Dirac Hamiltonians can always be diagonalised via a FW transformation

HFW
D = UHDU

† = β|HD| =

 √
M2

+ + 2mc2H+ 0

0 −
√
M2

− + 2mc2H−

 .

The spectral properties of HD are fully determined by those of the non-relativistic Pauli-like
partner Hamiltonians H± and the often trivial mass operators M±.

,
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