4. Homework in "Supersymmetric Quantum Mechanics" (SoSe 2023)

Problem 1: Two Examples for the supersymmetric Fokker-Planck equation

For a given SUSY potential $\Phi : \mathbb{R} \to \mathbb{R}$ the decay rates and decay modes of the probability density $m_t^{\pm}(x, x_0)$ of the Fokker-Planck equation with drift potential $U_{\pm}(x) = \mp \int dx \Phi(x)$ are given by the eigenvalues and eigenstates of the corresponding Fokker-Planck Hamilonian

$$H_{\pm}^{\rm FP} = -\frac{1}{2}\partial_x^2 + \frac{1}{2}\Phi^2(x) \pm \frac{1}{2}\Phi'(x) \,.$$

Calculate for the two examples

$$\Phi_1(x) = a \operatorname{sgn} x$$
, and $\Phi_2(x) = a \tanh x$, $a > 0$

a) The stationary distribution $P_{\rm st}(x)$ (normalization excluded) for U_{-} if it exists.

b) The drift potentials U_{\pm} and the Fokker-Planck potentials V_{\pm}^{FP} .

c) The lowest non-vanishing decay rate $\lambda_n > 0$.

Problem 2: Conditionally exactly solvable Fokker-Planck potentials

Assume that the eigenvalues and eigenstates of the Fokker-Planck Hamiltonian H_+^{FP} associated with a SUSY potential Φ are explicitly known. Consider a "perturbed" SUSY potential $W(x) = \Phi(x) + f(x)$ and show that for a function f obeying the following generalized Riccati equation

$$f^{2}(x) + 2\Phi(x)f(x) + f'(x) = b$$
, $b = const.$

the pair of the Fokker-Planck potentials associated with the SUSY potential W reads

$$\begin{split} V^{\rm FP}_+(x) &= \frac{1}{2} \Phi^2(x) + \frac{1}{2} \Phi'(x) + \frac{b}{2} \\ V^{\rm FP}_-(x) &= \frac{1}{2} \Phi^2(x) - \frac{1}{2} \Phi'(x) - f'(x) + \frac{b}{2} \,. \end{split}$$

Using the ansatz f(x) = v'(x)/v(x) show that the generalized Riccati equation can be linearized and results in the second-order differential equation

$$v''(x) + 2\Phi(x)v'(x) - bv(x) = 0.$$

With the help of the substitution $u(x) = v(x) \exp\{\int dx \Phi(x)\}$ show that this results in the Schrödinger-like equation

$$\left[-\frac{1}{2}\partial_x^2 + \frac{1}{2}\Phi^2(x) + \frac{1}{2}\Phi'(x)\right]u(x) = \varepsilon u(x).$$

How are b and ε related? What conditions have to be obeyed by ε and u in order to have a well-defined and unbroken SUSY? Calculate the drift potentials U_{\pm} in terms of u.