3. Homework in "Supersymmetric Quantum Mechanics" (SoSe 2023)

Problem 1: The harmonic oscillator SUSY partner for $\varepsilon = -5/2$ and $\beta = 0$

Consider the special member $\varepsilon = -5/2$ and $\beta = 0$ of the family of SUSY partners of the harmonic oscillator discussed in section 4.2 of the lectures. This case corresponds to the solution of the Schrödinger-like equation given by $u(x) = -(4x^2 + 2) \exp\{x^2/2\}$. Show that the corresponding partner potential explicitly reads

$$V_{-}(x) = \frac{x^2}{2} + \frac{8x^2}{2x^2 + 1} + \left(\frac{4x}{2x^2 + 1}\right)^2 - 5.$$

Problem 2: A family of SUSY partners for the free particle

Following section 4.2 consider the case of a free particle, that is, $V_+(x) = 0$ and show that for this case the general solution of the Schrödinger-like equation reads $u(x) = e^{\kappa x} + \beta e^{-\kappa x}$, where $\varepsilon = -\hbar^2 \kappa^2 / 2m$, $\kappa \in \mathbb{R}$. What are the allowed values for the parameter β and ε ? Show that the family of partner potentials of the free particle explicitly reads

$$V_{-}(x) = \frac{\hbar^2 \kappa^2}{m} \left[\left(\frac{\mathrm{e}^{\kappa x} - \beta \mathrm{e}^{-\kappa x}}{\mathrm{e}^{\kappa x} + \beta \mathrm{e}^{-\kappa x}} \right)^2 - 1 \right].$$

Problem 3: Conservation of the energy functional

Let $\phi(x,t)$ be a solution of the field equation $\partial_t^2 \phi - \partial_x^2 \phi = -\partial U/\partial \phi$ with boundary conditions $\lim_{x\to\pm\infty} \partial_t \phi = 0 = \lim_{x\to\pm\infty} \partial_x \phi$. Show that the energy functional

$$E[\phi] := \int_{-\infty}^{+\infty} \mathrm{d}x \left[\frac{1}{2} \left(\partial_t \phi \right)^2 - \left(\partial_x \phi \right)^2 + U(\phi) \right]$$

is conserved, that is, dE/dt = 0.

Problem 4: The double quadratic field model via SUSY

Consider the SUSY potential $W(x) = \operatorname{sgn} x$. Following the discussion of section 5.2 show that this SUSY potential induces a field potential of the form

$$U(\phi) = \frac{1}{2} (1 - |\phi|)^2.$$

Hint: $\partial_x \operatorname{sgn} x = 2\delta(x)$.