Group Theory for Physicists

Tutorial

Georg Junker

Friedrich-Alexander-Universität Erlangen-Nürnberg

Summer Semester 2022

Exercise 1: The Permutation Group S_n

Recall from lecture

ord
$$S_n = n!$$
, $P = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \pi_1 & \pi_2 & \pi_3 & \cdots & \pi_n \end{pmatrix}$, $\pi_i \in \{1, 2, 3, \dots, n\}$, $\pi_i \neq \pi_j$ for $i \neq j$

a) Cayley's Theorem

Theorem: Every group of order $n < \infty$ is isomorphic to a subgroup of S_n

Proof: Let $G := \{g_1, g_2, \dots, g_n\}$

left multiplication with a fixed $g \in G$ corresponds to a row in Cayley's table for G.

$$\Rightarrow$$
 $G = \{gg_1, gg_2, \dots, gg_n\} =: \{g_{\pi_1}, g_{\pi_2}, \dots, g_{\pi_n}\} \text{ with } \pi_i \neq \pi_j \text{ for } i \neq j$

$$\Rightarrow \exists \text{ isomorphism} \qquad P: \begin{cases} G \to H \subset S_n \\ g \mapsto P(g) := \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \pi_1 & \pi_2 & \pi_3 & \cdots & \pi_n \end{pmatrix} \end{cases}$$

Obviously for $g_1 \neq g_2 \Rightarrow P(g_1) \neq P(g_2)$ as they correspond to different rows in group table. In addition, $P(g_1)P(g_2) = P(g_1g_2)$ as here $g_{\pi_i} = g_1(g_2g_i) = (g_1g_2)g_i$

$$\Rightarrow H \simeq G \text{ and ord } H = n \Rightarrow H \text{ is subgroup of } S_n$$

Remarks:

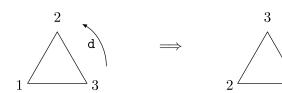
- $C_n \subset D_n \subset S_n$ for $n \geq 3$ C_n and D_n are symmetry groups of regular n-polygon \Rightarrow permutations of edges
- As ord $D_3 = 6 = \operatorname{ord} S_3 \Rightarrow D_3 \simeq S_3$

b) The Group S_3

Let

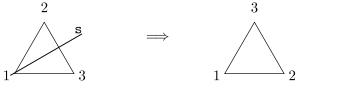
$$e := \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad a := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \qquad b := \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

$$c := \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \qquad d := \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \qquad f := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$



rotation $d \in D_3 \Leftrightarrow a \in S_3$

reflexion $\mathbf{s} \in D_3 \Leftrightarrow c \in S_3$



In general

2

Show for the elements of S_3 : $b^2 = a$, cb = f and ca = d

Conjugacy Classes:

Remember a class is defined by one element $g \in G$ via

$$\{g_1gg_1^{-1}, g_2gg_2^{-1}, \dots, g_ngg_n^{-1}\}$$

- $\{e\} \simeq \{e\}$ obvious
- $\{d, d^2\} \simeq \{a, b\}$ follows from $sd = d^2s = d^{-1}s$
- $\{s, sd, sd^2\} \simeq \{c, d, f\}$ follows also from $sd = d^2s = d^{-1}s$

c) Decomposition into Cycles and Transpositions

Cycles: More efficient notation for an element of S_n Examples:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 1 & 4 & 8 & 5 & 7 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 6 & 7 & 2 & 3 & 4 & 8 & 5 \\ 6 & 7 & 2 & 1 & 4 & 8 & 3 & 5 \end{pmatrix} =: (1672)(348)(5)$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 4 & 1 & 8 & 9 & 6 & 7 & 2 \end{pmatrix} = (134)(258769)$$

Cycles have no common elements \Rightarrow commute

Cycles with only one element are trivial and may be ommitted

Transposition: Cycles with two elements $[n_1n_2] := (n_1n_2)$

Each cycle with k > 1 elements may be decomposed into an *ordered* product of k - 1 transpositions.

$$(n_1 n_2 \cdots n_k) = [n_1 n_k][n_1 n_{k-1}] \cdots [n_1 n_3][n_1 n_2]$$

Proof by induction:

k = 2 obvious (see definition)

$$(n_{1}n_{2}\cdots n_{k}n_{k+1}) = \begin{pmatrix} n_{1} & n_{2} & \cdots & n_{k-1} & n_{k} & n_{k+1} & \cdots \\ n_{2} & n_{3} & \cdots & n_{k} & n_{k+1} & n_{1} & \cdots \end{pmatrix}$$

$$= \begin{pmatrix} n_{1} & n_{2} & n_{3} & \cdots & n_{k} & n_{k+1} \\ n_{k+1} & n_{2} & n_{3} & \cdots & n_{k} & n_{k+1} \\ \end{pmatrix} \begin{pmatrix} n_{1} & n_{2} & n_{3} & \cdots & n_{k} & n_{k+1} \\ n_{2} & n_{3} & n_{4} & \cdots & n_{1} & n_{k+1} \end{pmatrix}$$

$$= (n_{1}n_{k+1})(n_{1}n_{2}\cdots n_{k})$$

$$= [n_{1}n_{k+1}][n_{1}n_{k}]\cdots[n_{1}n_{3}][n_{1}n_{2}]$$

Conclusion: Each permutation may be decomposed into a product of transpositions

even permutations $:\Leftrightarrow$ even number of transpositions odd permutations $:\Leftrightarrow$ odd number of transpositions

Show group homomorphism: $S_n \to C_2$

Example S_3 :

S_3	Cycle	transpositions	even/odd
e	()		even
a	(123)	[13][12]	even
b	(132)	[12][13]	even
c	(23)	[23]	odd
d	(13)	[13]	odd
f	(12)	[12]	odd

d) The Alternating Group A_n

The set of even permutations forms a normal subgroup of S_n . This subgroup is called alternating group A_n , ord $A_n = \frac{1}{2}n!$

e) Generators of S_n

Obviously the transpositions generate the permutations.

Let

$$P_i := [i, i+1] = (i, i+1) = \begin{pmatrix} 1 & 2 & \cdots & i & i+1 & \cdots \\ 1 & 2 & \cdots & i+1 & i & \cdots \end{pmatrix}$$

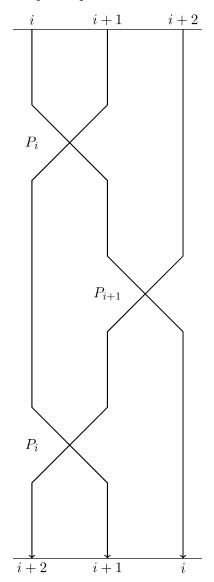
Then

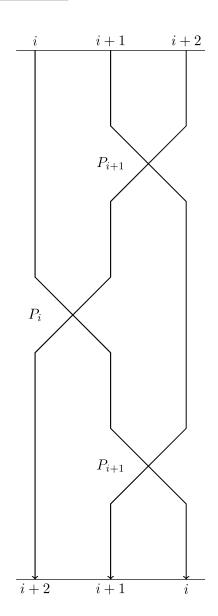
$$P_i = P_i^{-1}$$
, $P_i^2 = e$, $P_i P_j = P_j P_i$ for $|i - j| > 1$

and

$$P_i P_{i+1} P_i = P_{i+1} P_i P_{i+1}$$

Graphical proof:





Exercise 2: The Braid Group B_n

Generators: $\{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{n-1}\} \in B_n$

with

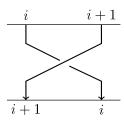
$$\varepsilon_i \varepsilon_{i+1} \varepsilon_i = \varepsilon_{i+1} \varepsilon_i \varepsilon_{i+1} \,, \qquad \varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i \quad \text{for} \quad |i-j| > 1$$

but

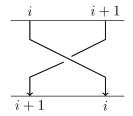
$$\varepsilon_i \neq \varepsilon_i^{-1}, \qquad \varepsilon_i^2 \neq e$$

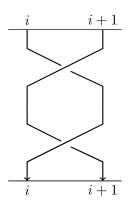
Interpretation: Set of all possible braids made out of n strips. $\varepsilon_i = \text{exchange string } i \text{ and } i+1 \text{ counterclockwise}$

Graphical representation:

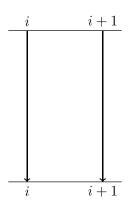


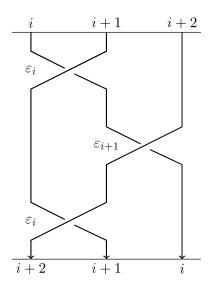
$$\varepsilon_i \neq \varepsilon_i^{-1}$$



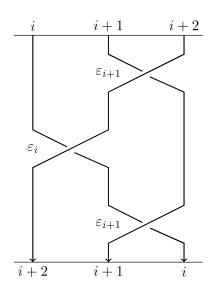


$$\varepsilon_i^2 \neq e$$





$$\varepsilon_i \varepsilon_{i+1} \varepsilon_i = \varepsilon_{i+1} \varepsilon_i \varepsilon_{i+1}$$



Remarks:

- If we assume that braids can penetrate each other $\Rightarrow \varepsilon_i^2 = e$ and $\varepsilon_i^{-1} = \varepsilon_i \Rightarrow S_n \nsubseteq B_n$
- $B_2 \simeq \mathbb{Z}$ has only one generator ε_1 all group elements are powers of ε_1 , ε_1^m with $m \in \mathbb{Z}$, $\varepsilon_1^0 =: e$ m is the winding number and uniquely characterises an element of B_2 . $\mathbb{Z} \simeq \pi_1(S^1)$ fundamental group of the unit circle

Exercise 3: Direct Product of Groups

Defintion: The direct product $G_1 \otimes G_2$ of two groups G_1 and G_2 forms a group

$$G_1 \otimes G_2 := \{(g_1, g_2) | g_1 \in G_1, g_2 \in G_2\}$$

if all elements of G_1 commute with all elements of G_2 and the group law is given by

$$(a_1, a_2)(b_1, b_2) := (a_1b_1, a_2b_2) \quad \forall a_i, b_i \in G_i$$

Remarks:

- Proof of group axioms see Lucha & Schöberl
- G_1 and G_2 are normal subgroups of $G_1 \otimes G_2$
- $(g_1, e_2)(e_1, g_2) = (g_1, g_2) = (e_1, g_2)(g_1, e_2)$ elements g_1 and g_2 commute
- ord $G_1 \otimes G_2 = \operatorname{ord} G_1 \cdot \operatorname{ord} G_2$

Example: $V := C_2 \otimes C_2$ with $V = \{(e_1, e_2), (e_1, d_2), (d_1, e_2), (d_1, d_2)\}, d_i^2 = e_i$

Compare with D_2 : $e = (e_1, e_2)$, $d = (e_1, d_2)$, $s = (d_1, e_2)$, $sd = (d_1, d_2)$ $\Rightarrow D_2 = C_2 \otimes C_2 \simeq V \Leftrightarrow D_2/C_2 \simeq C_2$

But: $D_3/C_3 \simeq C_2$ does NOT imply $D_3 \simeq C_2 \otimes C_3$ as C_2 is NOT a normal subgroup of D_3 . In fact $D_3 \not\simeq C_2 \otimes C_3$. Why?

Semi-direct product: Like the direct product but here elements of G_1 and G_2 do not commute \Rightarrow group law is more complicated.

Euclidean group: Transformations of \mathbb{R}^3 consisting of translations $T^3 \simeq \mathbb{R}^3$ and rotations O(3) (including reflection, $R \in O(3)$, det $R = \pm 1$)

$$E^3 = T^3 \otimes O(3)$$

Poincaré group: Transformations of \mathbb{R}^4 , equipped with Minkowsky metric, consisting of translations $T^4 \simeq \mathbb{R}^4$ and Lorentz transformations O(3,1)

$$\mathcal{P} = T^4 \otimes O(3,1)$$

*** End of Tutorial 1 ***