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Exercise 1: The Permutation Group S,

Recall from lecture

1 2 3 -+ n
— ) — 4 , . L
ord S, = n!, P <71-1 Ty g e Wn)’ m€4{1,2,3.....,n}, m # mj for i # j
a) Cayley’s Theorem

Theorem: Every group of order n < oo is isomorphic to a subgroup of Sy,

Proof: Let G :={g1,92,---,9n}
= left multiplication with a fixed g € G corresponds to a row in Cayley’s table for G.

= G =1991,992,--,99n} = {Gr1s Gras - +» G, y With m; # 7; for i # j

G- HCS,
= 3 isomorphism P: 1 2 3 -+ n
p s Pl = ( )

T T2 T3 ot T

Obviously for g1 # g2 = P(g1) # P(g2) as they correspond to different rows in group table.

In addition, P(g1)P(g2) = P(g192) as here g, = g1(929:) = (9192)9i
= H~GandordH =n = H is subgroup of S,

Remarks:

e C,CD,CS,forn>3
C,, and D,, are symmetry groups of regular n-polygon = permutations of edges

e AsordD3 =6 =ordS3 = D3~ S3

b) The Group S;

Let
(123 (123 po— (123
L1 2 3 ’ L2 31 ’ U312
1 2 3 1 2 3 1 2 3
C'_<132>’ d'_<321>’ f‘_<213>
2 3
\ _— ii rotation d € D3 < a € Ss
1 3 2 1
2 3
S — ii reflexion s € D3 & c € S3
1 3 1 2
In general
D3|e d d2 s sd sd?
Ss |e a b ¢ f d

Show for the elements of S3: b> = a, cb = f and ca = d



Conjugacy Classes:
Remember a class is defined by one element g € G via

{91991, 92995 90990}
e {e} ~ {e} obvious
o {d,d?} ~ {a,b} follows from sd = d?s = d~'s
o {s,5d,sd*} ~ {c,d, f} follows also from sd = d?s = d~'s

c) Decomposition into Cycles and Transpositions

Cycles: More efficient notation for an element of S,
Examples:

12345678 16 7 2[3 4 8|5
<6148 723)‘( 721‘483‘5>_'(1672)(348)(5)

)
)
123 456 789
35418 96 7 2

Cycles have no common elements = commute
Cycles with only one element are trivial and may be ommited

) = (134)(258769)

Transposition: Cycles with two elements [nins] := (nins)

Each cycle with £ > 1 elements may be decomposed into an ordered product of k£ — 1

transpositions.
(ning - - ng) = [nang][ning_1] - - [nins][ning]

Proof by induction:
k = 2 obvious (see definition)

_ (1 n2 - N1 Nk Ni41 | o0
(ning -+ ngngy1) = ( S ) )

_ ( ny m2 N3 - N Nkl ) < ny N2 N3

B Ng+1 M2 N3 -+ N M ng N3 N4

= (mng41)(mang - ng)

= [ning41][ning] - - - [ning][ning]

N
ni

Nk+1
Mk+1

Conclusion: Each permutation may be decomposed into a product of transpositions

even permutations :< even number of transpositions
odd permutations :< odd number of transpositions

Show group homomorphism: S, — Cs
Example Ss:

S3  Cycle transpositions even/odd

e () [] even
a (123) [13][12] even
b (132) [12][13] even
c  (23) [23] odd
d (13) [13] odd
o (12) [12] odd

d) The Alternating Group A,

The set of even permutations forms a normal subgroup of .S,,.
This subgroup is called alternating group A,, ord A,, = %n!

3
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e) Generators of S,

Obviously the transpositions generate the permutations.

Let
s o (12 - i il -
H.—[z,z—l—l]—(z,z—l—l)—(l 9 il i )

Then
P=P', P’=e, PPj=PP for |i—j|>1

and

PP Py = P PPy |

Graphical proof:
i 1+ 1 i+ 2 i 141 42

i+ 2 1+1 i i+ 2 1+ 1 v



Exercise 2: The Braid Group B,

Generators: {¢1,¢2,...,6n_1} € By,
with

Ei€i4+1E; = €i+1Ei€i+1 Eiz’:‘j = 5]'81' fOI‘ ’i —]’ >1
but

51’7&8;17 512#6

Interpretation: Set of all possible braids made out of n strips.
g; = exchange string 7 and 7 + 1 counterclockwise

Graphical representation:

1 1+ 1 1 1+ 1

\\ £ ?é 6;1 )

i i+1 i i+1

6?7&6
i i+1 i i+1
1 1+ 1 14 2 9 141

142

Ji\ €i+1K

i+l Ei€i+1&; = Ei+1Ei€i+1

i+ 2 141 i i+ 2 1+1



Remarks:
e If we assume that braids can penetrate each other = 52.2 =eandg; g =8, Z B,

e By ~ 7 has only one generator £
all group elements are powers of €1, ef* with m € Z, £ =: e
m is the winding number and uniquely characterises an element of Bs.
Z ~ 71(S1) fundamental group of the unit circle



Exercise 3: Direct Product of Groups
Defintion: The direct product G1 ® G of two groups G1 and G2 forms a group
G1 ® Ga :={(g1,92)|91 € G1, 92 € G2}
if all elements of G; commute with all elements of G5 and the group law is given by
(a1,a2)(b1,be) := (a1b1, azbs) Va;, b € G;

Remarks:

e Proof of group axioms see Lucha & Schéberl

e (71 and (5 are normal subgroups of G; ® Go

e (g1,e2)(e1,92) = (91,92) = (e1,92)(g1,€2) elements g; and g2 commute

e ord G; ® Gy = ord G - ord G

Example: V := Cy ® Cy with V = {(e1, e2), (e1,d2), (d1, e2), (d1,d2)}, d2 = e;
\% | (61,62) (el,dg) (dl,eg) (dl,dg)
(e1,e2) | (e1,e2) (e1,d2) (di,e2) (di,d2)
(elde) (elde) (61762) (dlde) (d1,€2)
(di,e2) | (di,e2) (di,d2) (er,e2) (e1,da)
(di,dz) | (di,d2) (di,e2) (e1,d2) (e, e2)

Compare with D2 e = (61,62), d= (el,dg), S = (dl,eg), sd = (dl,dg)

=Dy =Co®Co=V & Dy/Cy ~ Cy

But: D3/C3 ~ Cy does NOT imply D3 ~ Cy ®@ C3 as Cy is NOT a normal subgroup of Ds.
In fact D3 # Cy ® C3. Why?

Semi-direct product: Like the direct product but here elements of G; and G5 do not
commute = group law is more complicated.

FEuclidean group: Transformations of R3 consisting of translations 73 ~ R3 and rotations
O(3) (including reflection, R € O(3), det R = +1)

E3=T°%% 0(3)

Poincaré group: Transformations of R?, equipped with Minkowsky metric, consisting of
translations T ~ R* and Lorentz transformations O(3,1)

P=T"'20(31)

*** End of Tutorial 1 ***



