3.5 Harmonic Analysis on Homogenous Spaces

Let f(g) € L*(G/H), H massive with HZo = & K
= f(¥) = f(g0) =: f(g) € L*(G) such that f(gh) = f(g) for all h € H.
All f(g) € L?>(G/H) are associate spherical functions.

Peter-Weyl Theorem: continuous version

flo)= > &y fimDi

all UIR j of G m,n

fi = /G dg £(9) D35 (9)

Fourier coefficient for associate spherical functions:

i, = /G dg f(g) D4, (g) = /G dg f(g) i (gh) = /G dg f(g) > Dhi D)

Integration over h:
Fin = [ d97(0) Dhita) = [ do f(o) Dhito) = [ da (o Dig;;(g)/Hth;;;(h)

Note: The UIR D7 of G is in general a reducible unitary reps of H C G. So let’s decompose
into UIR D% of H ,
DI =Y "co D

o

1) Let j # class 1: No invariant vector in D7 = DJ does not contain trivial representation
/H dhD}*(h)=0  forall  j#class1

2) Let j = class 1: As H is massive = exists only one vector |¢g) such that D7 (h)]go) = |¢o).
That is, Do(h) = {0l D7 (h)|po) = 1.
In other words, the trivial reps of H appears exactly once in above decomposition and

/H dh D] *(h) = 04odno ~ forall  j=class 1

Result:
Fom = /G dg f(9) D}0(9)dn0

Let A be the set of class 1 reps of G:

-1
=Y iy fnD
.jEA m=0

Fir= | 40 (0 Dhita)
Generalised spherical harmonics:

vam V Dm() f:g_’o

Form complete orthonormal set on LQ(G J/H):

() Yo () Vs (7) = /G dg v/dedy Dlo(9) D% (9) = Sy
N —

G/H
(%Zémm/ /dl
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Harmonic analysis on homogenous spaces G/H (with massive H):

f(f) = Z Z Cem Yfm(f)

LeA m

Com = / Au(@) 1(Z) Yii, ()
G/H

Note: Yy, (Z) are also eigenfunctions of Laplace-Beltrami operator on M = G/H.

Harmonic analysis for zonal spherical functions: f(h; Yghe) = fg), hi,ha € H

F(9) = _di M Dfy(9)

e
A = /G dg f(g9) Dii (9)

3.6 Generators of Lie Groups

Let G be a Lie group with g = g(a) € G, a = (al,...,a"), e = g(0) neutral element
Consider reps of G in some H: D(g) = D(g(«)) with D(g(0)) =1
Generator:

_ 9D(g(a))
Xo= a0

a=0
In quantum mechanics often T, = +iX, as they are self-adjoint operators for unitary reps
Generators are in essence the reps matrices near neutral element as
D(g(da)) = 14 6aX, + O(da?)
D(g7(da)) = [D(g(6a))] ™" =1 = 60X, + O(60?)
We now use summation convention, so in above sum over a
Comments:
e Generators depend on parametrisation of G
e For unitary reps D(g~1(6a)) = D(g(da)) = X{ = —X, or T)=1"
e For dimH =d < co: X, or T, are d X d matrices

e For dimH = oo: X, or T, are linear operators acting on vectors in ‘H

Consider:

D(g(6v)) = D(g~'(8)g(6c)g(B))
=1+ 6a"D(g(8))XaD(9(8))
=1+46"X,

That is D(g1(8))X.D(g(B)) is a linear combination of generators
Now 8 — 3 small

(1 - 08" X) Xa(1 +65°Xp) = Xo + 68" (XaXp — X3 Xa) + O(55?)

[Xa, Xp) = (X Xp — XpXo) = ¢4, X4

The constants cgb are called structure constants

Properties
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Depend on parametrisation of H

d _ d . . . . . d _
e ¢, = —cp, antisymmetric in lower indices, cg, = 0

From Jacobi identity [[Xq, Xp], X¢] + [[Xp, Xc], Xa] + [Xe, Xal, Xp] = 0 follows
cgbcgc + cgccfla + Cg:lacflb =0

G abelian < ¢4 =0

“ab

Obvious as D(g71(8))XuD(g(B)) = X4 & [Xa, Xp] = 0 for all a,b,d

Example: G = SO(3) (see Homework 4 Problem 10 with i = 1)

. k .
[Li, L] = ieiji Ly, = i = i€ijk

3.7 Generators for transformation groups
Consider transfomation on M: 2’ = g(«a)z and let @ — o
Then the p-component of xL is given by

), =1+ 62y = 2y + 00 Ugy(z) + O(6%a)

where
oz,

"~ das’

Ugp(z)
Consider reps in H = L?(M):
(D(g(a))¥) () = (g~ (a)x)
then again let @ — do

%

(¢ + 00" Xo9)(z) = ¢p(z — bz) = ¢ (x) — 60" Uap(x) oz,

()

Generator: Is a linear differential operator on H

0

X, = _Ua,u(x)% =
1

Uy ()0

Example: M =R? G = SO(2)
) [ cos(6a) —sin(dv) v\ (1 —do 1
), ~\sin(de)  cos(da) v )T\ da 1 To
()n(7)
xIo I
51’2
Hence Uy (x) = — = —z2 and Uy(z) = o 1
0 0

X = —UH((L’)GH = — (—.’132(91 + .’171(92) = .’Ega—xl — IIZla—xQ

0 0
— —_— — fr—
1 ih <£L‘2 ) T 2) 1'13

Or with T' = ih X

Rotations in the plane are generated by the angular momentum operator L3 on L?(R?) .
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Generator of rotation matrix (2-dim reps in R?)

cos(6a) —sin(dar) \ _ 0 -1\ _ ., .
(sin(éa) cos(da) ~1+0a 1 0 = 1-1ao;

Generator for rotation matrix in R? is given by Pauli matrix X = —io»
Finite rotation by angle « is given

=1
aX nyn
n=0
= 1 n_n
= ﬁ(_la) 02 (03 =1)
n=0

Finite group elements can be represented by generators via exponentiation.

For each generator exists an one-parameter subgroup represented by
D(g(t)) = et

Recall with 6t = ¢/n for large n

n—oo n—oo

D(g(t)) = [D(g(6t))]" = lim [1 +6tX,)" = lim [1 + %Xt]n = !X
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4 Lie Algebras

4.1 Definitions

A finite-dimensional vector space L (real or complex) is called Lie Algebra if there exists a
Lie Product o such that

e XoYeL VX, Yel
o (aX+pY)oZ=aXoY+pYoZ VXY, Z €L, a,BERor C
e /oY =-YoX antisymmetric
e Xo(YoZ)4+Yo(ZoX)+Zo(XoY)=0 Jacobi Identity
Example: £ =R? with Fo =2 x i
Theorem: The generators of a Lie Group form a Lie Algebra with
XoYV =X, Y]=XY -YX
Comments:
e Notation G = SO(n) & L = so(n), that is, use lower case notation for algebra

e locally isomorphic groups :< have the same (isomorphic) Lie Algebra
Example: so(3) ~ su(2) are isomorphic

e Reps of group < Reps of algebra
e dimG =dimL

From now on we consider only

XoY =[X,Y]
Homomorphism:
T L— L
X = T(X)

such that T'(aX + YY) = oT'(2) + ST(Y) and T([X,Y]) = [T(X),T(Y)]
Subalgebra: Subspace N' C £ with [N, N] C N

Ideal: Subalgebra N C £ with [L,N] C N
trivial ideals are £ = {0} and N = L, rest are called proper ideals

Center: max. ideal such that [N, N] = 0 abelian algebra
Simple Lie algebra: £ has no proper ideal

Semi-simple Lie Algebra: £ has no abelian ideals

4.2 Representations of Lie Algebras

Homomorphism:
D L — lin. operators on D
" X+~ D(X)

is called representation of L in D

Reps of Lie Group < Reps of Lie Algebra

D(g(a)) = e %o Xa
D(g(a)) = el T T,
unitary X=X, TI =T,
irreducible irreducible
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Adjoint Representation:
Let X € L be fixed s
%

ad(X) : Y o [X,Y]
[ad(X),ad(Y)]Z = ad(X)ad(Y)Z — ad(Y)ad(X)Z
ad(X)[Y, Z] — ad(Y)[X, Z]
(X, [V, Z]] - [V, [X, Z]]
= —[Z,[X,Y]] Jacobi Id.
[X,Y], 2]
= ad(X,Y))Z VZeL

Let X1,..., X, be basis in £ with
[Xiv Xk] = Cék X

then
ad(X:) Xy = [ X4, Xp] = e X)

The structure constants are the matrix elments of the adjoint representation
ad(X;)j, = ciy

Note: dimad(X) = dim £ = dimG

Example s0(3): dim so(3) = 3 (see Homework 4 Problem 10)

4.3 Cartan Metric
Scalar product in L: (Killing form)

(X,Y) :=Tr (ad(X)ad(Y))

Using above basis X1,..., X, in £

Cartan metric:
grt = Tr (ad(Xy)ad(X))) = cf,cfy = g symmetric
Let X = a*X}), and Y = b'X; then
(X,Y) = Tr(a* ad(Xy) b ad(X;)) = Tr(ad(Xy) ad(X))) abt = giakd!

Cartan Criterium:
det(gr;) #0 & L semi-simple

This implies the existence of the inverse metric tensor: gpg'™ = 52

Lie algebra compact :< gi; positive or negative definite
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Examples:

* s50(3): (Xi, Xj]l =i X = gri = EprsCirs = 20k
semi-simple and compact
also with L; =iX; = [Li, LJ] = iE,’jkLk = gkl = _25kl

* s0(2,1): (X1, Xo] = X3, [Xo, X3] = - X1, [X3,X1] =X»

= ¢y =1=—c3, 33 =—1=—cp, 3 =1=—ci;
= gi1 = Tr (ad(Xl)ad(Xl)) = ZC:{’QC%?) = -2
= go2 = Tr (Cld(XQ)ad(XQ)) = 26%3031 =2
= 933 = Tr (ad(X3)ad(X3)) = 2¢3,¢5 = 2
-2 0 0
= (gm) = 0 20 semi-simple and NOT compact
00 2
Let T; = 1X; = (T3, ] = iT3, [Ty, T3] = —iTy, (T3, Th] = —iTh
-2 0 0
S = 0 -2 0
0 0 2

This so(2,1) =~ su(1,1) algebra is often used in QM as spectrum generating algebra

T3 is called the compact operator

Consider:

oy s r s (L e L
Cijh *= ngcjk*CirClstk*Cir( CksClj Csjclk) Czrcjlcks+crz SJClk

= ¢k is totally anti-symmetric

4.4 The Casimir Operator

Definition:

|C = glele = glele|

Consider
C. X)) = g"[XiXi, X]
9" X[ X0, Xi] + g [ X0, X)X
= X Xy + g e, X0 X
lek CTX + gkl CTX Xk as gkl _ glk
gter. (XkX + X, Xk)

’“ OGX 4 XX e =0
e Y —— ~—
sym. k<sr antisym.l<>s
sym.l<>s

The Casimir operator commutes with all elements of £
In case of an irreducible reps follows via Schur lemma: C' = A1
These eigenvalues are used to characterise the irreducible reps

Examples:

e 50(3) >~ su(2) : gr = —20p , gkl = 15kl
C:_%(X2+X2+X3) J Wltth _le7J2:](.]+1)17]:07%717
e s50(2,1) ~su(1,1) :
100
g =1 010, C=3-X+X}+X3) unbounded operator
0 01
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Comment: The UIR of non-compact groups/algebras are ALL infinite dimensional.

This becomes a problem for Lorentz group SO(3,1) = SO(3) ® SO(2,1) and the classifica-
tion of elementary particles. Way out is to use non-unitary but finite-dimensional irreducible
reps. More later (Wigner states).

Generalisation of Racah:
D I3 l1 k1 yke . vkn
C, = CRl Chnly " Chonl XX X

commute with all X;: [C,,, X;] =0
Range of £ :< No. of independent C),’s

4.5 Representations of Lie Algebras in Quantum Mechanics

4.5.1 The angular momentum algebra so(3) ~ su(2)

Algebra:
(i, Ji] = ihein Ji

UIR have dimension d; = 25 + 1 with j =0, %, 1, %, e
Di = Spa‘n{|j7 m>|m = _j?- .. 7.7} ~ CH!

Cartan-Weyl basis: Ji :=J; + Jy, Jy:=J3
[J()?J:t} ::I:h*]:t*, [*]—0—7‘]—} =2h.Jy

Usual basis: Jy|j, m) = mh|j,m) = Ji change eigenvalue by +h
Ansatz:
Ji|j,m) = Nyhlj,m + 1)

Casimir: C = %jz ~1 = J2j,m) = \j|j,m) with \; >0 as J2 > 0.
Calculation of Ny: (J4)f = J=, Jg =Jy
INL2R2 = (| lj,m)l1> = GomlTg Jeljsm) = (Gyml[T2 = Jo(Jo + ]|, m)
=[N —m(m+£1)r* >0

Hence m must be bounded mypin < m < Mynge with Jo|f, Mmez) = 0 and J_|j, mmium) =0
Consider

jQ‘jv mmaw> = J—J-i-‘jv mma;v> + JO(JO + 1)‘] mma$> = mmax(mmaz + 1)“7 mmaw>

j2|j7 mmin> = J—I-J—‘jy mmin> + JO(JO - 1)‘] mma:z:> - mmin(mmin - 1)‘]7 mmaz>

With \; :=j(j + 1) we find myae = j = —Mumin and

Ny =/ Fm)(j£m+1)el=

4.5.2 The so(4) symmetry of the H-atom

Classical Kepler problem:

FE=———| a=GMm
2m r
with
> L 2, d,
{=7Xp=mr°d = const., ar:wx -

and Newton equation



Laplace-Runge-Lenz vector:
A := jx [ —maé, = const. and A2 =m?a® + 2ml*E
. A:ﬁxZ—moﬁT:—r%é}. X (mrzcﬁ)—maa}xé'r:()'

° A'Q:(ﬁxﬂ_')z—Qmaé}.-(ﬁx[)+m2a2:ﬁ252—(ﬁ-5)2—QT"‘Z-(FXﬁ))—i—mQQQ:
— 202 2’"7"‘/724—771/2(12 — 2mEP + m2a>

Quantum mechanical hydrogen atom:

Hamiltonian: .
1 5
H= —PQ—a@ on  H=L*R?
2m [e]
Angular Momentum:
L=QxP

Laplace-Runge-Lenz vector: (re-scaled and symmetrized)
A= (PxI-LxP)- 2
Q|

= Two conserved vector operators
[H,L)=0, [H A =0

and

. 2 . Lol -
=14 = (R+L?)H, L[-A=0=4-L
mao

Algebra:
[AL,A}} = ihé‘ijkLk ( 20 )

T ma?
[Li; Lj} = ihE,;jkLk
[Ai, Lj] = iheyjr Ax = [Li, Aj]
Consider subspace with fixed energy £ < 0:

Hp C L*(R®)  with  Hp:= {|¢) € L*(R®)|H[¢) = E|¢))}

| = iheijr Ny so(4)-algebra (see homework)

Consider UIR: ~
K2k, my) = k(k + 1)B?[k, my)

J25,my) = j(j + D)R2[j,m;)
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Recall: L-A=0=M-K=J2-K2? = k=j

Hence: Hp = D* ® DF product space of two UIR of so(3)
Product basis: |k, my,my) = |k, my) @ |7, m;)
Consider:

(T2 + K 2)|k,mp, mj) = 2k(k + 1) 2|k, my, mj)
On the other hand:

:% 2 _ 2a AQ)
—1([2-m (1+ma2(h2+L2)))
_ _ma? h_2
- 4F 2
= 2 h2 hQ h2
mao
T D Lok D2 = —(4k> +4k+1) = —(2k +1)?
N5 2+(l<:+) 2( +4k+1) 2(/<+)
- 2 1 21
=1 MY D ith o n=2%k+1

on2 (2k +1)2 212 n?
Note: k€{0,3,1,3....} = ne{l,2,3,4,...}
Degeneracy: dimHy = dim(D* @ D*) = (2k + 1)? = E = E, is n? degenerate.

Angular momentum: L=J+K coupling of j and k

=
¢ €{lj—kl,lj—kl+1,...5+k but k=j
={0,1,2,...,2k} only integer L

With n = £+ 1+ n, and m = my + m; we change to new

|k7mkm]> — |n7€7m>
Eigenstates with

H|n7 E? m> = En‘nv 67 m>

L2|n, £, m) = h20(0 4 1)|n, £,m)

L,|n,£,m) = mh|n, £, m)

Comments:

e For £ > 0 one obtains a SO(3,1)
1) ~ su

SO(3) ® SO(2,1) symmetry. See later for an
algebraic approach via so(2, 1)

u(1,1) (spectrum-generating algebra).
28y~ 12 i

In essence: N := (25

[M;, M;) = ihiej My,
[M;, N;] = ihe;j, Ny, s0(3, 1)-algebra
[Ni,Nj] = —iﬁEijk]\'fk

Bertrand’s Theorem: There are only two types of central-force (radial) scalar poten-
tials with the property that all bound orbits are also closed orbits.

e The 3-D Kepler problem may also be mapped onto a 4-D harmonic oscillator problem
via the so-called Kustaanheimo-Stiefel transformation (c.f. Homework Problem 8).
This Newton-Hook duality was already know to both in 17th century.

e A fixed SO(4)-UIR spans the subspace Hp corresponding to a single energy shell of
a bound state (fixed n = 2k + 1 and varying ¢, m).
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e An irreducible representation of SO(4,1) spans the full bound spectrum. The group
SO(4,1) is also called de Sitter group (Willem de Sitter 1872-1934). de Sitter space is
a maximally symmetric Lorentzian manifold with constant positive scalar curvature.
Embed S2 in R?

e An SO(3,2) irreducible representation spans the full continuous spectrum. The group
SO(3,2) is also called anti-de Sitter group. Anti-de Sitter space is a maximally sym-
metric Lorentzian manifold with constant negative scalar curvature.

e SO(4,2) is called the full dynamical group of the Kepler (or Hydrogen atom problem).
It is the smallest group whose irreducible representations span both the continuous
and the discrete spectrum.

Some proofs:
L-A=0=A-Lisobviousas L-(PxL)=0and L-Q =
With I x P = 2ihP — P x L and R := |Q| follows

a2m2(A2 1) = (B x I — ihB)2 — am(P x L — ihP) - % _am% (P x L —ihP)
Using following relations (proofs are below)

(Px L) (PxL)=P2L?

(Px L)-P = 2ihP? (P x L —ihP)? = P%(L? + 1i?)
P-(PxL)=0 = (Px L—ihP)-Q=L?+ihP-Q
(PxL) Q=L*+2ihP-Q Q- (PxL—inP)=1I?—ihQ P
Q- (PxL)=1L?
follows
A2 2/72 2 [2 5> é é D 2 2
o?m?(A? 1) = PAL* + ) —2am— —iham ( P- = = £ P :2mH(L +h)
—2ih/R

Auxiliary formulas:
o (PXL) (PxL)= e PjLyitmPiLy = €ijiitm Py L Py Ly, =
= eik€itm P (Pl + 1he iy Pr) Lin = (0j10km — 0jm6kt) (P P L Lim + 1A iy Py PrLin) =
— P2[2 4 ihey;, PjP, Ly — P;P - LLj — iheyy P; P, Lj) = P2L?

o (PxL)-P=ceijpPLiPy = ciju Pi(PyLj + ihej P) = ih20, PP, = 2ihP?

o P-(PxL)=ceijP,PjL;, =0

o ( : x L) é ijsz'Lij = ik Pi(QrLj +ihejn@Q) = ik Qi PiLj + 26, PiQ =
= L2 4 2ihP

o Q- (PxL)=ejQiPjLy = L?

. (*fi ihP)? = (P x L) - (P x L) —ih(P x L) - P —ihP - (P x L) — h*P? =
= P2L2? — i2iR2P? — h2P? = P2(L2 + h?)

o (PxL—ihP) @ =L*+2ihP-Q —ihP-Q = L?+ihP-Q

e Q- (PxL—ihP)=1L%—ihQ -P

P f-R PV DR+ (VR =t - 10 -



Finally the proof for [A, H] = 0

With
PxL=PQ—(P-Q)P+ihP and LxP=-PQ+ (P-Q)P +ihP
follows .
i- L (p6_(F.6F) -9
A= L (Pa-(F-QP) -3

Using following formulas

o [P,1/R] =ih%

Consider now

AP = 3 (1PG, P2 = (P G)P.PY)) — [§. P
= &= (PG, P~ (P~ Q), PYIP) - £(G.P*) - (%, PAId
= & (PP2inP - P (G, P2\P) —4(G, P?) - [, PIQ
=0 .
LoihP +ihs(@ - P)Q +ih(P- @) with  [P-Q, 2] = 3iligs
= —2ihLP +ihds ((Q’-ﬁ) +(P-Q)+3in| @
N————
L (@P)
= 2ih:P + 2ihs(Q - P)@
= 2malA4, =
Hence 1
%[A7P2]:[A>Q/R} = [A7H]:0

Good References:

M.J. Englefield, Group Theroy and the Coulomb Problem (Wiley & Sohns, 1972)

A. Hirshfeld, The Supersymmetric Dirac Equation (Imperial College Press, 2021)

G.J. Maclay, Dynamical Symmetries of the H Atom, One of the Most Important Tools of

Modern Physics: SO(4) to SO(4,2), Symmetry 12 (2020) 1323; https://doi.org/10.3390/sym12081323

*** End of Lecture 4 ***
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