Recall orthogonality relation for matrix elements of UIR:

’ 1
_ZDW DIk (g) = 0100000
geG v

Recall Peter-Weyl-Theorem: f: G — C

d;
Z di Z flfiuD

all UIR ¢ p,v=1

fh = 30 50) (Do)’

geG

f(9)

For Abelian groups all UIR are 1-dimensional, i.e. D is a complex number and d; = 1.

Peter-Weyl-Theorem for Abelian groups:

flgg = D ['Dy)
all UIR i

fr= 23w
geqG

Example: Zy = {—1,+1}, or g = 0 = +1. 2 classes = 2 UIR: D%(g) = 1 and D'(g) =
Let f(g) := f, with f, € C.

(f+—f-)

l\DI)—\

flo) =+ o whee  P=l(f+i). =
Check: f(g) = 5 (f+ + /=) +§ (f+ = [-)

2.7.3 Characters of representations

Definition: The function
G—C

X’ : :
9= x(g) :=Tr D' (g)
is called Character of representation D’ with finite dimension d;.
Comments:

e Equivalent reps have the same character as Tr S~!D(g)S = Tr D(g).

e Characters are class functions (functions on classes of a group) as for ¢; and g2 being
. Hence x7(g1) = x/(9929") =

within same class exists a ¢ € G with g1 = ggag !

X’(g2), that is, is constant within the class.
e Characters of UIR are orthogonal

% > X9 (9) = by

geG

That is, {x'} is complete orthogonal set for class functions. Recall orthogonality

relation above. (Proof as little Exercise)

e UIR are uniquely characterised by the characters. Consider fully reducible reps

D(g) =D, ¢ DJ(g) with D* UIR, then x(g) = 2 ¢jx’ (g) with

.:_ZX

geqG

The decomposition of D into UIR is unique!
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Example: Let us consider the regular representation
Iudv = ZD;?/g gu
which is fully reducible and n-dimensional. Then, x™&(e) = n and x**&(g) = 0 for all g # e.

That is,
1 . 1 .,
6= SN (9) = () = dy
g

for all UIR j. Hence, all UIR of a finite group have multiplicity d; (their dimension) in the
regular representation. That is,

XElg) = Y dix(
all UIR
In above let g = e, then
X" (e Z dj X Z d2
all UIR all UIR

which proofs the theorem of Burnside.
The problem of finding all UIR is equivalent to the full reduction of the regular representa-
tion.

Theorem: The number of inequivalent UIR of a finite group is identical to the number of
classes.

Proof: Consider arbitrary class function f(g) = f(go_lggo) for all g, g9 € G.
From Peter-Weyl theorem follows

(9)=>_d; > £, Di.(95 " 990)
J v
Now take group average over g

Zd S Fi s 303 Dl 1050 D4, o)

Hy go af
1se n Z Dua 9 /w(go) = 0w lap

SV S w TERNE
- "

_ZZ ZD
J

_ZTr fJ XJ

with Tr (f7) : wa Zf(g)xj(g‘1

geG

Peter-Weyl theorem for class functions f(g) = f(gy Y990):

flo) = > aix'(y)
all UIR i

a;i = %Zf(g)x’*
geG
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= {x’(g)} is a complete orthonormal set for class functions, which are constant on a class

= f=(f(g): f(g2),---, f(gr), gi € K; (i-th class), i = 1,2,...,k = # of classes of G,
f is an element of a k-dimensional vector space L C C", kK < n
= there exist exact k UIR for a finite group.

Character tables: Are used for finite groups of low order to classify their UIR

Glo=e|pek | | gek|
DY 1 1 e 1 trivial reps
D' di | X'(92) X' (gx) i-th reps

Construction:

e # of UIR = # classes = quadratic table

e Burnside: Z d? =n=ordG

(3

k
o D X *(9) =D mex(go)x *(ge) = ndi,
geG =1
where g, € K, and my = # of elements in class K.

= sum rule for each row i

k
> omelx' (g0 =n
=1

Example: C3 = {e,d,d?} has 3 classes, abelian, n = 3 and d®> = e = [Xj(d)]3 =1
= xi(d) € {17627ri/3)e47ri/3}

Cs | e d d?
DOl 1 1 1
Dl |1 e2ri/3  oini/3
D2 |1 e#ri/3  g2mi/3

Projection Operators: Let G be a finite group, D a unitary fully reducible reps in some
vector space V, x/ the character of the UIR labeled with j and dimension dj.

Theorem: The operator
o ds ‘
E .= J*
o > X7 *(9)D(g)
geqG

fulfills following relations

1L B =F self-adjoint
2. BEF =FJ djk ortho-normal projector
3. ZEJ =1 completeness

J

4. D(9)E/ =E'D(g)
Proof: See Homework Problem 7
Comments:
e [/ is ortho-normal projector onto invariant subspace of V spanned by the UIR j

within D (with possible multiplicities)
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e E/ can be used to find invariant subspaces

¢ Extension to compact groups obvious

W:¢L@vwww

e R0 -1 or E0 =
E nzq:D(g) E /Gng(g)

projects on invariant subspace of trivial reps = average of D on group

Short BREAK
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3 Lie Groups

3.1 Pragmatic Approach to Lie Groups

For some more details please see, e.g., book by Lucha & Schéberl.
A continuous or topological group has uncountable infinite group elements.

Parametrisation and Notation:
® g= g(a) = g(a17a27 i 7an)>
e o= (aq,a9,...,q,) independent group parameters, that is, g(a) # g(o/) & a # o

e o I CR"™ [Iis group space, one or more not necessarily connected subsets of R"

n € N is the dimension of the group
e Convention for neutral element e = g(0) = ¢(0,0,...,0)

Examples:
e SO(2): g=g(¢), ¢ €[0,2r[C R, I = S* unit circle, 1-dim. continuous group
o 13 g=g(¥), # € R3 I =R3 3-dim. continuous group

Composition laws and composition functions:

R IxI—1I
multiplication g(v) = g(a@)g(B) =30 (0, B) — 7 = ®(a, §)
inverse element g(@) =g (a) =3JU: i:i, — (o)
Properties:
9M(9(B)g()) = (9(7)g(B))g(@) = (7, 2(5,a)) = 2(2(7, f), @)
9(0)g(a) = g(a)g(0) = 0(0,0) = a = &(x,0)
g9(a)g™(a) = g~ (a)g() = (o, ¥(a)) =0 =2(¥(a), )

These are rather strong conditions!

Definition: Topological or Continuous group
e [ is topological space not necessarily connected (limits, continuity, connectedness)
e Composition functions are continuous

Definition: Lie Group is topological group with

e [ is analytical manifold not necessarily connected (manifold with analytic atlas =
analytic transformation functions)

e Composition functions are analytic
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Examples:
e SO(2):
cosy —sinc
st =(m? e )

sin ¢ COos
Composition laws = trigonometric addition theorems
e O(2):

cos —sin .
9a(p) = < sini cosi ) pure rotations det gq(p) =1

_ 1 0\ [ cosp sin ¢ ! _
@)= (5 3 )= (S8 M) okt detgule) =1

Group space not connected , SO(2) is normal subgroup O(2)/S0O(2) ~ Z,

Comment: Let Gy C G be the connected subset containing e = ¢(0) = Gy is normal
subgroup of G.

Compact Groups: A topological group is called compact when its group space I is com-
pact. The group space may consist of several compact components.

e SO(2): I =S" unit circle is compact
e SO(1,1): Boosts in (1 + 1) dimensions

~_( coshf sinhp
9(B) = < sinh 8 cosh ) ’ BER

I ~ R hyperbola unbounded, is NOT compact but locally compact
Locally compact Groups: If for all ¢ € G there exists a compact environment (incl.
boundaries) which is completely within G, then G is called locally compact.
3.2 Invariant Measure for Topological Groups

Basic Assumption:
There exists a positive measure p on G, that is, for any pu-measureable function

G—C

I g~ flg)

the integration over a topological group is well-defined:

/ dulg) flg) = / da p() f(g(a)
G

I

d"a: usual Lebesque measure
p(a): density of group elements at «

Definitions: For all y-measurable f and all g € G

e Left-invariant Haar measure:
L@ sme) = [ dulo) 1) & ulaos) = ulo)
e Right-invariant Haar measure:

/dﬂ(g)f(ggo)=/dﬂ(g)f(9) & 1(990) = p(g)
G G
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e I[nwvariant Haar measure:

/du(g)f(goggl)—/du(g)f(g) s pulgoggr) = ulg)
G G

Example: G = SO(2), g = g(p).

Let go = g(@) and g1 = g(B) then gogg1 = g(a + ¢ + B) and
f(g) = f(9(p)) = f(9(p + 27)) periodic function on unit circle
= du(g) = 5-dy is invariant Haar measure for SO(2) as

2T

2m
[ auto) rlovsa) = 5 [ destotareri) =5 [ aese@) = [ aule) 10
S0(2) T Jo T Jo 50(2)

Theorem:
For each locally compact group there exists a (non-trivial) positive left-invariant measure
which is, up to a (normalization) constant, unique.

Proof: See for example,
J. Dieudomé, Grundziige der modernen Analysis II, Chapter 14.1, pp249-255.

Normalization:

e For compact groups: / du(g) =1 = u(G)
G

1
For finite gr : 1=1
e Lor finite groups od G gEZG

e For infinite discrete groups: p(e) =1
Comments:

e Construction of a left-invariant measure for Lie groups always possible in principle
(see E. Wigner, Group Theory, p. 95-99 and optional tutorial after test). In practice
this might be difficult for non-abelian groups

e The existence is often sufficient even without explicitly knowing the density p.

e An educated guess of the measure is usually faster than its formal construction a la
Wigner

Modular function of a locally compact group G

Let p be the left-invariant measure on G, i.e. u(gog) = p(g)-
Then obviously u(gogg1) = p(ggr) is also left-invariant.
Hence, uniqueness implies that p(gg1) = Ag(g1)p(g), where

G- R
“" g Dalo)
is called the modular function of G.
Definition:
G uni-modular =3 Ag(g)=1
= u(gg1) = p(g) is also right-invariant = invariant Haar measure

Notation: For uni-modular groups du(g) = dg from now on

and
/Gdgf(g):/Gdgf(gog):/adgf(ggo)=/Gdgf(g‘1)
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Example: SU(2)

a b
g:<—b* a,*), ‘a|2+‘b|2:1; a,beC
Choose parametrization with Euler angles (bi-polar coordinates on S% C R*):
0
a—cosﬁexp{i(p;w} 0<¢@<2m
0<<m
b:isingexp 180_7/’ o < 9
9 2 —2m < w < 27

Then

1 .
dg = = sin d0 dy dv

Proof: Consider bi-polar coordinates in R*
x1 = rcosgcosf"’—‘;’ﬁ

To = rcosgsin 5"—%2' 3(1’171’2,3?3,374))

d*z = drdfdpdey
T3 = TSngCOS‘w—;‘Q A(r,0,p,v)
o = rsin § sin £5Y —2 sing

Hence d'z = d*Qr3dr with d*Q = £ sin 0dfdepdy

Obviously d*z is invariant under SU(2) rotations in R* leaving r fixed.
Hence, d*Q is also SU(2) invariant measure on SU(2) ~ S5.

Noting that f g3 d3Q = 272 provides us with above normalised Haar measure

List of some uni-modular groups:
e All discrete groups
e All compact groups
e All Abelian groups
e GL(n,R) = {X|real n x n matrices with detx # 0}
o ...

Left-invariant measure of GL(n,R):

Ti1 - Zin n
gx =X = : : = dgx = |det X|7" ] dai
Tin " Tnn wi=1
n
Left-invariance: Let Y = AX that is y;; = Z ik Tj
k=1
0
= (y117 7ynn) _ (det A)n
8(%11, R )
Hence
- Ay Ynn) | T
dgy =|detY|™™ T dyi; = |det A - det X| 7" | 2o dnn) dw;;
g | | Zli[ i = | | (w11, ..., Tnn) H "
,J=1 i,7=1
n
= |det X|7" H daij = dgx =dgax
ij=1
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Right-invariance analogous

Consider subgroup of triangular matrices

Z11 212 "t Zln
0 202 -+ 299 . .

g7 =7 = L ) . is NOT uni-modular
0 -+ 0 2zpm

Left-invariant measure: dur(gz) = 203255+ -+ 2n| ™ Hdzi_j
i<j

Right-invariant measure: duz(g7) = |21125 - 2| Hdzij
i<j

Remark: Subgroups of uni-modular groups are not necessarily uni-modular!

Short BREAK

3.3 Transformation Groups

Transformation: Bijective mapping of a set M onto M

M= M
T — gr

Transformation Group: Exists for all ¢ € G a transformation on M such that ex = «
for all z € M (identical transformation) and (g1g2)x = g1(g2)x for all g1, g2 € G, then G is
called transformation group acting on M.

Examples:
o M ={z1,x9,...,2,} G = S,, Permutations
e M =R? G=80(3)orG=1T°
e M = G obvious, for example SU(2) ~ $3
Transformation groups are called
effective = Vg # edx € M such that gz # x
transitive = Va,y € M3g € G such that gx =y
Obviously SO(3) is NOT transitive on M = R3 but it is transitive on M = S?

Homogenous Space:
Exists a transitive group G acting on M then M is called homogenous space

From now on we will ONLY consider homogenous spaces M and transitive transformation
groups G

Stationary Subgroup: Also called little group or isotropy group
Let zg € M and G be transitive on M, then

H .= {h S G‘hxo = .17()}
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is a subgroup of G called stationary subgroup of G with respect to xg € M.
Proof: Consider arbitrary hy, ho € H

° hl_lhlai‘o = hl_lazo = hixo = 29 = hl_l eH
® hihoxg = hixg =29 = hihes € H
e cxg=x9=>e€H

= H is a group

Example: Let M = S% G = SO(3) and choose zg = ¢,
= H = SO(2) all rotation about z-axis keeping z fixed (stationary)

In general, let gxg = x, that is for all g = gh with h € H we have gy = .

That is, the set of all transformations mapping zg — = is represented by gH (left coset).
For each pair (z,zg) exists a left coset gH such that gHxg = =

= The homogenous space M =~ set of all cosets

Notation: M = G/H = {gH|g € G} for homogenous spaces
is in general NOT a (factor) group as in general H is NOT a normal subgroup.

Recall:
o $2=50(3)/50(2)
e S3=50(4)/S0O(3)
e 53 =1SU(2) here H = {e} effective transformation group

Choice of xg:

Consider two different ¢ and &y and let haxg = xo for all h € H.

Let gxo = T then ghg~ 'y = ghxo = gxo = To.

Hence the stationary subgroup for Z is H:= gHg™', H is conjugate to H

= M=G/H~G/H

homogenous space is uniquely defined by transitive G and one stationary subgroup H.

Invariant Measure on M:
Let gA := {gz|xr € A C M} arbitrary transformation of subset A in M
A measure 4 is called G-invariant measure on M if for all ¢ € G and all A C M

p(A) = u(gA)

This implies for a p-measurable function f on M and all g € G

/M du(@) fx) = [ dula) £(9)

JM

Connection with invariant Haar measure
[ duw) s@) = [ dgfigao)
M=G/H G
In essence dg = du(x)dh.

3.4 Representations of Transformation Groups

Consider H = L?(G/H) being invariant under transformation, that is,

P(x) eH = P(gx) € H VgeG
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Unitary Representations in H

(D(9)¥) (x) = (g™ ')
(@|D(g)p) = (g~ z[ep) = d(g™ )
Representation:

(D(91)D(g2)) (x) = (g5 g7 "wltb) = P((g192) ') = (D(9292)¢)(x)

Unitarity: scalar product via G-invariant measure on G/H

Wald) = [ dpla) ianta) = [ du(o)vilg apbalg™a) = (D(ghnlDlg)v)
G/H G/H
Comments:
e For H ={e} G~ M = D(g) is (left) regular represnetation

H: Z dej j:dimHj
all UIR j

e General Case

D(g)=Y D), H=D H'  dimH' =d, =dimD"
leA LeA

A: Set of all class 1 representations, appear with multiplicity 1 in H.

Known Example: H = L?(S?%) = ZHZ, dimH* =20+ 1

=0
H = span {|tm)|m = —£,... .0}, L,|tm) = m|ém) , L,= %8%
Spherical harmonics (fp|fm) = Yy, (0,¢) = (—1)™ %2 f;%!! Pj*(cos ) elme

Orthogonality relation: / dQQYj‘m(G, ) Yo (0, 0) = e Oy d?Q = sin #dfdy
S2

(0p]€0) = \/%Pg(cos 6) independent of ¢, rotations about z-axis
D¥(h)|€0) = |€0) invariant under h € SO(2) C SO(3), rotations about z-axis

3.4.1 Representations of class 1

Let H = L?(G/H), H' © H, H' irreducible invariant subspace with UTR D‘(g)

Definition: Exists an invariant vector |pg) € HY, that is, D(h)|po) = |@o) for all h € H,
then Df(g) is called representation of class 1 (relative to H).

Definition: Exists for each class 1 representation ezact one invariant vector in H! then H
is called massiv subgroup.

Comment: |pg) € H! corresponds to zg € G/H with hag = x¢ for all h € H.

Let us choose basis in H% {|@o), [¢1)s -, l¢d,—1)}

Representation matrices: Df,. (g) := (2m|D(g)|n)

In particular: For all h, hy,ho € H

Dt o(gh) = (em|D (gh)|o) = Dbyo(9)
Dfy(hi " ghs) = (w0l D*(hi  ghs)|o) = Dy (9)

Comment
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e Associate spherical functions :< f(gh) = f(g)
e Zonal spherical functions :< f(high2) = f(9)
Known Example: G = SO(3), M = S% &(0,¢) = gé.

D! o(9) = (eml DX(9) o) = \/ 5525 Yem (0, )

Dfy(g) = (ol D (g)l00) = 1/ 5727 Pe(cosb)

Orthogonality of UIR matrix elements: continuous version

1
/ dg Dﬁfm (g)Df,,.* ((]) = d_5€k 5771,55717'
G 7

*** End of Lecture 3 ***

31



