Recall orthogonality relation for matrix elements of UIR:

$$\frac{1}{n} \sum_{g \in G} D_{\mu\nu}^{i}(g) D_{\rho\sigma}^{j*}(g) = \frac{1}{d_i} \delta_{ij} \delta_{\mu\rho} \delta_{\nu\sigma}$$

Recall Peter-Weyl-Theorem: $f: G \to \mathbb{C}$

$$f(g) = \sum_{\text{all UIR } i} d_i \sum_{\mu,\nu=1}^{d_i} \tilde{f}_{\nu\mu}^i D_{\mu\nu}^i(g)$$
$$\tilde{f}_{\nu\mu}^i = \frac{1}{n} \sum_{g \in G} f(g) \left(D_{\mu\nu}^i(g) \right)^*$$

For Abelian groups all UIR are 1-dimensional, i.e. D^i is a complex number and $d_i = 1$. Peter-Weyl-Theorem for Abelian groups:

$$f(g) = \sum_{\text{all UIR } i} \tilde{f}^i D^i(g)$$
$$\tilde{f}^i = \frac{1}{n} \sum_{g \in G} f(g) \left(D^i(g) \right)^*$$

Example: $Z_2 = \{-1, +1\}$, or $g = \sigma = \pm 1$. 2 classes \Rightarrow 2 UIR: $D^0(g) = 1$ and $D^1(g) = \sigma$. Let $f(g) := f_{\sigma}$ with $f_{\sigma} \in \mathbb{C}$.

$$f(g) = \tilde{f}^0 + \tilde{f}^1 \sigma$$
 where $\tilde{f}^0 = \frac{1}{2} (f_+ + f_-)$, $\tilde{f}^1 = \frac{1}{2} (f_+ - f_-)$

Check: $f(g) = \frac{1}{2} (f_+ + f_-) + \frac{\sigma}{2} (f_+ - f_-)$

2.7.3 Characters of representations

Definition: The function

$$\chi^j: \begin{array}{l} G \to \mathbb{C} \\ g \mapsto \chi^j(g) := \operatorname{Tr} D^j(g) \end{array}$$

is called *Character* of representation D^{j} with finite dimension d_{j} .

Comments:

- Equivalent reps have the same character as $\operatorname{Tr} S^{-1}D(g)S = \operatorname{Tr} D(g)$.
- Characters are class functions (functions on classes of a group) as for g_1 and g_2 being within same class exists a $g \in G$ with $g_1 = gg_2g^{-1}$. Hence $\chi^j(g_1) = \chi^j(gg_2g^{-1}) = \chi^j(g_2)$, that is, is constant within the class.
- Characters of UIR are orthogonal

$$\frac{1}{n} \sum_{g \in G} \chi^i(g) \chi^{j*}(g) = \delta_{ij}$$

That is, $\{\chi^i\}$ is complete orthogonal set for class functions. Recall orthogonality relation above. (Proof as little Exercise)

• UIR are uniquely characterised by the characters. Consider fully reducible reps $D(g) = \bigoplus_i c_j D^j(g)$ with D^i UIR, then $\chi(g) = \sum_i c_j \chi^j(g)$ with

$$c_j = \frac{1}{n} \sum_{g \in G} \chi(g) \chi^{j*}(g)$$

The decomposition of D into UIR is unique!

Example: Let us consider the regular representation

$$g_{\mu}g_{\nu} =: \sum_{\rho=1}^{n} D_{\rho\nu}^{\text{reg}}(g_{\mu})g_{\rho}$$

which is fully reducible and n-dimensional. Then, $\chi^{\text{reg}}(e) = n$ and $\chi^{\text{reg}}(g) = 0$ for all $g \neq e$. That is,

$$c_j = \frac{1}{n} \sum_{g} \chi^{\text{reg}}(g) \chi^{j*}(g) = \frac{1}{n} n \chi^{j*}(e) = d_j$$

for all UIR j. Hence, all UIR of a finite group have multiplicity d_j (their dimension) in the regular representation. That is,

$$\chi^{\text{reg}}(g) = \sum_{\text{all UIR}} d_j \, \chi^j(g)$$

In above let g = e, then

$$\chi^{\text{reg}}(e) = n = \sum_{\text{all UIR}} d_j \, \chi^j(e) = \sum_{\text{all UIR}} d_j^2$$

which proofs the theorem of Burnside.

The problem of finding all UIR is equivalent to the full reduction of the regular representation.

Theorem: The number of inequivalent UIR of a finite group is identical to the number of classes.

Proof: Consider arbitrary class function $f(g) = f(g_0^{-1}gg_0)$ for all $g, g_0 \in G$. From Peter-Weyl theorem follows

$$f(g) = \sum_{j} d_{j} \sum_{\mu\nu} \tilde{f}_{\nu\mu}^{j} D_{\mu\nu}^{j} (g_{0}^{-1} g g_{0})$$

Now take group average over g_0

$$f(g) = \sum_{j} d_{j} \sum_{\mu\nu} \tilde{f}_{\nu\mu}^{j} \frac{1}{n} \sum_{g_{0}} \sum_{\alpha\beta} D_{\mu\alpha}^{j}(g_{0}^{-1}) D_{\alpha\beta}^{j}(g) D_{\beta\nu}^{j}(g_{0})$$

$$use \qquad \frac{1}{n} \sum_{g_{0}} D_{\mu\alpha}^{j}(g_{0}^{-1}) D_{\beta\nu}^{j}(g_{0}) = \delta_{\mu\nu} \delta_{\alpha\beta}$$

$$= \sum_{j} d_{j} \sum_{\mu\nu} \tilde{f}_{\nu\mu}^{j} \sum_{\alpha\beta} \frac{1}{d_{j}} \delta_{\mu\nu} \delta_{\alpha\beta} D_{\alpha\beta}^{j}(g)$$

$$= \sum_{j} \sum_{\mu} \tilde{f}_{\mu\mu}^{j} \sum_{\alpha} D_{\alpha\alpha}^{j}(g)$$

$$= \sum_{j} \operatorname{Tr}(\tilde{f}^{j}) \chi^{j}(g)$$

with
$$\text{Tr}(\tilde{f}^j) := \sum_{\mu} \tilde{f}^j_{\mu\mu} = \frac{1}{n} \sum_{g \in G} f(g) \chi^j(g^{-1})$$

Peter-Weyl theorem for class functions $f(g) = f(g_0^{-1}gg_0)$:

$$f(g) = \sum_{\text{all UIR } i} a_i \chi^i(g)$$

$$a_i = \frac{1}{n} \sum_{g \in G} f(g) \chi^{i*}(g)$$

 $\Rightarrow \{\chi^j(g)\}\$ is a complete orthonormal set for class functions, which are constant on a class $\Rightarrow \vec{f} = (f(g_1), f(g_2), \dots, f(g_k)), g_i \in K_i$ (i-th class), $i = 1, 2, \dots, k = \#$ of classes of G, \vec{f} is an element of a k-dimensional vector space $\mathcal{K} \subset \mathbb{C}^n, k \leq n$ \Rightarrow there exist exact k UIR for a finite group.

Character tables: Are used for finite groups of low order to classify their UIR

G	$g_1 = e$	$g_2 \in K_2$	 $g_k \in K_k$	
D^0	1	1	 1	trivial reps
:				
D^i	d_i	$\chi^i(g_2)$	$\chi^i(g_k)$	<i>i</i> -th reps

Construction:

- # of UIR = # classes \Rightarrow quadratic table
- Burnside: $\sum_{i} d_i^2 = n = \operatorname{ord} G$
- $\sum_{g \in G} \chi^{i}(g) \chi^{j*}(g) = \sum_{\ell=1}^{k} m_{\ell} \chi^{i}(g_{\ell}) \chi^{j*}(g_{\ell}) = n \delta_{ij},$ where $g_{\ell} \in K_{\ell}$ and $m_{\ell} = \#$ of elements in class K_{ℓ} . $\Rightarrow \text{ sum rule for each row } i$ $\sum_{\ell=1}^{k} m_{\ell} |\chi^{i}(g_{\ell})|^{2} = n$

Example: $C_3 = \{e, d, d^2\}$ has 3 classes, abelian, n = 3 and $d^3 = e \Rightarrow \left[\chi^i(d)\right]^3 = 1 \Rightarrow \chi^i(d) \in \left\{1, \mathrm{e}^{2\pi\mathrm{i}/3}, \mathrm{e}^{4\pi\mathrm{i}/3}\right\}$

$$\begin{array}{c|cccc} C_3 & e & d & d^2 \\ \hline D^0 & 1 & 1 & 1 \\ D^1 & 1 & e^{2\pi i/3} & e^{4\pi i/3} \\ D^2 & 1 & e^{4\pi i/3} & e^{2\pi i/3} \\ \end{array}$$

Projection Operators: Let G be a finite group, D a unitary fully reducible reps in some vector space V, χ^j the character of the UIR labeled with j and dimension d_j .

Theorem: The operator

$$\mathbb{E}^j := \frac{d_j}{n} \sum_{g \in G} \chi^{j*}(g) D(g)$$

fulfills following relations

- 1. $\mathbb{E}^{j^{\dagger}} = \mathbb{E}^{j}$ self-adjoint
- 2. $\mathbb{E}^{j}\mathbb{E}^{k}=\mathbb{E}^{j}\delta_{jk}$ ortho-normal projector
- 3. $\sum_{j} \mathbb{E}^{j} = 1$ completeness
- 4. $D(g)\mathbb{E}^j = \mathbb{E}^j D(g)$

Proof: See Homework Problem 7

Comments:

• \mathbb{E}^j is ortho-normal projector onto invariant subspace of V spanned by the UIR j within D (with possible multiplicities)

- ullet E can be used to find invariant subspaces
- Extension to compact groups obvious

$$\mathbb{E}^j = d_j \int_G \mathrm{d}g \, \chi^{j*}(g) D(g)$$

•
$$\mathbb{E}^0 = \frac{1}{n} \sum_g D(g)$$
 or $\mathbb{E}^0 = \int_G \mathrm{d}g \, D(g)$
projects on invariant subspace of trivial reps = average of D on group

Short BREAK

3 Lie Groups

3.1 Pragmatic Approach to Lie Groups

For some more details please see, e.g., book by Lucha & Schöberl. A *continuous* or *topological* group has uncountable infinite group elements.

Parametrisation and Notation:

- $g = g(\alpha) = g(\alpha_1, \alpha_2, \dots, \alpha_n),$
- $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ independent group parameters, that is, $g(\alpha) \neq g(\alpha') \Leftrightarrow \alpha \neq \alpha'$
- $\alpha \in I \subseteq \mathbb{R}^n$, I is group space, one or more not necessarily connected subsets of \mathbb{R}^n
- $n \in \mathbb{N}$ is the dimension of the group
- Convention for neutral element $e = g(0) = g(0, 0, \dots, 0)$

Examples:

- SO(2): $g = g(\varphi), \ \varphi \in [0, 2\pi[\subset \mathbb{R}, \ I = S^1 \ \text{unit circle, 1-dim. continuous group}]$
- T^3 : $g = g(\vec{x}), \vec{x} \in \mathbb{R}^3, I = \mathbb{R}^3, 3$ -dim. continuous group

Composition laws and composition functions:

multiplication
$$g(\gamma) = g(\alpha)g(\beta)$$
 $\Rightarrow \exists \Phi: \begin{cases} I \times I \to I \\ (\alpha, \beta) \mapsto \gamma = \Phi(\alpha, \beta) \end{cases}$
inverse element $g(\alpha') = g^{-1}(\alpha)$ $\Rightarrow \exists \Psi: \begin{cases} I \to I \\ \alpha \mapsto \alpha' = \Psi(\alpha) \end{cases}$

Properties:

$$\begin{split} g(\gamma)(g(\beta)g(\alpha)) &= (g(\gamma)g(\beta))g(\alpha) & \Rightarrow & \Phi(\gamma,\Phi(\beta,\alpha)) = \Phi(\Phi(\gamma,\beta),\alpha) \\ g(0)g(\alpha) &= g(\alpha)g(0) & \Rightarrow & \Phi(0,\alpha) = \alpha = \Phi(\alpha,0) \\ g(\alpha)g^{-1}(\alpha) &= g^{-1}(\alpha)g(\alpha) & \Rightarrow & \Phi(\alpha,\Psi(\alpha)) = 0 = \Phi(\Psi(\alpha),\alpha) \end{split}$$

These are rather strong conditions!

Definition: Topological or Continuous group

- I is topological space not necessarily connected (limits, continuity, connectedness)
- Composition functions are *continuous*

Definition: Lie Group is topological group with

 \bullet I is analytical manifold not necessarily connected (manifold with analytic atlas = analytic transformation functions)

24

• Composition functions are analytic

Examples:

• *SO*(2):

$$g(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

Composition laws = trigonometric addition theorems

• O(2):

$$g_d(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \quad \text{pure rotations} \quad \det g_d(\varphi) = 1$$

$$g_s(\varphi) = g_d(\varphi) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix} \quad \text{rot. \& refl.} \quad \det g_d(\varphi) = -1$$

Group space not connected , SO(2) is normal subgroup $O(2)/SO(2) \simeq Z_2$

Comment: Let $G_0 \subset G$ be the connected subset containing $e = g(0) \Rightarrow G_0$ is normal subgroup of G.

Compact Groups: A topological group is called compact when its group space I is compact. The group space may consist of several compact components.

- SO(2): $I = S^1$ unit circle is compact
- SO(1,1): Boosts in (1+1) dimensions

$$g(\beta) := \begin{pmatrix} \cosh \beta & \sinh \beta \\ \sinh \beta & \cosh \beta \end{pmatrix}. \qquad \beta \in \mathbb{R}$$

 $I \simeq \mathbb{R}$ hyperbola unbounded, is NOT compact but locally compact

Locally compact Groups: If for all $g \in G$ there exists a compact environment (incl. boundaries) which is completely within G, then G is called *locally compact*.

3.2 Invariant Measure for Topological Groups

Basic Assumption:

There exists a positive measure μ on G, that is, for any μ -measureable function

$$f: \begin{array}{c} G \to \mathbb{C} \\ g \mapsto f(g) \end{array}$$

the integration over a topological group is well-defined:

$$\int_{G} d\mu(g) f(g) = \int_{I} d^{n} \alpha \rho(\alpha) f(g(\alpha))$$

 $d^n\alpha$: usual Lebesque measure

 $\rho(\alpha)$: density of group elements at α

Definitions: For all μ -measurable f and all $g_0 \in G$

• Left-invariant Haar measure:

$$\int_{G} d\mu(g) f(g_0 g) = \int_{G} d\mu(g) f(g) \qquad \Leftrightarrow \qquad \mu(g_0 g) = \mu(g)$$

• Right-invariant Haar measure:

$$\int_{G} d\mu(g) f(gg_0) = \int_{G} d\mu(g) f(g) \qquad \Leftrightarrow \qquad \mu(gg_0) = \mu(g)$$

25

• Invariant Haar measure:

$$\int_{G} d\mu(g) f(g_0 g g_1) = \int_{G} d\mu(g) f(g) \qquad \Leftrightarrow \qquad \mu(g_0 g g_1) = \mu(g)$$

Example: $G = SO(2), g = g(\varphi).$

Let $g_0 = g(\alpha)$ and $g_1 = g(\beta)$ then $g_0gg_1 = g(\alpha + \varphi + \beta)$ and $f(g) = f(g(\varphi)) = f(g(\varphi + 2\pi))$ periodic function on unit circle $\Rightarrow d\mu(g) = \frac{1}{2\pi}d\varphi$ is invariant Haar measure for SO(2) as

$$\int_{SO(2)} d\mu(g) f(g_0 g g_1) = \frac{1}{2\pi} \int_0^{2\pi} d\varphi f(g(\alpha + \varphi + \beta)) = \frac{1}{2\pi} \int_0^{2\pi} d\tilde{\varphi} f(g(\tilde{\varphi})) = \int_{SO(2)} d\mu(g) f(g)$$

Theorem:

For each *locally compact group* there exists a (non-trivial) positive left-invariant measure which is, up to a (normalization) constant, unique.

Proof: See for example,

J. Dieudomé, Grundzüge der modernen Analysis II, Chapter 14.1, pp249-255.

Normalization:

- For compact groups: $\int_G d\mu(g) = 1 = \mu(G)$
- For finite groups: $\frac{1}{\operatorname{ord} G} \sum_{g \in G} 1 = 1$
- For infinite discrete groups: $\mu(e) = 1$

Comments:

- Construction of a left-invariant measure for Lie groups always possible in principle (see E. Wigner, *Group Theory*, p. 95-99 and optional tutorial after test). In practice this might be difficult for non-abelian groups
- The existence is often sufficient even without explicitly knowing the density ρ .
- An educated guess of the measure is usually faster than its formal construction a la Wigner

Modular function of a locally compact group G

Let μ be the left-invariant measure on G, i.e. $\mu(g_0g) = \mu(g)$.

Then obviously $\mu(g_0gg_1) = \mu(gg_1)$ is also left-invariant.

Hence, uniqueness implies that $\mu(gg_1) = \Delta_G(g_1)\mu(g)$, where

$$\Delta_G: \begin{array}{c} G \to \mathbb{R}^+ \\ g \mapsto \Delta_G(g) \end{array}$$

is called the modular function of G.

Definition:

$$G$$
 uni-modular $:\Leftrightarrow \Delta_G(g)=1$

 \Rightarrow $\mu(gg_1) = \mu(g)$ is also right-invariant \Rightarrow invariant Haar measure

Notation: For uni-modular groups $\mathrm{d}\mu(g)=\mathrm{d}g$ from now on and

 $\int_{G} dg f(g) = \int_{G} dg f(g_{0}g) = \int_{G} dg f(gg_{0}) = \int_{G} dg f(g^{-1})$

Example: SU(2)

$$g = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}$$
, $|a|^2 + |b|^2 = 1$, $a, b \in \mathbb{C}$

Choose parametrization with Euler angles (bi-polar coordinates on $S^3 \subset \mathbb{R}^4$):

$$a = \cos\frac{\theta}{2}\exp\left\{i\frac{\varphi + \psi}{2}\right\} \qquad 0 \le \varphi < 2\pi$$

$$b = i\sin\frac{\theta}{2}\exp\left\{i\frac{\varphi - \psi}{2}\right\} \qquad 0 \le \theta \le \pi$$

$$-2\pi \le \psi < 2\pi$$

Then

$$dg = \frac{1}{16\pi^2} \sin\theta d\theta d\varphi d\psi$$

Proof: Consider bi-polar coordinates in \mathbb{R}^4

$$x_{1} = r \cos \frac{\theta}{2} \cos \frac{\varphi + \psi}{2}$$

$$x_{2} = r \cos \frac{\theta}{2} \sin \frac{\varphi + \psi}{2}$$

$$x_{3} = r \sin \frac{\theta}{2} \cos \frac{\varphi - \psi}{2}$$

$$x_{2} = r \sin \frac{\theta}{2} \sin \frac{\varphi - \psi}{2}$$

$$d^{4}x = \underbrace{\left[\frac{\partial (x_{1}, x_{2}, x_{3}, x_{4})}{\partial (r, \theta, \varphi, \psi)}\right]}_{=\frac{r^{3}}{8} \sin \theta} dr d\theta d\varphi d\psi$$

Hence ${\rm d}^4x={\rm d}^3\Omega\,r^3{\rm d}r$ with ${\rm d}^3\Omega=\frac{1}{8}\sin\theta{\rm d}\theta{\rm d}\varphi{\rm d}\psi$ Obviously d^4x is invariant under $S\overset{\circ}{U}(2)$ rotations in \mathbb{R}^4 leaving r fixed. Hence, $d^3\Omega$ is also SU(2) invariant measure on $SU(2) \simeq S^3$. Noting that $\int_{S^3} d^3\Omega = 2\pi^2$ provides us with above normalised Haar measure

List of some uni-modular groups:

- All discrete groups
- All compact groups
- All Abelian groups
- $GL(n,\mathbb{R}) = \{X | \text{real } n \times n \text{ matrices with } \det x \neq 0\}$
- . . .

Left-invariant measure of $GL(n, \mathbb{R})$:

$$g_X = X = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{1n} & \cdots & x_{nn} \end{pmatrix} \qquad \Rightarrow \qquad \mathrm{d}g_X = |\det X|^{-n} \prod_{i,j=1}^n \mathrm{d}x_{ij}$$

Left-invariance: Let Y = AX that is $y_{ij} = \sum_{k=1}^{n} a_{ik} x_{kj}$

$$\Rightarrow \frac{\partial(y_{11}, \dots, y_{nn})}{\partial(x_{11}, \dots, x_{nn})} = (\det A)^n$$

Hence

$$dg_{Y} = |\det Y|^{-n} \prod_{i,j=1}^{n} dy_{ij} = |\det A \cdot \det X|^{-n} \left| \frac{\partial (y_{11}, \dots, y_{nn})}{\partial (x_{11}, \dots, x_{nn})} \right| \prod_{i,j=1}^{n} dx_{ij}$$
$$= |\det X|^{-n} \prod_{i,j=1}^{n} dx_{ij} = dg_{X} = dg_{XX}$$

Right-invariance analogous

Consider subgroup of triangular matrices

$$g_Z = Z = \begin{pmatrix} z_{11} & z_{12} & \cdots & z_{1n} \\ 0 & z_{22} & \cdots & z_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & z_{nn} \end{pmatrix}$$
 is NOT uni-modular

Left-invariant measure: $d\mu_L(g_Z) = |z_{11}^n z_{22}^{n-1} \cdots z_{nn}|^{-1} \prod_{i \leq j} dz_{ij}$

Right-invariant measure: $d\mu_L(g_Z) = |z_{11}z_{22}^2 \cdots z_{nn}^n|^{-1} \prod_{i \leq j} dz_{ij}$

Remark: Subgroups of uni-modular groups are not necessarily uni-modular!

Short BREAK

3.3 Transformation Groups

Transformation: Bijective mapping of a set \mathcal{M} onto \mathcal{M}

$$g: \begin{array}{c} \mathcal{M} \to \mathcal{M} \\ x \mapsto gx \end{array}$$

Transformation Group: Exists for all $g \in G$ a transformation on \mathcal{M} such that ex = x for all $x \in \mathcal{M}$ (identical transformation) and $(g_1g_2)x = g_1(g_2)x$ for all $g_1, g_2 \in G$, then G is called transformation group acting on \mathcal{M} .

Examples:

- $\mathcal{M} = \{x_1, x_2, \dots, x_n\}$ $G = S_n$ Permutations
- $\mathcal{M} = \mathbb{R}^3$ G = SO(3) or $G = T^3$
- $\mathcal{M} = G$ obvious, for example $SU(2) \simeq S^3$

Transformation groups are called

effective : $\Leftrightarrow \forall g \neq e \exists x \in \mathcal{M} \text{ such that } gx \neq x$

transitive : $\Leftrightarrow \forall x, y \in \mathcal{M} \exists g \in G \text{ such that } gx = y$

Obviously SO(3) is NOT transitive on $\mathcal{M} = \mathbb{R}^3$ but it is transitive on $\mathcal{M} = S^2$

Homogenous Space:

Exists a transitive group G acting on \mathcal{M} then \mathcal{M} is called homogenous space

From now on we will ONLY consider homogenous spaces $\mathcal M$ and transitive transformation groups G

Stationary Subgroup: Also called little group or isotropy group Let $x_0 \in \mathcal{M}$ and G be transitive on \mathcal{M} , then

$$H := \{ h \in G | hx_0 = x_0 \}$$

is a subgroup of G called stationary subgroup of G with respect to $x_0 \in \mathcal{M}$.

Proof: Consider arbitrary $h_1, h_2 \in H$

- $h_1^{-1}h_1x_0 = h_1^{-1}x_0 \Rightarrow h_1x_0 = x_0 \Rightarrow h_1^{-1} \in H$
- $h_1h_2x_0 = h_1x_0 = x_0 \Rightarrow h_1h_2 \in H$
- $ex_0 = x_0 \Rightarrow e \in H$

 $\Rightarrow H$ is a group

Example: Let $\mathcal{M} = S^2$, G = SO(3) and choose $x_0 = \vec{e}_z$ $\Rightarrow H = SO(2)$ all rotation about z-axis keeping x_0 fixed (stationary)

In general, let $gx_0 = x$, that is for all $\tilde{g} = gh$ with $h \in H$ we have $\tilde{g}x_0 = x$.

That is, the set of all transformations mapping $x_0 \to x$ is represented by gH (left coset).

For each pair (x, x_0) exists a left coset gH such that $gHx_0 = x$

 \Rightarrow The homogenous space $\mathcal{M} \simeq$ set of all cosets

Notation: $\mathcal{M} = G/H := \{gH | g \in G\}$ for homogenous spaces is in general NOT a (factor) group as in general H is NOT a normal subgroup.

Recall:

- $S^2 = SO(3)/SO(2)$
- $S^3 = SO(4)/SO(3)$
- $S^3 = SU(2)$ here $H = \{e\}$ effective transformation group

Choice of x_0 :

Consider two different x_0 and \tilde{x}_0 and let $hx_0 = x_0$ for all $h \in H$.

Let $gx_0 = \tilde{x}_0$ then $ghg^{-1}\tilde{x}_0 = ghx_0 = gx_0 = \tilde{x}_0$.

Hence the stationary subgroup for \tilde{x}_0 is $\tilde{H} := gHg^{-1}$, H is conjugate to \tilde{H}

$$\Rightarrow \mathcal{M} = G/H \simeq G/H$$

homogenous space is uniquely defined by transitive G and one stationary subgroup H.

Invariant Measure on \mathcal{M} :

Let $gA := \{gx | x \in A \subset \mathcal{M}\}$ arbitrary transformation of subset A in \mathcal{M}

A measure μ is called G-invariant measure on \mathcal{M} if for all $g \in G$ and all $A \subset \mathcal{M}$

$$\mu(A) = \mu(gA)$$

This implies for a μ -measurable function f on \mathcal{M} and all $g \in G$

$$\int_{\mathcal{M}} d\mu(x) f(x) = \int_{\mathcal{M}} d\mu(x) f(gx)$$

Connection with invariant Haar measure

$$\int_{\mathcal{M}=G/H} d\mu(x) f(x) = \int_G dg f(gx_0)$$

In essence $dg = d\mu(x)dh$.

3.4 Representations of Transformation Groups

Consider $\mathcal{H} = L^2(G/H)$ being invariant under transformation, that is,

$$\psi(x) \in \mathcal{H} \qquad \Rightarrow \qquad \psi(gx) \in \mathcal{H} \qquad \forall g \in G$$

Unitary Representations in \mathcal{H}

$$(D(g)\psi)(x) := \psi(g^{-1}x)$$

or

$$\langle x|D(g)\psi\rangle = \langle g^{-1}x|\psi\rangle = \psi(g^{-1}x)$$

Representation:

$$(D(g_1)D(g_2)\psi)(x) = \langle g_2^{-1}g_1^{-1}x|\psi\rangle = \psi((g_1g_2)^{-1}x) = (D(g_1g_2)\psi)(x)$$

Unitarity: scalar product via G-invariant measure on G/H

$$\langle \psi_1 | \psi_2 \rangle = \int_{G/H} d\mu(x) \, \psi_1^*(x) \psi_2(x) = \int_{G/H} d\mu(x) \, \psi_1^*(g^{-1}x) \psi_2(g^{-1}x) = \langle D(g)\psi_1 | D(g)\psi_2 \rangle$$

Comments:

• For $H = \{e\}$ $G \simeq \mathcal{M} \Rightarrow D(g)$ is (left) regular representation

$$\mathcal{H} = \sum_{\text{all UIR } j} d_j \, \mathcal{H}^j \qquad d_j = \dim \mathcal{H}^j$$

• General Case

$$D(g) = \sum_{\ell \in \Lambda} D^{\ell}(g), \qquad \mathcal{H} = \sum_{\ell \in \Lambda} \mathcal{H}^{\ell}, \qquad \dim \mathcal{H}^{\ell} = d_{\ell} = \dim D^{\ell}$$

 Λ : Set of all class 1 representations, appear with multiplicity 1 in \mathcal{H} .

Known Example:
$$\mathcal{H} = L^2(S^2) = \sum_{\ell=0}^{\infty} \mathcal{H}^{\ell}$$
, $\dim \mathcal{H}^{\ell} = 2\ell + 1$
 $\mathcal{H}^{\ell} = \operatorname{span} \{|\ell m\rangle|m = -\ell, \dots, \ell\}$, $L_z |\ell m\rangle = m|\ell m\rangle$, $L_z = \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \varphi}$
Spherical harmonics $\langle \theta \varphi | \ell m \rangle = Y_{\ell m}(\theta, \varphi) = (-1)^m \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{\ell+m)!}} P_{\ell}^m(\cos \theta) e^{\mathrm{i}m\varphi}$

Spherical harmonics
$$\langle \theta \varphi | \ell m \rangle = Y_{\ell m}(\theta, \varphi) = (-1)^m \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{\ell+m)!}} P_{\ell}^m(\cos \theta) e^{im\varphi}$$

Orthogonality relation:
$$\int_{S^2} \mathrm{d}^2 \Omega Y_{\ell m}^*(\theta, \varphi) Y_{\ell' m'}(\theta, \varphi) = \delta_{\ell \ell'} \delta_{m m'}, \qquad \mathrm{d}^2 \Omega = \sin \theta \mathrm{d} \theta \mathrm{d} \varphi$$
$$\langle \theta \varphi | \ell \, 0 \rangle = \sqrt{\frac{2\ell+1}{4\pi}} P_{\ell}(\cos \theta) \qquad \text{independent of } \varphi, \text{ rotations about } z\text{-axis}$$

$$D^{\ell}(h)|\ell 0\rangle = |\ell 0\rangle$$
 invariant under $h \in SO(2) \subset SO(3)$, rotations about z-axis

3.4.1 Representations of class 1

Let $\mathcal{H} = L^2(G/H)$, $\mathcal{H}^{\ell} \subset \mathcal{H}$, \mathcal{H}^{ℓ} irreducible invariant subspace with UIR $D^{\ell}(g)$

Definition: Exists an invariant vector $|\varphi_0\rangle \in \mathcal{H}^{\ell}$, that is, $D^{\ell}(h)|\varphi_0\rangle = |\varphi_0\rangle$ for all $h \in H$, then $D^{\ell}(g)$ is called representation of class 1 (relative to H).

Definition: Exists for each class 1 representation *exact one* invariant vector in \mathcal{H}^{ℓ} then His called massiv subgroup.

Comment: $|\varphi_0\rangle \in \mathcal{H}^{\ell}$ corresponds to $x_0 \in G/H$ with $hx_0 = x_0$ for all $h \in H$.

Let us choose basis in \mathcal{H}^{ℓ} : $\{|\varphi_0\rangle, |\varphi_1\rangle, \dots, |\varphi_{d_{\ell}-1}\rangle\}$

Representation matrices: $D_{mn}^{\ell}(g) := \langle \varphi_m | D^{\ell}(g) | \varphi_n \rangle$

In particular: For all $h, h_1, h_2 \in H$

$$D_{m0}^{\ell}(gh) = \langle \varphi_m | D^{\ell}(gh) | \varphi_0 \rangle = D_{m0}^{\ell}(g)$$

$$D_{00}^{\ell}(h_1^{-1}gh_2) = \langle \varphi_0 | D^{\ell}(h_1^{-1}gh_2) | \varphi_0 \rangle = D_{00}^{\ell}(g)$$

Comment

- Associate spherical functions : $\Leftrightarrow f(gh) = f(g)$
- Zonal spherical functions : $\Leftrightarrow f(h_1gh_2) = f(g)$

Known Example: $G = SO(3), \ \mathcal{M} = S^2, \ \vec{e}(\theta, \varphi) = g\vec{e}_z$

$$D_{m0}^{\ell}(g) = \langle \varphi_m | D^{\ell}(g) | \varphi_0 \rangle = \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell m}(\theta, \varphi)$$
$$D_{00}^{\ell}(g) = \langle \varphi_0 | D^{\ell}(g) | \varphi_0 \rangle = \sqrt{\frac{4\pi}{2\ell+1}} P_{\ell}(\cos \theta)$$

Orthogonality of UIR matrix elements: continuous version

$$\int_{G} dg \, D_{mn}^{\ell}(g) D_{sr}^{k*}(g) = \frac{1}{d_{\ell}} \delta_{\ell k} \delta_{ms} \delta_{nr}$$

*** End of Lecture 3 ***