2.3 Representations of an Abstract Group

Let V' be a d-dimensional linear vector space (real or complex).
That is for 4, 7€V = d+v7€V and av € V, a € R or C with

T+Uu=u+7 a(pv) = (ap)v

(T+ @)+ =0+ (T + @) 10=70,00=0, —10= -0
T+0="70 (o + )T = a¥ + B¥

T+ (~0) =0 o+ @) = ot + ai

Let D:V — V be a linear invertible transformation (operator) acting on V
D(ail + pv) = aDii + DY
Definition: A d-dimensional linear representation of a group G is a group homomorphism

G = GL(V) := group of linear invertible transformations acting on V
- g~ D(g)

with group law
D(g9192) = D(91)D(g2)

Remarks:

e Usually for finite-dimensional reps GL(V) = GL(d,C) set of linear complex-valued
d x d matrices

e d = oo is allowed, for example V = L?(R?) Hilbert space = GL(V) is set of linear
operators acting on V'

e V is called representation space
e Let {€1, ¢, ...,¢4} be complete orthonormal basis in V with scalar product
(€3, €5) = bij
Then
Dij(g) := (€, D(9)€;)
are the matrix elements of the matriz representation D(g).
Often no difference is made between D(g) and D(g)

e Is D(g) linear operator Vg € G < linear representation
Non-linear representations are also called realisations

e Exists a similarity transformation S such that
D(g) :=S"'D(g)S Vge G

is also a representation of G, then D and D are called equivalent representations
(change of basis).

e Notation: D?(g) usually stands for a d-dimensional representation, {D;(g)} or {D%(g)}
stands for set of reps. enumerated by an index i. Known example for rotation group
isf¢=0,1,2,3,... with dimension d; = 2¢ + 1.

Unitary representation:
D(g) unitary Vg € G =3 (D(g)u, D(g)?v) = (4,¥) Vg € Gand Vu, v € V

= D(g") = D'(9) = D'(g)
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Faithful representation: Homomorphism is an isomorphism

g1 # 92 = D(g1) # D(g2)

Trivial representation: unitary but not faithful

Dtrivial(g) =1 vg e

Regular representation: G = {¢g1, g2, ..., g} finite
n
99 =: Y _ Di;*(9)gi
i=1

Dr®8(g) is an n X n matrix with a single 1 and rest zeros in each row and column
n-dimensional faithful representation (group table)

2.4 Representations of D;

Recall: D3 = {e,d,d?, s, sd,sd*}, d® =e =52, sd =d s
e Dl(g):=1 1-dimensional symmetric reps. = trivial reps.
e Dl(g) 1-dimensional anti-symmetric reps. with

v [ 1 gefedd}=E
D,(g) = { —1 g€ {s,sd,sd*y =D

e D?(g) 2-dimensional reps. explicitly constructed for generators d, s on R?

= 120°

Y
]
S {: > T

Obviously:

mo- (3 )

9, _  cos120° —sin120°
D*(d) = ( sin 120° cos 120°

wo=(} 9)

Proof:
D?*(d?) = D*(d)D*(d) = (

D2(d%) = D(d)D*(d)D*(d) = D2(e) = ( (1) " )
D?(sd) = D?*(s)D?(d) = ( _ég _\/7? ) = D?(d" N D?(s) = D*(d " 's)
T2 2



D%(sd?) = D*(sd)D?(d) = (

N = Ml&

) — D2(dY)D2(d"'s) = D*(d')D*(s) =

i
W~

D?(d25)
= 2-dim. faithful and unitary reps.

Comment: 3 conjugacy classes = 3 unitary irreducible reps. (see later)

2.5 Properties of Representations for Finite Groups

Maschke’s Theorem:
Each representation of a finite group is equivalent to a unitary representation.

Proof: See Tutorial

Comment: Can be extended to continuous (uni-modular) groups with invariant Haar
measure. In physics we usually deal with unitary irreducible representations UIR.

Reducible Representation:

Let D(g) be a d-dimensional reps. in V, dim V' = d.

If there exists an invariant subspace U C V with dimU < dim V, that is, with @ € U =
D(g)u € U for all g € G, then the representation is called reducible.

The representation matrices are of the form

_( Dilg) | R(g)
D<9>—< 0 |D2<g>)

Irreducible Representation:
If there exists NO invariant subspace in V' the representation is called irreducible.

Theorem:
Let D(g) be unitary and reducible with invariant subspace U. Then U+ is also invariant
subspace and V = U @ U~+. That is R(g) = 0 for unitary reducible reps.

Proof: Let i € U and « € U+ then for all g € G D(g)d € U

= 0= (D(9)d, @) = (&, D'(9)@) = (@ D(g~")w) for all g € G

= (i, D(g)w) =0 for all g € G

Conclusion: Representation matrices of unitary reducible reps. are (in a proper basis) block-
diagonal

_(Dug)| 0 _
D(g)-( 10 |D2(g)) or D =Dy ® Dy

Fully reducible representations:
Can the representation space of a reducible representation D be decomposed into invariant
irreducible subspaces then D is called fully reducible

D=riDi®roDy&---PrgDy

Here r; € N denotes the multiplicity of occurrence of irr. reps. D; in D
The representation matrices are block-diagonal

D1 (g) 0
0 D1 (g) 0
D(g) = : 0 | Dua)] 0
: 0
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Comments:
Unitary reps. are either irreducible or fully reducible.
All reps. of finite groups are either irreducible or fully reducible.

Example: The natural reps. of S3 = {e,a,b,c,d, f}

Recall:
(123 (123 y_ (123
““\123) *“T\l231)" ~\312)°
1 2 3 1 2 3 1 2 3
C'_<1 3 2)’ d'—<3 2 1)’ f“<2 1 3)‘
Lo . 5 1 2 3
Let {€1, €3, €3, } be the natural basis of R® and P := then
T T T3
3
D"(P) := Z A permutation of base vectors € — €x,
i=1
Explicit
1 0 0 0 01 0 1
D™ ()= 0 1 0 |, D" (@)= 1 0 : D™ ()= 1| 0
0 1 010 10
1 00 0 01 0
D™ ((c)=10 0 1 |, D™ (=101 0 |, D (fy=1[ 1
010 1 00 0
1-dim. invariant subspace: ¥ := \/ig(_’l + €5 + €3) obvious
2-dim. subspace orthogonal to v:
U] := — , =UX U = ——= obvious
1 /5 X 2 1 5 X
Change of basis:
2 1
L
S = (), iy, T) = 75 KA obviously ST6 =1
1 11
V2 VB VB
Equivalent reps.:
_1 V3
- 2 2
D) :=STD™(a)S = [ 4 1|0 |=D%d) & Did)
0 01
3 -1 0|0
Drat(c) := STDt () S = 0 1[0 | =D?(s)®DL(s)
0 01

Remember S3 ~ D3 with a ¥ d and ¢ ~ s
Hence D" = D? @ D!
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2.6 First and Second Schur Lemma
2.6.1 First Lemma

1. Schur Lemma:
Let D be an irreducible matrix representation of a group G in representation space V and
M be a matrix representing an operator in V' such that

MD(g9) =D(g)M  VgeG

then
M=)1, A = const.

That is, if M has G-symmetry then it is proportional to the unit matrix 1 in V.

Proof:

Let Z € V be eigenvector of M, MT = \¥

= %y := D(g)7 is also eigenvector with same eigenvalue for all g € G as [M, D(g)] =0
= JU, C V such that D(g)Uy = U, is invariant subspace for eigenvalue A

But D is irreducible and therefore Uy =V = M = A1 in V

Comments:

e If the only matrix commuting with all D(g) is proportional to the unit matrix then
D is irreducible reps.

e All irreducible reps. of abelian groups are 1-dimensional
D irreducible = D(g;)D(g) = D(g)D(g;) for all g,g; € G. So let M = D(g;) =
D(g;) = A1 and irreducible = 1-dimensional

e Unitary irreducible representations (UIR) of abelian groups are of the form

D(g) = ela(9) , o G [0, ?W[

g alg with  a(g192) = a(g1) + a(g2) mod 27

2.6.2 Second Lemma

2. Schur Lemma:
Let D' and D? be non-equivalent UIR of dimension d; and do. Then any rectangular d; x da
matrix M which obeys

MD'(g) = D*(9)M  VgeG

is the null matrix

M=0

Proof:

Consider adjoint equation DlJf(g).MT = MTD2T(g) then
DY (g YM't = MTD?(¢7!) = DY (g)MT = MTD?(g) forall g € G
= MD'(g)M" = D*(g9)MM' = MMTD?(g)

1. Lemma = MMt = X1

Case di = dy: Let det M # 0, then there exist a M ~! such that D(g) = M~1D?*(g)M
= D' and D? are equivalent, which contradicts assumption = det M =0
=det MMT = N2 =0=A=0=> MM =0=M=0

Case dy < dy (without loss of generality): Complete M to dy X dy matrix M := (M|0) with

o t .
additional zero columns = MM = (M|0) ( M ) =MM'=X1=M=0=M=0.

0
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Both Schur lemmata in a nut shell:

For UIR
]WDi(g) — Dj(g)M N M = Ad;;
with bij = 0 for " 753 lnequlvalent reps.
1 i = j equivalent reps.

2.6.3 Application to Eigenvalue Problems

Let H be linear operator in V. For example: H = P2/2m + V(|Q|), V = L2(R3).
Let D be unitary reducible reps of G in V. For example G = SO(3), D(g(&)) = exp{—i&-L}.

We say H has G-symmetry if

[D(g),H]=0 VgeG <«  D(g)H =HD(g)
Problem: Find eigenvalues and eigenvectors of H in V, |[H — A1| = 0.
Note: D is completely reducible
D(g) =c1 D'(9) + 2 D*(g) +... +¢ca D"(g), n< oo
D'(g) : UIR of dimension d;
¢; : multiplicity of D in D

Reduction of Problem:
With suitable basis in V' the reps. matrix for D is block diagonal
Example: D(g) = 2D'(g) + D?(g)

Dl(g) 0 ‘ 0 -
D(g) = 0 D'Yg)| O ‘
0 0 [D*(g) ) v

Conglomerate: %! inv. subspace of V' containing all the UIR D*.
Write H in that basis

1 1 12
g

H = H( 2211) H( 2221) H. 2(12)
Hy1" Hy | Hyy 2

21

In general:
H 1(2 = d; x d; matrix, Im element of a submatrix of H in ¥

| = m submatrix of H in subspace belonging to a fixed D*
I # m overlap of m-th and I-th UIR D!, [ and m € {1,2,..., ¢}

H) = d; x dj matrix, overlap of I-th UIR D with m-th UIR D! # DJ
Symmetry of H: D(g)H = HD(g) for all g € G

Di(g)H,) = H\)D'(g) '2" Hy) =hi)1,,

; ij i5) i 2.SL ij
DZ(Q)HZ(’:);Z) — Hl(TrZ)D](g) = Hl(n”]a) =0

In our example:
hgll)lfh h§12)1(11 0
H=| hy)1y hiple | 0
0 0 | nP1,
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In subspace ¥? operator H consists of ¢; X ¢; blocks of dimension d; being diagonal matrices.
In general with definition (ﬁ(i))l = hl(:?)z = H® is ¢; X ¢; matrix
m

- H:i(ﬁl(i)xldJ vzéw, dim V; = ¢id;
1=1 i=1

FI(I) X 14 | 0
H= L
( 0 | H? x 14, )

~ (1 @) -
gL — ( by Doy ) , =2 and H(Z)Zhﬁ), co=1

In our example:

with

Conclusion:
With a suitable basis (also within the subspaces X') the eigenvalue problem for H can be
reduced to n eigenvalue problems of the form

‘HU) 01, | =0
n = number of different UIR of symmetry of H occurring in V.
Comments:

e D(g) = cD"Val(g) ¢ = dim V only trivial representation
= no symmetry = no simplification

e D(g) = D'(g) is already UIR = H = A1, only one eigenvalue, problem solved

e D' appears only once in decomposition, that is, ¢; = 1, then invariant subspace %¢ is
also eigenspace of H = degeneracy due to symmetry
Same eigenvalue may accidentally occur also in other subspaces
= accidental degeneracy (usually a sign of an additional hidden symmetry)

Summary:

1. Choose suitable symmetry group and its representation in V/
Aim is to have ¢;’s as small as possible = d; as large as possible as dimV = > | ¢;d;
higher symmetry groups have higher-dim. UIR (C,, C D,, C Sy,)
= "higher” simplification

2. Decompose representation into UIRs
3. Choose symmetry adopted basis in subspaces

Know example from QM
52

H= 1+ V(Q), V = L*®) = I2(R*) ® X(S?)
L%(S?) = @D‘, d=21+1¢=1
=0

D(g) = exp{—i@ - L} with [H, D(g)] = 0 for all g € SO(3) as [H, L] = 0.

= H= Z H! © 1541 with
1=0
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in suitable basis

() = ZrRl 3" Yinl0,9)

l=—m

Note (B¢|lm) = Y}, (6, ¢) and D! = Z |lm) (Im|

m=—1

An explicit example will be worked out in the Tutorial in Exercise 4.

2.7 Orthogonality of Representations and Characters
2.7.1 Orthogonality of UIR

Theorem: Let D(g) and D7(g) be matrices of two UIR of dimension d; and d; for a group
G, g € G. Then the following orthogonality relation of the matrix elements holds:

1
- Z D!, (9)Di(g) = T 0i50up0v
geG v

where n = ord G and

0 i # j inequivalent reps.
5@‘ = for . . .
1 1 = j equivalent reps.

Proof: Consider
M:=Y D'(g)XDi(g "
geG
with X being an arbitrary d; x d; matrix. Then for all go € G

= > D'(g0)D'(9) X D7(g~")D’(g5") D’ (90)
geG

= D'(909) X D’((990) ") D’ (g0)
geG )

=MD (g0)

and therefore M = A 10;;, see 1. and 2. Schur lemma. On the other hand we have
H,p - Z Z D X?”S D ( )
geG r,s
Let us choose X, s = 6,,05, then
M,y = Z wa(g) Dg'p(gil) = Appdij
geG

Now we calculated A for i = j by setting u = p and sum over p.

=e

di ) e
Adi =" "Dl (9)Di,(g7") =D Di,(g7"g) = nis

g p=1 g Sou

Hence, A = 735, and we conclude

1
n E Duu g )= d_i5ij5uﬂ5va ()

geG
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Comments:
e (I) is valid for irreducible reps not necessarily unitary
e For unitary reps follows Dgp(g_l) = Di; (g9) and proof is completed

e Extension to compact groups obvious
1
> ()= [ dg()
n 9 G

e With proper interpretation also to non-compact uni-modular groups having d; = oo
for UIR.

Examples
[ ] G - U(l) then Dm(g) = eim¢7 dm = 17 m E Z7 g = Q(QO)

2T . .
| agpm@pre) = [ e v =,
U(1) 0 ™

e G =T"' then D¥(g) = e ke ke R, g=g(z), z € R (see homework)
/ +OOd 3 ’
/ ngk(g)Dk *(g):/ _xe—lkxe—kxzd(k_k/)
T1

oo 2T

2.7.2 Abstract harmonic analysis
Consider finite group G = {g1,92,...,9n}, n = ord G and a well-defined function

G—C

1 g~ f(g)

Let .
[= (f(gl) f(92)7 s 7f(gn))

be element of vector space V ~ C™ with scalar product

then for an arbitrary UIR

;w = \/d_l (DL,/(91)7 DLI/(92)7 s 7D/Z,w(gn))
obeys
(€2, Vhid; ZD (9) = 010,000, -
geG
That is, it forms a (complete) orthonormal set in V.

Comment: For a fixed i there exist d7 linearly independent unit vectors = >_.d? < n. In
other words, for finite groups there exist only a finite number of UIR.

Z d%:n

all UIR

Theorem of Burnside:

Proof: Later

Conclusion: {¢!,} forms a complete set in V ~ C"

7= 3 a{ g F) gz

i, [, v
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with

N . I i
fuu = <ﬁewa>__ZD;w ):EZDyu(g !
g

Or for a fixed component f(g) of f

flo = D d Z o Dy (9)

all UIR ¢ p,v=1

fi o= 3 H@)D(

geG

Above decomposition is called abstract Fourier or harmonic analysis.

Peter-Weyl-Theorem:

fe) = > 4T (f'0')
all UIR 4
f‘i - Z«f Dz —1
gEG

Comments:
e Parseval equation (without proof)

d;
NP = Y Y il

geld all UIR i p,v=1

e Extension to compact groups and with proper interpretation even to uni-modular
groups possible

Examples:
o (G = Z5: See Homework Problem 1
e G =U(1): Fourier series

fm —1im rm 1 °n im
=S fretme, e [T g s

meZ

e G =T': Fourier analysis

1

*** Tnd of Lecture 2 ***
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