2. Solution to Homework in ”Group Theory for Physicists” SoSe 22

Problem 3: One-dim. UIR of the Braid group B,
Generators obey:
gic; =¢;6 for |i—j|>1
€i€i+1€; = Ei41€i€i41

a) Make ansatz for 1-D UIR for generators: D(g;) = €'
e Unitarity: «; € [0, 2|
e First property: D°(g;g;) = el(®ite) = D (g;¢,)

e Second property: D(g;g;416;) = el (@itemtad = Do(g; 1eie:,) = ell@mitaitainy)

— Q11 = mod 27 — Qjp] = Q for all i.
Hence « € [0, 27| characterises the full set of all 1-dim. UIR of B,

b) Restriction to S, implies a third property € = e
| 0 trivial reps

= D)= =1=a=
7 anti-sym. reps

Comments:

Consider a quantum system of n identical particles characterised by the n-particle wave func-

tion W(xq,...,x,). The permutation of these particles may be represented by a permutation
. 1 2. n : .
of the positions x;: P = . The representation of such a permutation in
Ty Mo -+ Tp

the n-particle Hilbert space L?(R3") is given by
DY(P)W(xy,...,Tp) =V (Try, ..., Tx,)

For identical particles the physics should not change, that is, [¥(z1, ..., 2,)|* = [¥(Zx,, - - -, T, )|
Hence, D* must be a 1-dim. UIR of S,,:

e Trivial reps.: DY(P)¥(xy,...,x,) :=¥(z1,...,2,) = ¥(Try,..., T, ). Bosons

e Anti-sym. reps.: D™(P)¥(zy,...,z,) := (=1)*¥(xy,...,x,). Fermions

k = number of transposition in P; odd permuations pick up a minus sign.



For elementary particles these are the only physical 1D UIR of B,,. However, for ”quasi
particles” (collective excitation in a solid) any o may be realized. These are called Anyons.
See, for example,

J. Jacak, R. Gonczarek, L. Jacak and 1. Jozwiak, Application of Braid Groups in 2D Hall
System Physics (World Scientific, Singapore, 2012) https://doi.org/10.1142/8512



Problem 4: One-dim. UIR of SO(2) ~ U(1)
Defining representation of SO(2) in R?

Ccos —sin
gle)=1| . pel0,2n]
singp  cos

a) Consider the homomorphism

" SO(2) — UQ)
glp) = e¥

Note that using the trigonometric addition theorems we have

cos ¢, — sin gy COS g — Sin P9 cos(p1 + p2) —sin(p1 + @2)
9(p1)g(p2) = | , =| .
S 1 COS ©1 S Y2 COS 2 Sm(@l + 902) COS(@l + 902)

Hence, the group law is mapped under H as g(1)g(w2) = g(p1 + @a) > ellerte2),
Obviously this is invertable and H is actually an isomorphism. SO(2) ~ U(1).
Alternatively, let & = (z1,75)7 € R?, then we can map it onto z := x; +izy € C. Hence the
rotation g(p) in R? is replaced by the multiplication of z with phase e'¥.

Consider unitary transformation

U
V2 \ i1 V2 \ -1
then the 2-dim. reducible matrix reps. is reduced to

ev 0

Utg(p)U = |
0 e¥
b) Ansatz for 1-dim. UIR: D%(g) = %) with a(p) € [0, 27].

e g(p1)g(e1) = glor + pa) = alpr) + a(p2) = apr + @2) mod 2.

Hence « is linear in ¢.
e g(0) =1=g(271) = «(0) = 2rm and a(27) = 2mn with m,n € Z

Conclusion: a(p) =m-¢ and

D™(g) =™ with meZ

is 1-dim. UIR of SO(2) ~ U(1).



Problem 5: Translations in R? and its 1D UIR

, | R®*—>R? ' .
T° with group element g9(7) =
a—~a+7

and 7eRr?

= e
— 8y

a) Neutral element ¢(0) = 1, obvious.

Hence we only need to verify the group law of translations, which implies ¢(Z)g (%) = g(Z+7):

— — —

. . 13 f ].3 Yy 13 xr —|—y . .
9(@)g(y) = | ﬁ =1 . =9(Z+7)
07 1 0 1 0or 1
Obviously the inverse of g(Z) is given by g(—Z) and T? is abelian.

However,

@ =g = [ 2T £g@) -
07 1 7T 1

The above matrix representation of 7 is neither unitary nor irreducible. It acts on R* with

(0,0,0,1)T spanning an invariant subspace.
b) Ansatz DE(g(:LT)) — "7 ig representation as
Dg(9(0) =1 and  Dy(g(Z+ 7)) = Dp(g() De(9()

Unitarity follows from Dg(g(—)) = Dx(g(Z))



