4. Homework in "Group Theory for Physicists"

Problem 9: Characters of SO(3) and SU(2).

a) From Exercise 10 we know that an arbitrary element of SO(3) and SU(2) can be expressed in terms of

$$R(\vec{\omega}) = \mathrm{e}^{-\mathrm{i}\varphi J_3} \mathrm{e}^{-\mathrm{i}\theta J_2} \mathrm{e}^{-\mathrm{i}\omega J_3} \mathrm{e}^{\mathrm{i}\theta J_2} \mathrm{e}^{\mathrm{i}\varphi J_3}, \quad \vec{\omega} = (\omega \sin \theta \cos \varphi, \omega \sin \theta \sin \varphi, \omega \cos \theta)^T.$$

Show that for any representation its character only depends on the rotation angle ω .

b) Show that for the UIR D^{j} in \mathbb{C}^{2j+1} , i.e. $d_{j} = 2j + 1$, the character explicitly reads

$$\chi^j(\omega) = \frac{\sin(j+\frac{1}{2})\omega}{\sin\frac{\omega}{2}}.$$

Hint: $\mathbb{C}^{2j+1} = \operatorname{span}\{|jm\rangle\}$, where $J_3 |jm\rangle = m |jm\rangle$, $m = -j, -j+1, \dots, j-1, j$.

c) Show that

$$\chi^{j_1}(\omega)\chi^{j_2}(\omega) = \sum_{j=|j_1-j_2|}^{j_1+j_2} \chi^j(\omega).$$

Problem 10: Generators of SO(3)

Let L_k $(k \in \{1, 2, 3\})$ be 3×3 matrices whose elements are defined by $(L_k)_{ij} := -i\varepsilon_{ijk}$, where ε_{ijk} is the total anti-symmetric tensor in 3 dimension. That is,

$$L_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad L_{2} = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, \quad L_{3} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- a) Show that these matrices fulfill the relation $[L_k, L_m] = i\varepsilon_{kmn}L_n$.
- b) Show that $(L_k^2)_{mn} = \delta_{mn} \delta_{km}\delta_{kn}$ and therefore $L_k^{2r} = L_k^2$ for $r = 1, 2, 3, \ldots$
- c) Show that $\exp\{-i\varphi L_k\} = 1 + L_k^2 (\cos \varphi 1) iL_k \sin \varphi$ and calculate the explicit 3×3 matrices. Proof $\operatorname{Tr} e^{-i\varphi L_k} = \chi^1(\varphi)$.