University of Newcastle upon Tyne

submitted under Erasmus exchange to the

Technische Universitat Miinchen (TUM)

Individual Project as part of the

BSc Degree in
Computing Science

Author + Hernan Raffi

Sllpel'ViSOI'S s+ Prof. Briiggemann-Klein (TUM)
Dr. Gianluca Chiozzi (European
Southern Observatory)

Date of Submission: 10 November 2003

University of Newcastle upon Tyne

“Implementing a configuration database browser”

Hernan Raffi

10 November 2003

Supervised by: Prof. Briiggemann-Klein (TUM)
Dr. Gianluca Chiozzi (ESO)

Acknowledgments

I would like to thank the following people for having supported my project.
Prof. Briiggemann-Klein (Technische Universitdt Miinchen) as my supervisor,
for having given me the opportunity to develop this project.

Dr. Gianluca Chiozzi (European Southern Observatory) for having provided the
requirements and for supervision of the software that I developed.

Table of Contents

ACKNOWLEDGMENTSoooiiiiiaririniiecinseiiosisecsnesarsssssassestessssssssssarassssasssssssasssssssessnssnssessssssnsasssns -1-
TABLE OF CONTENTS.....ccirrirreennisrieenieniasinesestssisssssessotanessasstessesssnassassssnessrssosssesssnssssessassssnsnsass -2-
A CRONYMUS .ot ietsiaesssssesssasessasessasssossteanessestass nbesessrstssssbssssrsssssassssaesssnasasssatessassassnarssasses -3-
1. INTRODUCTTION..cccciiiiiiiarinnniinsnsssiassnnssiassasssessssssnnssesnsessasssannsassssonsnasensansssas -4-
1.1 THE ATACAMA LARGE MILLIMETER ARRAY (ALMA) PROJECT..ccvivviiieeiiiriciiiniiireier e eerenasanes -4 -
1.2 INTRODUCTION TO THE ALMA ADVANCED COMMON SOFTWARE (ACS) ..iioiiiiiiiiie e, -4-

1.3 PROJECT DELIVERABLE: THE CONFIGURATION DATABASE BROWSERcovviiiiiiiiiieiieaaiea e -6-

1.4 CHALLENGE OF THIS PROJECT AND EXPECTED OUTCOMES «..ooviiiiiiiiiaiieeieeeeeieeiievmeee e s e s -7-

2. THE CONFIGURATION DATABASE (CDB)...vcciecrinieenionsinienssensorsnassnissorasssssnssasanas - 8-
2.1 INTRODUCTION TO CDB ..ottt et e sv e bt r e e e et er e aba b s s -8-
2.2 CDB ARCHITECTURE e tuteeettttsitiiietete et e ettt a et eate e eme e e e te s at s esssas st e e ebsbe s e e abbeaaanseesnssenssennesabas -9-
2.2.1 The Darabase Access Layer (DAL).........cccocooiiooeeeioeeeeee e et e ae st are e -10-

2.3 XML CONFIGURATION FILES 1ottt iiiitieitiiiiiie sttt eee e eerva e sme s sssessaesanesms e ssessseesssaseesseensannan -11-

3. THE CDB BROWSKERooiiiriiirinniincerineiennesssanssosissssessssosessassssssessssessassssossasssssssases -13-
3.1 THE CDB BROWSER .coestitittit ot eemietieame ettt aiaa e ae e st st easea1ae e taest o1t csseatss2aassaaarssabe £ meees s e enta e eneeennrias -13-
3.2 REQUIREMENTS ..ottt ieeat oo eettaee sttt sttt e s ahe s s e 62t 2t s 4222k eeme e em e 2t me a2 am e e e £ 2sees e ammeeeb e areaabeasaenis -14 -
B3 USE CASES -ttt ettt ettt h et a2 e st bt sttt e s e e e a et ea s esk ek ae Ao ab et £ 2 ahaaareeses et er e enas -16-
3.3.1 Browsing through the CDB Treeviciioiiiciiiiicec e -16 -

3.3.2 Editing and resetting the XML SIring ..ot i -18 -

3.3.3 8aving 1he XML SIFING.....coiiviiiiriiiii ittt sttt sacte e sea e bbbt aba e st sn e s -19-

3.3.4 Editing and resetting the CDB attribute values inside a table.cocoovvvevorneciinciiinin - 20 -

34 PROGRAM DESIGN ..ottt ittt e st et et ettt em e ea e e e e e e e et e e aabee eebe s aee e e b e s e ennnias -21-
3.4.1 Model View Controller (MVC) ..o e e esava e naaaes -21-
3.4.2 How 10 set 14 1he TADDEA PQINE ..ot -23-

4, CONCLUSION...occictrecmecerirneesicecnissensessssssssessnns etesttatesitasasesse s tesbt s b e ne e et en e nenesiben -25-
5. REFERENCES....cittiiiiiaieciasieinieeiniesseessaesaveerssssessastssntasisssnesstvessssassssarassss sanassssass sessassasssns sassosasone - 26 -
6. ATTACHMENTS. eteesteeteette st s araraetan e aa e s e s e Rae SRR e A PaS e R AR s e aa bR Rene R asebeeasses st Rasn st sas b -27-
6.1 USERS IMANUAL ..o it eiieaieiis st ee s ctesss e e easaa e steestt e et a s e £ es bt eas s et saa i esfasat £ e et e e e b s b oas e nenn s enesenaneeanreas -27 -
6.2 DOCUMENTATION Lottt ittt et eva e s aeressesse s e sttt sas s r a1t am et e st a bt e neanat e s b eba s sees s -27-
0.3 SOFTWARE CODE ..ottt ottt e et ettt et aob e et e bnss e b e she et ab e e s eecn s e e sbeaann st b e abesteas -27 -

ACRONYMUS

ESO European Southern Observatory
ALMA Atacama Large Millimeter Array
ACS Advanced Common Software
CDB Configuration Database

DAL Data Access Layer

JDAL Java DAL

DAO Data Access Objects

DO Distributed Object

XML Extensible Markup Language
XSD XML Schema Definition
CORBA Common Object Request

Broker Architecture

1. INTRODUCTION

1.1 The Atacama Large Millimeter Array (ALMA) Project

The Atacama Large Millimeter Array (ALMA) is a project among astronomical
organisations in Europe and North America. ALMA will consist of at least 64
radio antennas, each twelve meters in diameter, operating in the millimeter and
sub-millimiter range. The antennas will be located in the Chilean Atacama desert
at an altitude above 5000 m and have a total collecting area of 7000 sqm (Ref.

[10]).

1.2 Introduction to the ALMA Advanced Common Software (ACS)

The ALMA Common Software (ACS) is an object oriented framework that
provides a software infrastructure common to all partners involved in the
development of the ALMA software (Ref. [11], [12]). ACS is available under the
public licence scheme LGPL'.

The heart of ACS is an object model based on Distributed Objects2 (DQ’s); each
Distributed Object is implemented as a CORBA (Ref. [16]) object. DO’s are used
as basis for the development of control systems for components and devices such
as an antenna mount control.

An important module in ACS is the configuration database (CDB), which
addresses the problem related to accessing and maintaining the DO configurations
of the ALMA system (see Chapter 2). In particular the CDB stores configuration
parameters tor the DO’s and is read, at run-time, when the DO’s are started up or
reinitialized.

Figure 1 shows the structure of the ACS Packages.

These have been grouped in four layers, each allowed to use services provided by
other packages on the lower layer and on the same layer (Ref [1], [7], [9]). The
layers are:

1. Base Tools: these are distributed as part of ACS to provide a uniform
development and run time environment on top of the operating system for

! Lesser GNU Public Licence.
* See Chapter 2.1 for more details on Distributed Objects.

-4 -

all higher layers and applications. These packages provide installation and
distribution support.

2. Core Packages: these ensure standard interface patterns and implement
essential services. Among these is the Configuration Database.

3. Services: these implement higher level services such as the Management
and Access Control Interface (MACI) used to supervise the state of the
system.

4. High level APIs and tools: these offer a clear path for the implementation
of applications with the goal of obtaining implicit conformity to design
standards.

ACS Architecture

Sl e |
== | - -

Figure I: ACS Architecture.

.more t0 come...

1.3 Project deliverable: The Configuration Database Browser

The purpose of this project was to implement a browser using a Java GUI to
visualize the structure of the Configuration database (CDB). The browser enables
developers to edit attribute values in the CDB and switch between different views.
More precisely the browser shows an ‘XML view’ of the configuration data
exactly as it is stored inside the CDB and a ‘Table view’ of the same data,
presented in an organized table.

As model for the Browsers GUI the existing Object explorer (as shown in Figure
2, Ref [4]) has been used.

[:E Ubgcct Euplorer

@ Rrampliaet
@ RFoesmDump
@ Rfpecersior
@ RFohaceEhinGr
Btcdonlne
@ Fruoisscandlerasn
@ imoseret
- @ PeworSupak
2 @ enexD_F 01
: w5 Clirent!
i 2P Resuback
3 Alaimlislener
: A0 etor
i B sate
£} PBEND_E 02
o @ e Em

Srat s
#f FCH_E O

] Cutront
1] Resdamk

[25) INVOCATION Alacmliscenct UAS DEITROYED
155]

POLHD_E.01: Resdbock.renoveAlptalastanec
--» Remwm valuc: rall

--> Awtaliscy xetumm value 'erg 1) - Listener provided by che Abeand ~

PSIND_£.01: Readback.addilarnliaceney
-=> PoTwm valug: yAll

--> Auxlllacy recuon value ‘8rg 1’ = Listenér PLovided by e Abeans

Figure 2: The Object Explorer.

1.4 Challenge of this project and expected outcomes

The main challenge of this project was to be able to develop a useable and
complete software package. This has become part of the software framework
ACS, which is in regular use by the whole ALMA Computing team consisting of
about 50 professional software developers. The CDB Browser is already
integrated in the latest ACS Release (3.0).

By implementing this project knowledge in the following areas was acquired:

e Java Swing library (Ref. [14]).

e Eclipse development environment (Ref. [6]).

e XML and XML Schema, as DO’s configuration are serialized with XML
structures (Ref. [3], [5]).

e Elements of CORBA (Ref. [16]).

e Integration aspects with ACS (now ACS 3.0).

e Documentation in the ACS style, by using doxygen (Ref. [15]). A doc
comment is written with JavaDoc syntax, with enbadded HTML. It must
precede a class, field, method or a constructor. It is made up of two parts, a
description followed by block tags like: ‘@param’, and ‘@return’. The
documentation 1is retrieved from the source code and ordered into a Web
Page.

2. The Configuration Database (CDB)

2.1 Introduction to CDB

ACS 1s a distributed system, where some parts are installed and run on different
platforms simultaneously. It is complex to duplicate the same data on each
platform, and also the maintenance and updating would become very hard.
Furthermore ALLMA is developed in different timescales and places; therefore for
testing and developing ACS there will be a multitude of small CDB fragments. It
is the developer choice to choose which instance of the CDB to use.

The Configuration Database (CDB) is a module in the ACS system, used to store
configuration parameters, i.e. the initial values for properties contro! values and
all characteristics for properties of ALMA devices (Ref [8]). These devices are
also known as Distributed Objects (DOs). Distributed Objects are implemented as
CORBA objects that are accessible from any computer in the system; examples of
DOs are the antenna mount, antenna control unit, temperature sensor and motor.

NamedComonent

-name()
-description()
-version()

-URI()

-get_interface()

-get_characteristic() } Characteristics
-get_characteristic by_name()

-find_characteristics()

mn i ——

1 Distributed Object Properties

-DO_name()
-0..
A PAN

ROProperties,type.
-get_sync{)
-get_async()
-create_monitor()
RWProperty<type>
A -set_sync()
-get_async()

-increment()
-decrement()

[

| Examplg of user defined classes

Control Systemn Devic;[;l . . .)
are Distributed Objects > Device MonitorPoint ControlPoint

Figure 3: DO Property-Characteristics

-8-

As Figure 3 shows each Distributed Object is the base class for any
physical/logical device and it can contain reference to other DOs to build
hierarchical structures of components. Furthermore each DO is composed of
Properties such as value, position-control and monitor points. Both DOs and
Properties have specific Characteristics such as range, unit and default values.

The common behaviour of DO and Property has been factorized in the Named
Component common base class (see Figure 3). The methods of any Named
Component allow retrieval of these Characteristics (Ref {3]).

The configuration data for these DOs consists of a set of text files (XML files®)
which are retrieved at run-time during start up and used to initialize and configure
the DOs.

The CDB system must be modular as many different modules are dependent upon
the CDB, and adding one of these modules (i.e. my CDB Browser) should only
increase its usability without impacting other existing modules.

The CDB must also provide a clean interface as its functionality will be accessed
from different platforms and programming languages; any application can make
use of the CDB to get access to configuration information.

2.2 CDB Architecture

The configuration parameters for all DOs are persistently stored in the
Configuration Database. There are four issues related to the problem addressed by
the CDB:

1. Input of data by the user: Easy and intuitive data entry methods are needed.

2. Storage of data.

3. Maintenance and management of the data: the configuration data changes
with time and has to be maintained under control.

4. Loading the data into the ACS Activators: at run time the data has to be
retrieved and used to initialize the DOs.

The main objective of the CDB Architecture is to keep these four issues as
decoupled as possible.
The high-level architecture 1s based on three layers (Ref [5], Figure 4):

® See Chapter 2.3 for more details on XML configuration files.

-9.-

1. The Database itself: the database engine used to store and retrieve
configuration data. It may consist of XML files in a hierarchical file system
or it may be a relational database.

2. The Database access layer (DAL): the DAL is used to hide the actual
database implementation from applications. In this way it is possible to use
the same interfaces to access different database engines.

3. The Database client that stores and retrieves data using the DAL.

3- Database client

Data clients CDB Administration

_Fitear(fj-only Read-write admin,
ertace interface
2- Database Access Layer\ /

(DAL)
DAL/CDB
Server
A
1- Database engine
N
Database

Figure 4: Three-tier database architecture.

2.2.1 The Database Access Layer (DAL)

In the DAL architecture the data is accessed through Data Access Objects (DAO);
each record in the configuration database is represented to the client as a DAO.
When a request is sent to the DAL server, this first looks into its cache of DAOs.

-10 -

If the requested DAO is found the request is passed to it and the DAO returns the
result. If the DAO is not found the DAL server will first create the DAO.

To clarify the concepts of DAL and DAO lets look at how the CDB Browser
retrieves configuration data from the CDB.

The Browser uses a DAL server implemented as a JAVA CORBA server; namely
the JDAL. When the CDB is started the JDAL scans for all schema (XSD4) files
and adds them as external schema location files. The reason for this is the fact that
JDAL ensures that all data in the system will be checked against their schema.

The jDAL also initializes the XML parse factory, and configures the XML parser
to validate each XML file against its corresponding XML schema. If the parser
does not understand the schema language an error message is issued and XML
entries will be ignored. Now that the jDAL is running requests can be made to the
server. When a request is sent to the jDAL server this first checks to see if the
requested XML entry exists. Should this not be the case an exception is raised
(RecordDoesNotExist). If the XML file is found, the parsing starts against the
corresponding schema. In case a parsing error occurs jDAL throws an XML error
exception so that the client can see what went wrong.

If the parsing was successful, jJDAL provides an interface to get access to the
corresponding DAO. There are three ways to get access to a DAO (see Reference
5). In the case of the CDB Browser once the record in the CDB is found, the DAL
creates the interface to the DAO and returns the complete data serialized as an
XML string5 .

2.3 XML Configuration Files

As mentioned in Chapter 1.2 the CDB stores configuration parameters for exactly
one Distributed Object (DO). These data are organized in XML files under a
specific directory in the jJDAL implementation. There exists a one-to-one mapping
between the path of the XML configuration file and the name of the DOs (ref. [5]).
For example, configuration data for the object:

/ALMA/Antennai/Motor3
can be found in the file:

$SOMEWHERE/ALMA/Antennal/Motor3/Motor3.xml
Each directory representing an object includes an XML file with the same name as
the object (e.g. Motor3) containing the data for the object itself and sub-directories
for hierarchical sub-objects.

* XSD: XML Schema Definition.
5 To view an XML string see chapter 2.3.

11 -

This i1s how a Database Configuration file for an example DO called LAMP looks
like:

<?xml version='1.0' encoding='UTF-8"‘?>
<LAMP id="0">
<brightnegs id="1"
description="brightness"
units="_"
min_value="-1.7376931348623157E+308"
max_value="1.7976931348623157E+308"
default_timer_trig="10000000"
min_timer_trig="10000"
min_delta_trig="0"
default_value="0.0"
graph_min="-1.7976931348623157E+308"
graph_max="1.7976931348623157E+308"
min_step="0.0"
archive_dgelta="0"
format="%9.4£f"
resolution="65535"
archive_priority="3"
archive_min_int="0"
archive_max_int="0">
</brightness>
< /LAMP>

The property of the LAMP is: brightness. Also its attribute names and values are
given in the above example.

For every XML data instance there exists one corresponding XML schema file
used for validation (Ref [3)).

The physical implementation of a DAO can be different that a XML file, for
example it could be stored in a Reletional database. In this case the DAL server
implemention still provides the same exsternal representation of the configuration
of a DO, also if the physical implementation of the configuration data is changed.

S 12 -

3. The CDB Browser

3.1 The CDB Browser

>/ -~ CDB BROWSER
. Flle Administration
i e bt st

I Refresh CDB Tree I

CURRENT LOCATION: |/aima/MOUNTS factEi

root
@-@H ama

¢ 3 LamP1

| brightness

& [MOUNT1

©- [MOUNT?2

@ [MOUNT3

- (T MOUNT 4

@ (] MOUNTS
= acaz
lacel!
= cmoaz
E cmaE

©- [MOUNT6

©- (=3 PBEND_8.01

& (1 PBUMP_6_01

¢ (=1 PBUMP_8_02
] readback
= current
(] status

©-[C] TEST_PS_L

© (3 TEST_PS.10

@ [TEST_PS_11

KT

o1

format
description
units

archive_max. it

Save Changes to Table [Reset |
Table View |
ATTRIBUTE NAMES [ATTRIBUTE VALUES
icl 4
alarm_highon 0.0 L
alarm_low.on 0.0 S STy
1D ST TN SR
0.0 : Le T
110000000 i R
110000000 g
S| TOQOOIN el St 35 B
TRl IR Y L
0.0

-1.7976931348623157E+308

11.7976931348623157E+308

0.0
9
%9.41

65535
3
0
0

Refresk COB Tree... done.

==> ERROR' No XMLtab selected
MESSAGE: Trying 10 save XML fite...
MESSAGE: XML string saved successfully

Figure 5: The Browsers GUL

The CDB Browser GUI is divided into three sections: the CDB tree (left side), the
tabbed pane window (right side) and the message text area (bottom), with an
addtitional button (Refresh CDB Tree) and display field on top ({ocation bar).

- [3-

3.2 Requirements

Functional Requirements

The CDB must be accessed via DAL CORBA interface.

The browser must show the object oriented database structure and more in
particular its tree like structure.

The browser must show the plain XML configuration files as they are
stored 1nside the CDB, using queries towards the Database Access Layer.
The configuration data inside the XML files must be extracted and made
available into an editable table with the following two columns: Attribute
Names and Attribute Values. Only the Attribute values can be edited.

After changes to the table are made a validation must follow, whereby the
XML string is updated and validated towards its corresponding XML
Schema. Finally the user must be informed if the validation was completed
successfully.

The user must not only be able to save changes to the table, but also be
allowed to reset its values to its original status.

It must be possible to save the XML configuration strings into user defined
tiles. Saving is possible only if all changes to the table have been validated.
Pop-up dialogs are used to warn the user about actions that are not allowed
in a given context, for example if the user selects a node in the CDB tree
without having saved the changes made to a previous node.

The Browser must provide a ‘Reset Tree’ button to re-initialise its CDB
tree, without the need to shut-down and restart.

Performance Requirements

There must not be any noticeable delay in displaying CDB data.

GUI! look and feel

The browser panels must have a look and feel consistent with the existing
Object Explorer (See Fig. 2 in Chapter 1.3).

There must be three sections inside the browser window. The left panel
must display the database tree structure (same as in the Object Explorer).
The right panel must display either the XML string or the table of attributes
names and values extracted from the configuration file (a tabbed pane
should be used for this). At the button of the GUI there must be a logging
and waming window.

- 14 -

e Provide a Reset CDB Tree button (located above display of tree structure).

e Display the selected node path inside a location bar Jocated at the very top
of the GUI (similar to address bar in Internet Explorer or Netscape).

e When table view is active Save Changes and Reset buttons should be
visible.

Standards to be used

¢ Implement Browser in JAVA
e Use existing cdb libraries to access the CDB DAL via CORBA.

Design constraints

In order to run the CDB Browser the services provided by the Database Access
Layer (DAL) must be activated (Ref. [2]). The command for starting the DAL is:

$ cdbjDAL
After DAL activation (terminated with message: JDAL is ready and waiting...)
the command to start the CDB Browser can be given (normally in a different

window):

$ cdbBrowser

- 15 -

3.3 Use Cases

The CDB Browser requirements can be iliustrated by the following USE Cases.
The Use Case layout used below is the one utilized by the ACS Use Cases (Ref.

[13]).

3.3.1 Browsing through the CDB Tree
Priority: Critical
Performance: Respond to users input in near real time.

Frequency of use: expected to be used every time the CDB Browser is started.

Preconditions: jDAL must be active (so that requests to the DAL server are
possible).

Basic Course:

Note: all steps on this course are created to help the development and testing of the
CDB Browser.

There are three events on the CDB Tree that the user can activate, namely the ‘tree
expanded’ event, the ‘tree collapsed’ event and the ‘value changed’ event.

What follows is a step by step description of what happens when the user browses
the CDB Tree and activates one of the three events.

The tree expanded event:

1. If the expanded node is an instance of the ‘CDBTreeNode’ class, than a
request is sent to the JDAL server to check if the requested XML entry
exists.

2. If the record is not found a ‘RecordDoesNotExist’ exception is raised.

3. If the record is found the JDAL provides an interface to get access to the
corresponding DAO, which returns the requested XML string and the
linked hash map. Now the tabbed pane is created (see Chapter: 3.4.2 for
more details).

4. The created tabbed pane is ONLY displayed (on the right side of the
browser) if no changes from the previous visible tabbed pane are left
unsaved (which means that the two buttons on top of the tabbed pane are
disabled).

216 -

5. If the created tabbed pane is displayed the location bar gets updated with
the path of the just expanded node.

The tree collapsed event:
The event is called whenever an item in the tree collapsed (children are not
shown any longer). The program updates the displayed tree and otherwise
ignores the event.

The value changed event:

1. First check that the previous tabbed pane (if one was visible) is saved. If
this is not the case the user is not allowed to select a new node (a warning
pop-up dialog becomes visible).

2. If no changes are left unsaved the four objects representing the current
context’ are updated with the components of the tabbed pane that
correspond to the selected node. Finally the location bar gets updated with
the path of the selected node.

® See Chapter 3.4.2 for more details on how to build a tabbed pane.

-17-

3.3.2 Editing and resetting the XML String

Priority: Critical.

Performance: Respond to users input in near real time.

Frequency of use: Perform this Use Case every time the user edits the XML string

or presses the Reset button.

Preconditions: The user selects the ‘XML View’ inside the Tabbed pane. The two

buttons on top of the table are disabled.

Basic Course:

Note: All steps on this course are created to help the development and testing of
the CDB Browser.

1.

2.
3.

As soon as the user edits the XML string the program stores (in a temporary
string) the value of the XML string before editing occurred.

The two buttons (‘Save Changes’ and ‘Reset’) get enabled.

Now the user i1s not allowed to select other nodes, as well as to reset the
CDB tree (by pressing the ‘Reset CDB Tree’ button), save the XML string
(Menu -> Save XML String), or close the Browser.

The user has the choice to save the changes or resetting the changes to their
initial value.

e Save Changes: see Use Case ‘Saving the XML string’.

e Reset XML string: no interaction with the jDAI is needed. The
temporary string that stored the XML string as it was before editing
started (see point 1) is copied to the XML tab. (method:
selectedXMLArea.setText(oldXML)).

The two buttons on top of the table get disabled.

- 18 -

3.3.3 Saving the XML String

Priority: Critical.
Performance: Respond to users input in near real time.

Frequency of use: Perform this Use Case every time the user presses the ‘Save
Changes’ button.

Preconditions: The user has edited the XML string and the two buttons on top of
the tabbed pane are enabled.

Basic Course:

Note: All steps on this course are created to help the development and testing of
the CDB Browser.

1. If the user presses the ‘save changes’ button the edited XML string is sent
to the DAL server using ACS function that takes as parameter the XML
string and validates it against the corresponding XML schema.

e If validation fails an error message will be returned and the XML string
will be reset (see Use Case: Editing and resetting the XML string).

e If validation succeeds, the CDB tree has to be fully refreshed and the
buttons on top of the tabbed pane get disabled.

Issues to be determined or resolved:

At this point it i1s not clear what kind of error message will be returned if
validation fails. This requires an ACS function that takes as parameter an XML
string and validates it against the corresponding XML schema. As this function is
under implementation by the ACS team, the validation functionality is not
implemented yet.

- 19 -

3.3.4 Editing and resetting the CDB attribute values inside a table.

Priority: Critical.

Performance: Respond to users input in near real time.

Frequency of use: Perform this Use Case every time table editing occurs.

Preconditions: The user selects the “Table View’ inside the Tabbed pane. The two

buttons on top of the table are not enabled.

Basic Course:

Note: All steps on this course are created to help the development and testing of
the CDB Browser.

What follows is a step by step description of what happens when the user starts
editing a row inside a table.

1.

As soon as the user starts to edit data in the table the two buttons on top of
it, namely the ‘Save Changes to Table’ and ‘Reset’ button become enabled.

All initial values of the rows being edited are stored (if the user wants to
reset the values).

The program also stores the number of all rows being edited so that data in
these rows can be displayed in red colour to remind the user which rows are
changed.

At this point the user is not allowed to do any other action than editing
more rows, saving the changes or resetting the table.

Let us consider the case when the reset button is pressed: at this point all
the values saved in point 2 are set in the table. Finally the two buttons on
top of the table become disabled and the data that was displayed in red (see
point 3) turns to its initial black colour.

If the user presses the Save button the changes inside the table are copied
into the corresponding XML string. Now the XML string is sent for
validation (see Use Case 3.3.3). If some changes to the table cannot be
copied to the corresponding XML string, than an error message is printed in
the message text area at the bottom of the Browser.

=20 -

3.4 Program Design

3.4.1 Model View Controller (MVC)

Model View Controller is a design pattern that is especially suitable for GUI
programming; it separates application data (contained in the Model) from the
graphical presentation components (the view) and input-processing logic (the
controller).

e MODEL: The Configuration Databas e (CDB).
* VIEW: Graphic al repres ent ation of the model (tree and tabbed pane).
* CONTROLLER: The mouse click button (tree s election or ext ension).

L =
1
Mod el
<>
3

1. Model data gets exposed.

2. View passes events to the Controller.
3. Contraller notifies Model (XML Record is ret urned if appr opriate).

Figure 6: The Model View Controller.
The Model:

In the case of the CDB Browser the Mode! is the Configuration database that
contains XML files that the application is reading (see Chapter 2.3). Anytime the

221 -

Model 1s changed (by editing its data) the View of the Model is notified so that it
can change the visual representation of the Model on the GUIL

The View:

The View implements the visual display of the model through a tree and its
corresponding tabbed pane.

In the case of the CDB Browser the View is implemented in the class Browser.
The class is responsible for initialising and placing all components inside the GUL.

The Controller:

The Controller receives all input events from the user and translates them into
possible changes to the View. In the case of the CDB Browser the tabbed pane at
the right side of the GUI will change.

In the CDB Browser the Controller is implemented in the class CDBLogic.

The class handles all the input events from the user and translates them into
possible changes on the GUIL

There are two events that the Controller can receive: The Tree Expansion Event,
which occurs when the user expands the tree and the Tree Selection Event (see
Use Case 3.3.2), which occurs whenever the value of the selection changes.

The advantages of having Model and View separated are:

e The View (the Browsers GUI) uses multiple Models, as there exists multiple
instances of the Configuration Database that have to run on the same View.

e The Model (or configuration data) needs multiples Views as there are many
applications that visualize the structure of the same CDB instance in d

e ifferent context.

¢ Another important advantage that can be deduced from the two above 1s
easier software maintenance; the Model and the View implementation can
be modified separately. The View can be changed without changing the
Model, and vice-versa.

-22 -

3.4.2 How to set up the Tabbed Pane

It is important to understand a few points about the logic that is behind the tabbed
panes visible on the right side of the Browser (see figure below).

Table tab with corresponding

table model XML tab (selectedXMLArea)
(selectedTable +
selectedTableModel)
[Tabte View XML View. |
Yarmlowon 00000000023 00 -
arm_towoft 00000 i, v N P
alarm_high_on 1990.0
alum_high_off RS | TR - -
detaaft timer.trig - 10000000 |
min_timer_ g 100000 i
min_defta trlg — 0.01526 —]
aefauttvave ~ noa]
graph_min Eo,q I
graph max - 10000
tabbed pane < min_step ~ lo.01528
description Readback
(selectedTabbedPane) !9_%11, rgﬂ_.f -
zn
resolution N " les535
| I 7
archive_delta 100.0
archive_prodty 5
archive min_int |p000000
archive_max_int 100000000
\1Ium‘tlmer_1rlu 10000000

Figure 7: Components of the Tabbed Pane.

Each tabbed pane consists of at most three components (see figure 7); the tabbed
pane itself, the XML tab (can be null) and the rable tab (can be null). For the table
tab component a CDBTableModel was developed. For each table an instance of
the CDBTableModel is used.

Once the user selects a node in the CDB tree and the DAL server successfully
returns its record, a tabbed pane (as shown in Fig. 7) is created and made visible
on the right side of the browser. Should the user later on reselect the same node
the previously created tabbed pane is re-used and made visible, no query is sent to
the DAL server this time and no tabbed pane is created. For this reason each
component (plus table model) is stored into hash maps; components will be
retrieved and set visible when the user reselects the same node.

To simplify the switching between the tabbed panes when the user changes
selection the program executes its operations using four objects, namely:

1. the ‘selectedTabbedPane’ object for the active (visible) tabbed pane .

223 -

2. the ‘selectedXMLArea’ object for the active (visible) XML tab.
3. the ‘selectedTable’ object for the active (visible) table tab.
4. the ‘selectedTableModel’ object for the active table model.

These objects bave to be updated every time the user changes selection in the tree
to set the current context. As these objects are used by the entire program it is not
necessary to change the context in every class, but it is enough to update the four
objects once.

Precondition: The request to the jDAL interface was successful, and the
corresponding DAO returns:
1. The corresponding XML String (can be null),
2. The attribute names and values stored into a Linked Hash Map (which
can be null).

What follows is a step by step description on how the tabbed pane is created once
the DAO returns the XML string and/or its attribute names and values.

1. The first step is to create a ‘JTabbedPane’ instance.

2. Now with help of the linked hash map (see precondition) the program tries
to create an instance of ‘CDBTable’ and a ‘CDBTableModel’. There are
two cases to consider:

e If the linked hash map contains the attribute names and values of the
selected node, then instances of ‘CDBTable’ and ‘CDBTableModel’ are
created and stored. The created table is added to the tabbed pane (the
‘Table View’).

e If the linked hash map 1s empty, than an empty JTextArea is created and
stored instead of a CDBTable object. The text area is added to the
tabbed pane (‘Table View’), but is not activated, which means that the
user cannot select the ‘Table View’. No CDBTableModel object is
created; instead a null value will be stored.

3. Now with help of the XML string the XML tab has to be created. Again
there are two cases to consider:

e If the XML string is successfully returned a JTextArea 1s created
containing the XML string. The JTextArea is added to the tabbed pane
and stored.

e If the MXL string is empty an empty JTextArea is created and stored.
The JTextArea is also added to the tabbed pane, but it is not activated.

4. At this point the tabbed pane contains two tabs and it is stored into the hash
map.

-4

4. Conclusion

In order to implement the CDB Browser I first had to study the ALMA ACS
software and in particular the Configuration Database. This was a necessary
condition; to fully understand the environment in which I had to develop and
integrate the CDB Browser.

Second I had to examine the existing Object Explorer as a model for my Browser,
as the CDB Bowser was required to have the same look and feel as the Object
Explorer.

During implementation of the CDB Browser I had to deal with CORBA and XML.
Mostly I improved my knowledge of the Java Swing library. Important was also to
learn how to write professional documentation and user’s manual for a specific
product.

Interesting for me was also to see how professional software developers work and
co-operate with each other to produce a very complex package like ACS.

-25-

5. References

[1] Chiozzi G., CORBA-based Common Software for the ALMA project.

ICALEPC 2001, San Jose 2001.

http:///www.eso.org/%7Ecchiozzi/AlmaAcs/OtherDocs/spie2002.pdf

[2] Chiozzi G., Sekoranja M. (2002), ALMA Common Software Overview. ALMA
documentation.

[3] Vitas D. Zagar K. (2002), CDB Tutorial. Configuration DataBase CDB.
ALMA documentation.

[4] Kadunc M., Tkacik K. (2002), Object Explorer, ALMA User’s Manual.

[5] Chiozzi G. (2002), ACS Configuration Database, ALMA documentation.

[6] Sommer H. (2003), ACS Java Component Programming Tutorial, ALMA
programmer’s manual.

[7]) Chiozzi G. (2003) Gustaffson B, Jeram B, ALMA Common Software

Architecture, ALMA documentation.

[8] Chiozzi G., Fugate D., Gustafsson B., Jeram B., Lopez B., Sivera P,

Zamparelli M. (2002), ALMA Common Software Training-Course. Session Ic.

ALMA training

[9] Chiozzi G., and others, Common Software for the ALMA project, ALMA

documentation.

ACS Web pages:

[10] The ALMA Web Page: http://www.eso.org/projects/alma

[11] The ACS Web Page: http://www.eso.org/~gchiozzi/AlmaAcs/index.html

[12] The ACS 2.0 Online Documentation:
http://www.eso.ore/~ochiozzi/AlmaAcs/Releases/ACS 2 0 Docs/index.html

[13] Use Cases: hitp://www.nrao.edu/~dshepher/alma/usecases

[14] Java Swing tutonal: http://java.sun.com/docs/books/tutorial/uiswing

[15] JavaDocs: http://java.sun.com/j2se/javadoc/index.html

[16] Object Management Group “CORBA Specification™ http:/www.omg.org

- 26 -

6. Attachments

6.1 Users Manual
6.2 Documentation

6.3 Software Code

-7 -

