
nicola migliorini

M O D E L T O T E X T T R A N S F O R M AT I O N : F R O M
U M L S TAT E C H A RT S T O S C X M L B A S E D

C O N T R O L A P P L I C AT I O N S

U N I V E R S I TÀ D E G L I S T U D I D I F E R R A R A
FA C O LTÀ D I I N G E G N E R I A

corso di laurea in ingegneria elettronica

M O D E L T O T E X T T R A N S F O R M AT I O N : F R O M U M L
S TAT E C H A RT S T O S C X M L B A S E D C O N T R O L

A P P L I C AT I O N S

Laureando
Nicola Migliorini

Relatore
Prof. Marcello Bonfé

Correlatori
Dott. Gianluca Chiozzi

Ing. Luigi Andolfato

Anno accademico 2009/2010

Nicola Migliorini: Model to Text Transformation: from UML Stat-
echarts to SCXML based control applications, Corso di laurea in
ingegneria elettronica, Università degli studi di Ferrara © March
2011

supervisors:
Prof. Marcello Bonfé
Dott. Gianluca Chiozzi
Ing. Luigi Andolfato

Forget about the troubles of the past and live in the present.

Hakuna matata
— Timon & Pumbaa

Dedicated to the loving memory of my father.

1951 – 1995

A B S T R A C T

That of UML statecharts is a very flexible formalism. UML state-
charts are used to describe the logic of a software system. They
are very useful in designing phase of the system and helpful in
the production of the documentation.

In this work I propose the realization of a code generator
developed at ESO. The tool take as input a UML state machine
and the generated code will be the skeleton of an application.
Developers must complete the application with hand-written
code that bound the generated code to the desired target platform.
This kind of approach promote the possibility to reuse models to
develop applications for different platforms.

S O M M A R I O

Quello degli UML statecharts è un formalismo molto flessibile.
Gli statecharts vengono utilizzati per descrivere la logica di un
sistema software. Sono molto utili in fase di progettazione e di
supporto nella realizzazione della documentazione.

In questo lavoro presento la realizzazione di un code gen-
erator sviluppato presso ESO. Il code generator è in grado di
produrre un’applicazione a partire dal modello UML di una
macchina a stati finiti. Il codice generato costituisce lo scheletro
di un’applicazione che lo sviluppatore dovrà completare con la
particolare implementazione che lega il tutto alla piattaforma
per cui si sta sviluppando. Questo tipo di approccio garantisce e
promuove la possibilità di riutilizzare i modelli per sviluppare
codice su diverse piattaforme.

vii

A C K N O W L E D G M E N T S

Many thanks to everybody who helped me in this work. First of
all to Gianluca Chiozzi and Luigi Andolfato from whom I learned
a lot. Heiko Sommer, Robert Karban, Reynald Bourtembourg, and
all the people at ESO for the help and the good time spent while
doing my work. Many thanks to my professors, Sergio Beghelli
and Marcello Bonfé, for believing in my abilities and giving me
this great opportunity.

A special thanks to my mom, my brother and all my family
that has always supported me in this long path. And thanks to
Petra that has always been at my side, believing in me even in
the hardest moments.

Finally, many thanks to all the great new and old friends who
have accompanied me this far.

ix

C O N T E N T S

i understanding the topic 1

1 introduction 3

1.1 Objectives of this work 3

1.2 ESO 4

1.2.1 The organization 4

1.2.2 Main projects 4

1.3 Structure of the document 9

2 model driven development 11

2.1 Why we model 11

2.2 Models 13

2.3 The MDA approach 13

3 state machines 17

3.1 Statecharts 18

3.2 UML: a very general purpose definition for State
Machines 22

3.3 SCXML: a well defined standard 23

4 used tools 27

4.1 MagicDraw 28

4.2 Eclipse 29

4.3 EMF 30

4.3.1 Generator Workflow Component 31

4.3.2 Xpand 31

4.3.3 Check 32

4.3.4 Xtend 33

4.4 Apache SCXML and the Apache engine 33

ii developing the solution 35

5 model transformation 37

5.1 Problems 37

5.2 A proposal for UML to SCXML mapping 38

5.3 Comparison 39

5.3.1 Simple state 39

5.3.2 Initial pseudostate 40

5.3.3 Final pseudostate 41

5.3.4 Entry and exit actions 42

5.3.5 Transition 42

5.3.6 Internal Transition 43

5.3.7 Superstates and substates 44

5.3.8 History pseudostate 45

5.3.9 Activities 46

5.4 Custom actions 47

5.5 Summary 47

xi

xii contents

6 the code generator 49

6.1 The Generic State Machine Engine Architecture 49

6.1.1 Model Independent State Machine Engine 50

6.2 Implementation 52

6.2.1 Designing a model with MagicDraw 52

6.2.2 Transforming the model 53

6.2.3 Check 56

6.2.4 Xpand 58

6.2.5 Xtend 61

6.3 A running example: MasterComponent 63

6.3.1 Available substates 64

6.3.2 Substates of Online and Operational 65

6.3.3 A few modifications 65

6.3.4 The generated files 66

7 conclusions and future work 69

7.1 Targets achieved 69

7.2 What to do next? 70

iii appendix 71

a code listings 73

a.1 The code generator 73

bibliography 75

L I S T O F F I G U R E S

Figure 1 The VLTI Array on Paranal mountain. 6

Figure 2 The ALMA array at the high-elevation Ar-
ray Operations Site. 7

Figure 3 A render of the E-ELT project. 8

Figure 4 OMG’s Model Driven Architecture from
OMG website[23]. 15

Figure 5 A simple state machine 17

Figure 6 A simple statechart 18

Figure 7 States and transitions 19

Figure 8 Use of a composite state 19

Figure 9 History pseudo-states. 20

Figure 10 Use of orthogonal regions 21

Figure 11 Use of actions and activities. 21

Figure 12 A collage of UML diagrams. 22

Figure 13 Stopwatch example from Apache Commons
website. 23

Figure 14 A screnshot from MagicDraw. 28

Figure 15 An overview of the Eclipse architecture. 29

Figure 16 Structure of an Xpand file. 32

Figure 17 Initial pseudostate 40

Figure 18 Which substate is the first entered? 41

Figure 19 Final pseudostate 42

Figure 20 A transition with all its elements. 43

Figure 21 A configuration not supported by the Apache
SCXML engine. 44

Figure 22 The workaround proposed. 45

Figure 23 The history element with a default state. 46

Figure 24 Generic State Machine Engine Data Flow[12]. 49

Figure 25 This activity diagram represents the work-
flow of the code generator. 54

Figure 26 The MasterComponent State Machine. 63

xiii

L I S T O F TA B L E S

Table 1 State 39

Table 2 Initial pseudostate 40

Table 3 Final pseudostate 41

Table 4 Didascalia elenco tabelle 42

Table 5 Transition 42

Table 6 Internal transition 43

Table 7 Superstates 44

Table 8 Substates 45

Table 9 History pseudostate 45

Table 10 Activities 47

L I S T I N G S

Listing 1 SCXML file for the stopwatch example 25

Listing 2 Workflow file 55

Listing 3 constraints.chk file 56

Listing 4 Root.xpt file 58

Listing 5 The Root block in FSMSCxml.xpt 58

Listing 6 The ExploreState block in FSMSCxml.xpt 59

Listing 7 The ExploreCompState block in FSMSCxml.xpt 59

Listing 8 The ExploreOrthState block in FSMSCxml.xpt 60

Listing 9 The ExploreActions block in FSMSCxml.xpt 61

Listing 10 Some functions from ScxmlUtil.ext file 61

A C R O N Y M S

ACS ALMA Common Software

ALMA Atacama Large Millimeter/Sub-Millimeter Array

ATs Auxiliary Telescopes

xiv

acronyms xv

CWM Common Warehouse Metamodel

CASE Computer Aided Software Engineering

E-ELT European Extremely Large Telescope

ESO European Southern Observatory

GSME Generic State Machine Engine

MDA Model Driven Architecture

MDD Model Driven Development

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

PIM Platform Independent Models

PSM Platform Specific Models

SDD Software Development Division

UML Unified Modeling Language

UTs Unit Telescopes

VLT Very Large Telescope

VLTI Very Large Telescope Interferometer

XMI XML Metadata Interchange

Part I

U N D E R S TA N D I N G T H E T O P I C

1
I N T R O D U C T I O N

Contents
1.1 Objectives of this work 3
1.2 ESO 4

1.2.1 The organization 4

1.2.2 Main projects 4

1.3 Structure of the document 9

In the 60 years of history of the programming languages, an
always constant trend has been the will to raise the level of ab-
straction. First we passed from programming codes to low level
languages like Assembly. Then came out the first procedural
languages (FORTRAN and COBOL), followed by the functional
languages like LISP. Coupled with the evolution of the hardware,
software became more and more complex. The dimensions of
applications grew, highlighting the limits of the functional ap-
proaches. After the structured paradigm of PASCAL and C, the
next step was the incremental development: with the collabo-
ration of teams of developers, small pieces of code were put
together. This was the base for the object oriented paradigm. Code
reuse was one of the main targets[13].

Nowadays a medium application consist of hundreds of thou-
sand (if not millions) of line of code. Is not thinkable to write it
without the use of tools and an appropriate approach. Again the
trend is to raise the level of abstraction. With the Model Driven
Development (MDD) approach, developers have appropriate tools
to write and maintain huge applications. Furthermore MDD of-
fers a good support in developing documentation. With the help
of automatic code generation repetitive tasks are avoided by de-
velopers. They can focus on the logic of the application, thinking
about the big picture, and letting the code generator to deal with
the implementations details.

With this kind of strategies and a correct approach, time is
saved and resources are used in a better way.

1.1 objectives of this work

This project aims to the creation of a reusable State Machine
Code Generator. The main purpose is to have a state machine
implementation that allows execution and control of the state ma-
chine logic. As the code generator must be reusable on different

3

4 introduction

platform the choice of using open and well defined technologies
like CORBA, UML and XML is obvious. The target is to obtain
a running application starting from a state machine model. The
obtained application will be the skeleton on which developers
will build the software with the implementations details.

1.2 eso

1.2.1 The organization

The European Southern Observatory (ESO) is an intergovern-
mental research organization for astronomy, composed and sup-
ported by fifteen countries. Established in 1962 with an objectiveSince December

2010 Brazil is also a
participant

to provide state-of-the-art facilities and access to the sky of the
southern hemisphere to European astronomers, it is famous for
building and operating some of the largest and most techno-
logically advanced telescopes in the world, such as the New
Technology Telescope located at La Silla Observatory, the tele-
scope that pioneered active optics technology, and the VLTI (Very
Large Telescope Interferometer) located at Paranal.

Its numerous observing facilities have enabled many astro-
nomical discoveries, and produced several astronomical catalogs.
Among the more recent discoveries is the discovery of the farthest
gamma-ray burst and the evidence for a black hole at the center of
our Galaxy, the Milky Way. In 2004, the VLT allowed astronomers
to obtain the first picture of an extra-solar planet, orbiting a
brown dwarf 173 light-years away. The VLT has also discovered
the candidate farthest galaxy ever seen by humans[10].

1.2.2 Main projects

All ESO observation facilities are located in Chile (because of the
need to study the Southern skies and the unique atmospheric
conditions of the Atacama Desert, ideal for astronomy), while
the headquarters, with the scientific, technical and administrative
center of the organization, are located in Garching bei München,
Germany. ESO operates three major observatories in Chile’s Ata-
cama desert, one of the driest places on Earth:

• La Silla Observatory, which hosts eighteen telescopes (three
of them are still operated by ESO for use by the astronomical
community), a 3.6 horseshoe mount telescope(mostly used
for infrared spectroscopy and for the search of extra-solar
planets) and other less important facilities

• Paranal Observatory, which hosts the Very Large Tele-
scope,the VISTA telescope and the italian VST (VLT Survey
Telescope)

1.2 eso 5

• Llano de Chajnantor Observatory, which hosts the APEX
(Atacama Pathfinder Experiment) submillimeter telescope
and where ALMA, the Atacama Large Millimeter Array,
is currently under construction in a collaboration between
East Asia (Japan and Taiwan), Europe (ESO), North America
(USA and Canada), and Chile.

Each year, about 2000 proposals are made for the use of ESO
telescopes, requesting between four and six times more nights
than are available. ESO is one of the most productive ground-
based observatories in the world, which annually results in many
peer-reviewed publications: in 2009 alone, more than 650 refereed
papers based on ESO data were published. Moreover, research
articles based on VLT data are in the mean quoted twice as often
as the average. The very high efficiency of the ESO’s "science
machines" now generates huge amounts of data at a very high
rate. These are stored in a permanent Science Archive Facility at
ESO headquarters. The archive now contains more than 1.5 mil-
lion images or spectra with a total volume of about 65 terabytes
(65,000,000,000,000 bytes) of data[10].

ESO has also hosted the European Coordinating Facility for the
Hubble Space Telescope, a collaboration between ESA and NASA.
The HST-ECF has been a long-term, space-based observatory. In
20 years of activities, in many ways Hubble has revolutionized
modern astronomy, by not only being an efficient tool for making
new discoveries, but also by driving astronomical research in
general. The ST-ECF has closed and ceased operations on 31

December 2010.

1.2.2.1 VLTI

The Very Large Telescope (VLT) at Cerro Paranal is ESO’s premier
site for observations in the visible and infrared. The Very Large
Telescope Interferometer (VLTI) consists in the coherent combi-
nation of the four VLT Unit Telescopes and of the four movable
Auxiliary Telescopes.The VLTI provides both a high sensitivity
as well as milli-arcsec angular resolution using baselines of up to
200 meters length.

The four 8.2 meters Unit Telescopes (UTs) and the four 1.8
meters Auxiliary Telescopes (ATs) constitute the light collecting
elements of the VLTI. The UTs are set on fixed locations while
the ATs can be relocated on 30 different stations. The telescopes
can be combined in groups of two or three. After the light beams
have passed through a complex system of mirrors and the Delay
lines, the combination at near- and mid-infrared is performed
by the instruments. A complex and high performance dual-feed
system that allows Phase Referenced Imaging and Micro Arcsec-
ond Astrometry on the VLTI will be available soon. Due to its

6 introduction

Figure 1: The VLTI Array on Paranal mountain.

characteristics, the VLTI has become a very attractive mean for
scientific research on various objects like many stars in the solar
neighborhood or extragalactic objects[9].

The VLT Common Software is the development software infras-
tructure platform for VLT applications. It provides the building
blocks for all applications and has been used by all internal and
external development teams. The size of the VLT control software,
including telescope control software, is about 1.5 million lines
of code and might become about 3 million lines when the full
instrumentation complement is ready [15]. The VLT common
software consists of a layer of software over the Unix operating
system, in the case of workstations and on top of the VxWorks
operating system, for the Local Control Unit (LCU) microproces-
sors. It provides mainly common services, like an architecture
independent message system, a real-time database for all tele-
scope and instrument parameters, error and logging systems and
a large number of utilities and tools. The languages used are C
(lower layers) and C++ (and Object Oriented concepts) on the
workstation side, while the code running on the microprocessors
is written exclusively in C. The User Interfaces on the worksta-
tions are built using the VLT Panel Editor, which is based on
Tcl/Tk[11].

1.2.2.2 ALMA

Atacama Large Millimeter/Sub-Millimeter Array (ALMA) is a
joint project between astronomical organizations of Europe (ESO),

1.2 eso 7

North America (NRAO), and Japan (NAOJ). ALMA is a large
radio-astronomical project that will consist of at least 50 twelve
meter antennas operating in the millimeter and sub-millimeter
wavelength range, with baselines up to 10 kilometers. It will be
located at an altitude above 5000 meter on the Chajnantor plateau
in the middle of the Chilean Atacama desert. The science com-
missioning of ALMA is starting now, and the first astronomical
observations are scheduled for the end of 2011. At the moment ALMA will be

comprised of a giant
array of 50
12-meters antennas

Figure 2: The ALMA array at the high-elevation Array Operations Site.

7 antennas are aleady in place and the project goes on at a fast
pace.

ALMA Common Software (ACS) is an Object Oriented CORBA-
based middleware software framework for science facilities that
handles communication between distributed objects. ACS was
designed and developed to support the complex control require-
ments of ALMA radio telescopes, but can be used to support
control and data flow for any system with similar performance
requirements.

ACS provides a set of packages containing development tools,
and common services and patterns needed to build and deploy
object oriented and distributed systems. Most of the features
provided by ACS are implemented using off the shelf components.
ACS itself provides "glue layers" between these components,
hiding all the details of the underlying mechanisms and complex
CORBA features from the developer.

As stated in [18] the ACS architecture is based on the Component-
Container model. Containers provide an environment for several
portions of software called Components. They also provide sev-
eral services to, and manage the lifecycle of, the Components.
This way, components developers can focus on domain problems
rather than on software engineering issues.

There are a number of projects that have decided to base their
system on ACS, like the Atacama Pathfinder Experiment, the
Spanish OAN 40 meters radio telescope, the Sardinian Radio
Telescope in Italy, the Hexapod Telescope in Chile or the ANKA
Synchrotron in Germany. Other projects are evaluating this possi-
bility [7].

8 introduction

1.2.2.3 E-ELT

Figure 3: A render of the E-ELT project.

The European Extremely Large Telescope (E-ELT) project aims
to provide European astronomers with the largest optical-infrared
telescope in the World. With a diameter of 42 meters and being
fully adaptive, the E-ELT will be more than one hundred times
more sensitive than the present-day largest optical telescopes. The
E-ELT will vastly advance astrophysical knowledge by enabling
detailed studies of planets around other stars, the first galaxies
in the Universe, super-massive black holes, and the nature of the
Universe’s dark sector.

The E-ELT is designed as a reflecting telescope. It has a foot-
print of about 80 meters diameter and is about 60 meters high.
The altitude and azimuth structures weigh together nearly 5000

tons. This structure supports the five mirror optical design and
accommodates two Nasmyth platforms. Each platform is of about
the size of a tennis court and can host several instruments. Several
designs were considered for the telescope enclosure. The project
settled for a rather classical dome design[8].The E-ELT will be

the largest optical
telescope in the

world

The E-ELT project has been ranked in the 2010-2025 ASTRONET1

European strategic planning as one of two clear top priorities for
future ground-based astronomical infrastructures[6]. The project
is currently in its detailed design phase, under a grant from
the European Commission. The start for E-ELT construction is
planned for the end of 2011, with start of operations planned for
the end of the decade[19].

1 Astronet is a consortium which gather European funding agencies in order
to "establish a comprehensive long-term planning for the development of
European astronomy"

1.3 structure of the document 9

The software framework is actually being defined[27]. Two
of the most important aspects of the E-ELT’s development are
the control of high precision optics over the huge scale of the
telescope and the design of an efficient suite of instruments to
achieve the E-ELT’s ambitious goals. All starts from a flexible
suite of tools and from a software infrastructure used to configure,
control and acquire data from E-ELT instruments.

1.3 structure of the document

This document is organized in parts, each of which is divided in
chapters, with the the following structure:

• Part one: Understanding the topics presents an overview
of the topics touched developing the code generator, object
of my thesis

– Chapter 2 introduces the concept of Model Driven

Development

– Chapter 3 is a presentation of the state machine and
the different incarnations in languages like UML and
SCXML. A first introduction to the Apache SCXML
engine is also in this chapter.

– Chapter 4 outlines the tools used in the development
of the code generator.

• Part two: Developing the solution outlines the work done
at ESO to project and develop the code generator.

– In Chapter 5 a first mapping from UML to SCXML is
presented

– Chapter 6 examines the code generator and a running
example developed at ESO for the components of a
control system

– Chapter 7 keeps an eye on the possible future improve-
ments of my work

2
M O D E L D R I V E N D E V E L O P M E N T

Contents
2.1 Why we model 11
2.2 Models 13
2.3 The MDA approach 13

Model Driven Development focuses on developing software
components using abstractions of software systems, i.e. models.
Models are also used, with a certain amount of details, to describe
a software application. MDD is meant to simplify the process of
design the components of the system and the relations between
different modules.

2.1 why we model

With the support of a graphical model representation, the whole
structure of the application is easy to understand at a glance and
also newcomers can easily jump in a work in progress. This helps
a lot in projects where a big team is involved in the development.
Models help to keep the focus on details without loosing the big
picture and make the collaboration much easier. Models are then
converted into code. The conversion can be made manually or
automatically, using tools designed for this. Automatic code gen-
eration from models reduces the manually written lines of code
and with this the number of errors per line of code. Code reuse
is encouraged and made easier. In fact, mostly in big projects, a
large number of line of code is repeated in various components.
Having a tool that can do this repetitive work not only leads
to an increased productivity, but also to a coherent and cleaner
code. In addition enhancements made on the code generator are
propagated on all the generated components. This is a strength
but also a critical point since if a bug is present on the code
generator all the generated code will be affected.

But the advantages of the MDD are also others. With an higher
level of abstraction developers can forget about the implemen-
tation details. Specify less and generate more. Also this has an
other side of the coin: less control on detail leads to rigidity.

The Model approach is strongly supported by the Object Man-
agement Group (OMG) that, supplying open and vendor-neutral
interoperability specifications, provides a basis for developing
this strategy. With the Model Driven Architecture (MDA), OMG

11

12 model driven development

offers "an architecture that makes interoperability central to your
infrastructure" [25]. The OMG Model Driven Architecture encap-
sulates many important ideas, most notably the notion that real
benefits can be obtained by using visual modeling languages to
integrate the huge diversity of technologies used in the develop-
ment of software systems. In the era of Internet and web services,
achieving interoperability is a necessity. With the model approach
developers can make a separation between the specification of
system functionality and the specification of the implementation
of that functionality on a given platform. In MDA this is a key dis-
tinction that is fundamental and leads to Platform Independent
Models (PIM) and Platform Specific Models (PSM). PIM specifies
services and interfaces that the software systems must provide,
independent of software technology platforms. The PIM is furtherDivision between

what is dependent
from the platform
and what belongs

only to the logic of
the system

refined to a PSM which describes the realization of the software
systems with respect to the chosen software technology platforms.
Again [25] gives a definition for both these kinds of models and
states that modeling staying away from platform specific details
makes things easier when implementing the applications for
different platforms. The integration and interoperability are eas-
ier to achieve thinking with platform independent models, and
thereafter easier to implement with platform dependent details.
In addition, the model approach faces also the problem of the
proliferation of middleware frameworks. Big enterprises have to
deal with different middleware platforms and again the neces-
sity to achieve interoperability is evident. Each department of
the enterprise may have different requirements for projects, or
simply, a mix of technology to deal with. It’s not worthy to port
different already working applications to a single middleware
platform if it’s possible to make them cooperate with a smart
project mentality. These are the main reasons that make the model
approach so important. With a well designed model developers
gain the flexibility and ability to obtain valid code even when the
infrastructure changes over time. And as the whole approach is
platform independent, when a new and better technology will be
available, integrating this on the project will be an easy step[16].

Let’s look at this question from the point of view of the con-
struction trade. Architects design buildings. Builders use the
designs to create buildings. The more complicated the build-
ing, the more critical the communication between architect and
builder. Blueprints are the standard graphical language that both
architects and builders must learn as part of their trade.

"Writing software is not unlike constructing a building. The
more complicated the underlying system, the more critical the
communication among everyone involved in creating and deploy-
ing the software"[25]. In the past decade, the Unified Modeling
Language (UML) has emerged as the software blueprint language

2.2 models 13

for analysts, designers, and programmers alike. It is now part of
the software trade. The UML gives everyone from business analyst
to designer to programmer a common vocabulary when talking
about software design.

2.2 models

But what exactly is a model? A model is a representation of a In a model only the
relevant aspect of the
system are
represented

system. A model group a set of concepts about the subject it
represent. There concepts are called abstractions. Models consist
of objects that interact by sending each other messages. Thinking
of objects as live entities, they have things they know (attributes)
and things they can do (behaviors or operations). The values of
an object’s attributes determine its state. But the strength of the
model representation is the possibility to simplify the reality. It’s
not possible to represent every detail of the subject, as the amount
of informations is to big. Focusing on the relevant informations
related to the problem we are facing, helps on the understanding
of the problem itself and leads to a solution in a easier way. The
developer must choose the level of details to be described. And
this is the key to manage the complexity involved in system
development.

2.3 the mda approach

In early 2002, the OMG described the general principles for
MDA[21]: MDA: the approach

to model driven
development
proposed by OMG

"The MDA defines an approach to IT system specifica-
tion that separates the specification of system functionality
from the specification of the implementation of that func-
tionality on a specific technology platform. To this end, the
MDA defines an architecture for models that provides a
set of guidelines for structuring specifications expressed as
models."

"The MDA approach and the standards that support it
allow the same model specifying system functionality to
be realized on multiple platforms through auxiliary map-
ping standards, or through point mappings to specific plat-
forms, and allows different applications to be integrated by
explicitly relating their models, enabling integration and
interoperability and supporting system evolution as plat-
form technologies come and go."

In other words with MDA the development of a software sys-
tem is based on the separation of the business aspects from the
implementation aspects. Modelling these different aspects with

14 model driven development

various level of abstraction, focusing on models rather than on
code, and derive the code from models with automatic generation
will reduce complexity.

MDA provides a set of specifications that support the modeling
of functional aspects of a business application in the form of
a Platform Independent Models. As its name implies, a PIM is
a formal model that is independent of any specific implemen-
tation technologies. So the same PIM ultimately could be used
to develop an implementation based on Java, or .Net, or any
other platform. The Model Driven Architecture then provides a
systematic way to map a PIM to one or more Platform Specific
Models. As its name implies, a PSM is targeted for a particular
computing platform, such as J2EE or .Net. Using other features
of MDA, the resulting PSM then can be used to generate code,
data structures, configuration information, as necessary for the
chosen deployment technologies.

Using MDA, the development of a system can be faster. PIMThe key concepts of
MDA are

abstraction and
automation

can be developed by business analysts with little or no technical
backgroung but with a good knowledge of the domain of the
application. Advanced programmers can focus on the implemen-
tation details of the application.

In addtion MDA can be used to integrate applications between
different platforms, encouraging the reuse of elements across
different frameworks.

But all the advantages have a price. The heavy use of standards
is required to achieve interoperabilty. Developers must be prag-
matic in thei approach of implementing MDA. The use of already
existing solutions and well accepted approaches is the base of
this development strategy.

Portability, cross-platform interoperability and platform in-
dependence are achieved through the use of such well known
standards as CORBA or XML. The qualities of portability, in-
teroperability, and platform independence lead to the domain
specificity, the ability to focus on solving particular business prob-
lems. This means developping the best solutions beeing aware of
the domain of the application: a bank, an hospital or a space ship.
In either case there is no need to worry about how these solutions
should be coded, or how they will run on a specific platform.
That set of worries is deferred till later in the development.

With the classic approach each project is cartried out by a team
of developers that must have a knowledge of the problem domain
and of the platform adopted. If for some reason the team breaks
up, or leave the company all the knowledge is lost. With MDA

also the teams are separated. The platform knowledge and the
domain knoledge are divided and each team take care of his own
area. If something change at the business level, domain experts
can update the corresponding models. Platform experts provide

2.3 the mda approach 15

Figure 4: OMG’s Model Driven Architecture from OMG website[23].

technical details of their respective platforms, which are then
semi-automatically added to the mix. Finally, developers are free
to focus on what they are best at: choosing the most appropriate
technology, and obtaining the best results. Division between

domain experts and
advanced
programmers

All this leads to software being less sensitive to changes in
personnel (if someone joins a project it is far easier to understand
the high-level model of the software application compared to
trying to understand the behavior of the application by reading
source code) and being less sensitive to changes in technology
(if a technology changes we don’t need to change all models but
only the PSM. After changing this the application can be quickly
generated with the new technology).

Although the standards adopted from OMG have been defined
years ago we are far from having a complete definitions. UML,
Meta Object Facility (MOF), Object Constraint Language (OCL),
Common Warehouse Metamodel (CWM), and XML Metadata
Interchange (XMI) are evolving every day. It is often necessary to
transform models from one language to another, or even between
different "dialects" of UML. This can be done only if all the formal
languages used are consistent and compatible. This is the MDA
infrastructure and must be solid and coherent.

MDA is a philosophy and not a standard. But it is based on
a whole array of standards, many of which are evolving. It is
a promising work in progress that will lead to an high level of
productivity, flexibility and standardisation.

3
S TAT E M A C H I N E S

Contents
3.1 Statecharts 18
3.2 UML: a very general purpose definition for

State Machines 22
3.3 SCXML: a well defined standard 23

"A finite state machine is an abstract machine that de-
fines a finite set of conditions of existence (called "states"),
a set of behaviors or actions performed in each of those
states, and a set of events which cause changes in states
according to a finite and well-defined rule set"

This is how Bruce Powell Douglass, an expert with 30 years of
experience in real time and embedded systems from IBM, defines
a finite state machine [14]. Therefore a finite state machine is a
model representing a reactive system and focusing on its behavior.
It consists of a set of states and transitions between them. Every
transition is triggered by an event. Events are the inputs of the
systems. In other words events can lead to a different state in
which one or several actions can be performed. Actions can
be associated with states or with transitions and represent the
system’s output.

Figure 5: A simple state machine.

17

18 state machines

In Other words a state machine is a kind of "black box" that
responds to external stimuli. Given the current state of the device,
a given input leads to a particular output and to a new state.
All this is represented using simple diagrams. These diagrams
are similar to a flow graph. Fig.5 shows a simple state transition
diagram of a switch.

3.1 statecharts

Statecharts (Fig.6) were initially defined by D. Harel in his mile-
stone "Statecharts: a visual formalism for complex systems" [20].
Essentially he introduced in the finite state formalism concepts
like hierarchy, orthogonality and broadcast communications. The
obtained result is an extension of the state machine formalism
with reduced visual complexity. Graphs are easy to understand
even without a deep knowledge of the rules of the statecharts.
Many situations are represented with less elements and this,
again, leads to a minor complexity.The idea was then adopted
from OMG and statecharts are now part of UML standard [22].
Let’s have a quick look to the statechart formalism.

Figure 6: A simple statechart.

Statecharts consist of three primary entities: states, transitions,
and actions. As with the FSM formalism, states represent con-
ditions of existence that persist for a significant period of time.
Transitions are the means by which objects change states in re-
spond to events. A state machine can execute actions at various
points in a state machine, such as when an event triggers a tran-
sition, when a state is entered or when a state is exited. Actions
may be simple statements, such as an increment of a variable, or
they can invoke operations defined within the context object or
other objects. Graphically a state is indicated with a rounded box.
A name in the box identifies the state.

3.1 statecharts 19

Figure 7: States and transitions.

A transition is a relationship between two states indicating that
a machine in the first state will enter the second state when a
specified event occurs and specified conditions are satisfied. On
such a change of state, the transition is said to fire. It is expressed
in the form:

trigger[guard]/action

• Trigger is the event that fires a transition.

• Guard is a boolean condition. Conditions on transitions
must be mutually exclusive.

• Action is some behavior executed during the transition.

All parts are optional. Every Transition must have at least one
source and one target. A "dangling" Transition is not allowed.
An internal transition is a transition without a target. This kind
of transition could be used as an event handler. The event is
processed without leaving the state. This is different from another
special transition, the self-transition. This is a transition which
has as target the source of the transition itself. With this kind
of transition exit and entry actions are triggered every time the
transition is taken.

Figure 8: Use of a composite state.

Transitions are indicated by an arrow joining a state with
another state or a pseudo-state (history states or final states). A
transition can target elements at every level.

20 state machines

A first useful difference with the state machines is the concept
of complex states. A super-state could be defined; this state iden-
tifies some features common to the sub-states. The main idea is
to group some states and to reduce the number of transitions
from the single states. Instead of having a transition from every
sub-state, a single arrow can leave the super-state. This feature
can represent an XOR between the inner states.

Every diagram must have a starting point. This is called "Initial
pseudo-state" and is indicated with a black circle with an outgo-
ing arrow. The arrow is pointing the starting state. Also inside
composite states a default starting point is needed. the same
formalism of the initial pseudo-state is used. In Fig.8 an example.

Figure 9: History pseudo-states.

Another kind of pseudo-state is the "history" element. This ele-
ment represents the most recent active substate of its containing
state. History is available in two version: shallow history, and deep
history. The first is represented with a circle with an "H" inside
and it allows to enter a composite state redirecting the flow to
the last visited state from the ones the history father contains.
The second version, the deep history, is indicated with a circle
containing a "H*" symbol. This means the same of the previous
item, but with recursion in the sub-states. In Fig.9 you can see
the different cases. On the left if the state Hist1 is entered via the
history pseudo-state, the machine will remember in which of the
two state was between A and B, without considering B1. The case
on the right instead, with the deep history, will remember also
all the substate configurations inside Hist2.

When running, a finite state machine can be in several different
states in the same moment. The concept of orthogonal states
is represented by splitting a state in different regions (AND
decomposition). Being inside this state means being in all his
orthogonal regions simultaneously. Each region can be seen as a
separate state machine running in a concurrent way. Graphically

3.1 statecharts 21

Figure 10: Use of orthogonal regions.

this concept can be represented with a dot line inside a state. This
specifies a concurrent region. Fig.10 shows an example.

A very important feature is the possibility for the state ma-
chine to execute some actions. An action is an executable atomic
computation, like a variable assignment, the rise of an event or
performing I/O. It is supposed to happen instantaneously and
cannot be stopped. Actions can take place while entering or leav-
ing a state, in a transition or in response to an event. Entry and
exit actions are a special kind of actions. They are dispatched
entering or leaving a state, no matter which transition is taken.
These action cannot have arguments or guards and are executed
in any case. Entry and exit actions are indicated in the diagram
with the keywords "entry" or "exit" followed by a slash and by the
action name or command. Actions can be invoked also during a
transition. In this case the action is executed after leaving a state
and before entering the target.

The idea behind activities is that sometimes the abstraction
of actions is not enough. Actions are supposed to be instanta-

Figure 11: Use of actions and activities.

22 state machines

neous: once started, the state machine will wait until the action
is finished. Some executions could not be represented in this
way. They can take a finite amount of time and the developer could
want to consider it. Furthermore could be necessary to block an
execution because, for example, in the meantime we are leaving
a state. This can be done with the Do-Activities. On the diagram
this is identified with the "do" keyword followed by a slash and
the invocation for the activity. On Fig.11 you can see a summary
on how to use actions and activities.

3.2 uml : a very general purpose definition for state

machines

The Unified Modeling Language is a general purpose graphical
modeling language widely used in software development. UML
aims to be a standard modeling language which can model con-
current and distributed systems. It is a de facto industry standard,
and is evolving under the auspices of the Object Management
Group (OMG). Version 2.3 [4] is the reference for this work. UML
offers a family of formalisms useful to describe object oriented
software systems. The language puts the emphasis on the graph-
ics notation and allows the developers to focus on the structure
and the design of applications. UML is flexible and comprehen-
sive as it can be used to model anything. It is easily extensible
by the user to fill any modeling requirement. An extension of
the language for a given context is called UML profile. Diagrams
could be mapped into any kind of hi-level language. The choice
is left to the developer and bounded only to the tool you use.

Figure 12: A collage of UML diagrams.

3.3 scxml : a well defined standard 23

Focusing on state machines, the most used formalism is UML
statechart. The formalism is a part of the UML standard and
was originally defined following the specifics from D. Harel [20].
UML statechart diagram is an object-based variant of Harel’s
statechart. With UML statechart diagrams you can describe the
behavior of a system with a quite simple and easy to understand
graphic formalism. Statecharts add to the classical state diagrams
a formalism to describe multiple cross-functional state diagrams
within a state machine without loosing readability. The formalism
offers the possibility to model superstates, pseudo-states and ac-
tivity as a part of a state. In addition UML statechart imports the
concepts of hierarchically nested states and orthogonal regions,
as defined by Harel, and extends the notion of actions. [24]

The adoption of statechart concepts from OMG leads to a
formal description and to a standardization of Harel’s formalism,
giving to it a solid base. Moreover the standard doesn’t specify
any detail for the implementation letting the developers to take
care of the details.

3.3 scxml: a well defined standard

State Chart XML (SCXML) is currently a working draft published
by the World Wide Web Consortium [5] which provides rules to
describe statechart models in a XML dialect. Events, transitions
and policies to interpret the behavior of state machine are used to
describe complex state machines with features such as sub-states,
parallel states, synchronization and concurrency. SCXML is not
yet a standard but it is a work in progress. The latest working
draft is dated December 2010.

Figure 13: Stopwatch example from Apache Commons website.

With SCXML you can describe complex state machines using
an XML based markup language. In Fig.13 there is the classical
stopwatch example taken from the Apache Commons [3] website.

24 state machines

On the example the structure of the model is easily recognizable:
there are states, with a unique name and inside every state the
transitions. Each transition is triggered in response to an event.
Following a transition the machine change its state to the targeted
one. Models representing simple state machines are easy to read
and easy to handle.

SCXML is mostly used in application where there is the need
of an interactive dialog between a human and a computer like
with automatic telephone services (voice access to email, call
center, order inquiry, driving directions etc.). Many working
implementations are available, most of them based on scripting
languages like python. The Apache Foundation offers a pure Java
library to parse and execute SCXML diagrams and also the Qt
framework makes available a C++ implementation of an SCXML
engine. The Qt framework is also used by Nokia to develop phone
applications[2].

3.3 scxml : a well defined standard 25

Listing 1: SCXML file for the stopwatch example

<?xml version="1.0"?>

<!--

* Licensed to the Apache Software Foundation (ASF) under one

* or more contributor license agreements. See the NOTICE

* file distributed with this work for additional information

* regarding copyright ownership.

* The ASF licenses this file to You under the Apache License

* Version 2.0 (the "License"); you may not use this file

* except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing,

* software distributed under the License is distributed on

* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

* See the License for the specific language governing

* permissions and limitations under the License.

-->

<scxml xmlns="http://www.w3.org/2005/07/scxml"

version="1.0"

initialstate="reset">

<state id="reset">

<transition event="watch.start" target="running"/>

</state>

<state id="running">

<transition event="watch.split" target="paused"/>

<transition event="watch.stop" target="stopped"/>

</state>

<state id="paused">

<transition event="watch.unsplit" target="running"/>

<transition event="watch.stop" target="stopped"/>

</state>

<state id="stopped">

<transition event="watch.reset" target="reset"/>

</state>

</scxml> �

4
U S E D T O O L S

Contents
4.1 MagicDraw 28
4.2 Eclipse 29
4.3 EMF 30

4.3.1 Generator Workflow Component 31

4.3.2 Xpand 31

4.3.3 Check 32

4.3.4 Xtend 33

4.4 Apache SCXML and the Apache engine 33

Before presenting the used tools, a small summary about the
work to be done is needed. The main objective of this work is to
produce code for an application starting from a UML statechart
model.

The first required tool is a software capable of create and edit
UML models. During my work I evaluated some options: Mag- From a model to an

applicationicDraw from No Magic Inc., Papyrus from Eclipse Foundation and
Rational Rose from IBM. I ended to choice MagicDraw mainly
for two reasons: the first is that the tool can export models in
XMI, an interchange format used to transfer the models between
different applications. The second reason is that there is a lively
exchange of views between some developers working at ESO
and the team at No Magic. This makes very easy the request
of missing features or to correct wrong implementations in the
application. Anyhow during my work I checked and verified the
compatibility of my tool also with models exported from other
applications.

Then I needed a tool to explore and manage models and to
generate the code. Here the choice was quite easy as the Eclipse
Foundation offers an open software development platform ex-
tensible and very flexible. For the same platform a powerful
framework, explicitly designed to handle models, was available.

Finally an engine to run the state machines was required. After
the decision to use SCXML to represent models was taken, mainly
two were the possible options for the engine: the Apache SCXML
engine and the Qt SCXML engine. Again the choice was easy as
in the beginning I was working on the ACS platform. Many of
the application for this platform are developed in Java, C++ or
Python. Since the use of the Qt engine would have involved the
adoption of big libraries not really needed for other purposes,
the adoption of the Apache implementation was straightforward.

27

28 used tools

4.1 magicdraw

MagicDraw is a visual UML modeling and CASE1 tool from No
Magic Inc., with teamwork support. It is designed for business
analysts, software analysts, programmers, QA engineers, and
documentation writers. This development tool facilitates analy-
sis and design of Object Oriented (OO) systems and databases.
The tool supports UML 2.3 standard. It provides a code engi-

Figure 14: A screnshot from MagicDraw.

neering mechanism (with full round-trip support for J2EE, C#,
C++, CORBA IDL programming languages, .NET, XML Schema,
WSDL), as well as database schema modeling, DDL generation,
and reverse engineering facilities.

I used this tool to draw and edit the UML state machine models.
Thanks to the full support to the UML2 standard every features
of the model is easily implemented. Once the model is finished,
it is exported in XMI, an interchange format for UML models.
This format is commonly used as a medium by which models
are passed from modeling tools to software generation tools. The
exported file is used to generate the SCXML model and the code
for the application.

At the moment MagicDraw is offering a tool to convert the
models in SCXML. This tool dosen’t map the model but generates
the SCXML through a simulator developed using the Apache
SCXML engine. To generate the SCXML code the tool uses the
calls to the Apache engine. After developing my project, I gave
my contribution to the improvement of the SCXML exported by

1 Computer-aided software engineering

4.2 eclipse 29

MagicDraw, pointing out inaccuracies and error to the No Magic
team.

4.2 eclipse

Eclipse.org is an open consortium of software development tool
vendors like IBM, CISCO and intel. The community has interest
in collaborating to create better development environments and
product integration and shares an interest in creating products
that are interoperable in an easy-to-use way based upon plug-
in technology. The Eclipse Platform is a software development
environment with an IDE and an extensible plug-in system. It
is a platform designed to integrate different development tools.
It supports a big variety of programming languages, from Java
to PHP and Ruby. The whole environment is written in Java.
Essentially is an IDE for nothing in particular. Its strength came
from the plug-in system. The plug-ins can provide support for
editing and manipulating additional types of resources such as
Java files, C programs, Word documents, HTML pages, and JSP
files. The plug-ins determine the functionality of the platform.
Even MagicDraw can be used as a plugin from Eclipse.

Figure 15: An overview of the Eclipse architecture.

Perspectives are arrangements of views and editors. Users can
choose a perspective based on their needs of the moment. With a
perspective you can control the layout of the working area, the
visibility of the tools, and the global layout.

Since November 2000, Eclipse is an open source project. This
choice (from IBM) leads to a really open platform and to several
other advantages:

• Reuse of the existing code: why rebuild something when it
exists already and it works?

30 used tools

• Trust: code reuse needs trust on other developers and trust
must be earned by developers providing good code.

• Confidence: providing all the source code of the platform
to developers helps on gaining confidence.

• Quality: the code is reviewed by the community, enhancing
the quality through a collaborative approach.

• Clarity: the code is easier to understand as it’s delivered
with the idea of being reused by the community.

• Longevity: offering the source code to developers the plat-
form will ensure long term support.

• Flexibility: the possibility to build your own component
and integrate it in the platform can provide a tailored tool.

In my project I used the Java perspective and the Eclipse Model-
ing Framework.

4.3 emf

The Eclipse Modeling Framework is a Java-based environment for
development of tools and other applications based on a structured
model. With this framework it’s possible to generate part of
the code needed to develop applications starting from a model.
The repetitive part is done automatically and a skeleton for the
application is generated. Then a variable amount of hand-written
code is needed to complete the task.

Almost every piece of software we write interacts with some
data models. These models can be defined using UML, XML, Java
or some other definition language. EMF can be used to extract this
intrinsic model and to generate some of the implementation code.
The starting project is based on the OMG’s Meta Object Facility.
MOF is an abstract language and a framework for specifying,
constructing and managing meta-models. Metamodels can be
viewed as models of a model. With metamodeling it’s possible
to describe different domain specific languages with the same
formalism. As the MOF model was very large and complex,
with the target of simplifing also the generated code, a drastic
redesign of the MOF metamodel led to the Ecore. Ecore is anEcore is a subset of

the MOF metamodel implementation of a subset of the features of MOF. After this
simplification the people at OMG also realized that the MOF
meta model was too complex and, with the contribution of EMF
designer, they defined MOF 2.0. This redesign led to the Essential
MOF (EMOF) and the Complete MOF (CMOF). Ecore is more
or less aligned with EMOF. The objective of a clean and better
generated code was achieved and now the framework is being
used by a large community of developers[26].

4.3 emf 31

The Model to Text Transformation (M2T) is a project built on
top of EMF. With M2T it is possible to transform a model directly
in code for every kind of programming languages. Xpand, Jet
and Acceleo are the main project developed within M2T[1].

EMF provides developers with a set of tools to interact with
the Ecore model. M2T offers a leverage to explore and build the
applications straight from the model, transforming each element
in a piece of code.

4.3.1 Generator Workflow Component

The Generator Workflow component is provided to perform the
code generation. The code generation is achieved calling various The workflow file

define the sequence
of the operations

component and running template files. The workflow file defines
the configuration variables and the sequence of the execution.
Input and output files are defined here. Also tools to beautify the
code are invoked from the workflow.

4.3.2 Xpand

Xpand is the language I used from the Model to Text project.
This language is specialized on code generation based on EMF
models. It supports the following main language features:

• Pluggable Type System

• Dynamic Dispatch of Functions

• Aspect Oriented Programming

• Rich Expressions (OCL-like but with Java-like syntax)

This language is used in templates to control the output gen-
eration. Templates are stored in files with the extension .xpt. A
template file consists of any number of "IMPORT" statements,
followed by any number of "EXTENSION" statements, followed
by one or more "DEFINE" blocks (called definitions). With the
"IMPORT" statement a name space (like UML) is imported, and
unqualified name defined in the namespace could be used in-
stead of fully qualified names. "EXTENSION" statements is used
to import additional functions and and query operations from
an Xtend file. This helps to keep the code clean and easy to
read. "DEFINE" blocks qualify a template unit. The body of a
template can contain a sequence of statements including any text
or parameter.

The strength of this language is the modularity.

32 used tools

Figure 16: Structure of an Xpand file.

4.3.3 Check

Xpand also provides a language for checking the model consis-
tency. It is a language to specify constraints that the model has to
fulfill in order to be correct. This process is called "validation of
the model". The language is very easy to understand and use. Ba-
sically, it is built around a simple expression syntax. Constraints
specified in the Check language have to be stored in files with
the file extension .chk. If the constraints check fails, two kind of
actions could be taken:

• WARNING: a message is printed but the execution of the
workflow is not stopped

• ERROR: the specified message is printed and the workflow
execution is stopped

The Check language of Xpand provides also so called guard
conditions. These conditions allow to apply a check constraint
only to model elements that meet certain criteria, for example
some actions could be taken only for a particular kind of states
(like complex states or simple states). This is possible because the
language is built on top of EMF. Loading the UML metamodel
the language can identify the different entities of the model. More
examples will be given in chapters related to the implementations
of the code generator.

4.4 apache scxml and the apache engine 33

4.3.4 Xtend

The Xtend language provides the possibility to define rich li-
braries of independent operations and non-invasive metamodel
extensions based on either Java methods or Xtend expressions.
Those libraries can be referenced from all other textual languages
that are based on the Xpand expressions framework. An Xtend
file must have an .ext extension. Again, the use of these libraries
allows to keep the code clean and readable.

4.4 apache scxml and the apache engine

The Apache Foundation is supporting SCXML through the Apache
Commons project. Commons SCXML is a working implementa-
tion of a Java SCXML engine capable of executing a state machine
defined in a SCXML document. The latest implementation of
Commons SCXML is v.0.9 and is dated December 2008. Apache Commons

SCXML v.0.10 will
be ready before the
end of 2011

Without an engine capable of parsing and executing SCXML
models these files would be useless. The Apache foundation
and the open source community have developed a java based
execution environment. The SCXML distribution provides a Java
standalone class to test SCXML models from a command line.
The choice of this implementation is dictated by the language.
My work started developing an application for ACS and Java is
the most used language on this platform. In addition the Apache
project is well documented and supported by the community.

I set up the environment following the user guide from the
Apache website [3] and tested it with the examples provided.
From a command line events can be sent and interpreted and
also variables can be set. The interface is rather basic but clear
enough for testing purposes.

Part II

D E V E L O P I N G T H E S O L U T I O N

5
M O D E L T R A N S F O R M AT I O N

Contents
5.1 Problems 37
5.2 A proposal for UML to SCXML mapping 38
5.3 Comparison 39

5.3.1 Simple state 39

5.3.2 Initial pseudostate 40

5.3.3 Final pseudostate 41

5.3.4 Entry and exit actions 42

5.3.5 Transition 42

5.3.6 Internal Transition 43

5.3.7 Superstates and substates 44

5.3.8 History pseudostate 45

5.3.9 Activities 46

5.4 Custom actions 47
5.5 Summary 47

OMG definition of the UML standard is very formal. Every as-
pect is addressed in detail. Moving to a working implementation
of the standard necessitates modifications and tricks bounded to
implementations details (for example to the used language) or to
choices taken during the early develop phase of the project. If on
one side the standard, without any indication on "how" to imple-
ment the project, offers a solid starting point, on the other side,
is unavoidable to introduce differences. This requires a research
to find these differences (not always well documented). Working
with something real, and that must work is very different from
formulating principles without having the opportunity to verify
it on the field.

So, the mapping of all these differences is not only a necessity,
but should be the fundamental base for the subsequent work.

5.1 problems

In this chapter I present a proposal for the mapping of UML State
Machine to SCXML. It is not a complete mapping but it will focus
on the features defined in the Generic State Machine Engine Soft-
ware Requirement Specification[12]. This is an internal document
from ESO that describes the functions that the GSME shall provide
in order to build applications based on state machine models for
the ACS or VLTSW platforms.

37

38 model transformation

As the document states, the state machine engine shall sup-
port the following state machine features defined by the SCXML
standard:

• composite states

• orthogonal states

• actions

• invoke (activities)

• guards

• shallow and deep history state

• initial and final pseudo-states

• IsIn

These features first introduced by D. Harel [20] proved to be im-
portant when modeling control applications for telescope domain.
In particular composite states reduce the number of transitions
and orthogonal states the number of states.

This was the first part of my work done in Garching bei
München, home of the headquarters of ESO. The work was the
starting point for the development of the UML2SCXML transfor-
mation tool.

5.2 a proposal for uml to scxml mapping

As stated in Chapter 3, UML is a general purpose language that
aims to be a standard modeling language. State Chart XML [3]
is a formal description on how to translate an UML statechart
in a XML dialect. The execution environment provided from the
Apache Foundation is a Java SCXML engine capable of executing
a state machine defined in a SCXML document.

Working to develop a tool to translate a UML state machine
model to a SCXML document brought to my attention some
differences between the specifications, mainly due to the continu-
ous changes in the standards and in the working draft, that are
not always quickly implemented in the Apache engine. In addi-
tion the distance between the release date of the implementation
and the latest working draft increases the number of differences.
When the working draft from W3C will be ready to become a
standard an update of the engine from the Apache Foundation
will probably smooth all these details.

5.3 comparison 39

5.3 comparison

I started my work comparing the UML specification from OMG[22]
and the SCXML Working Draft[5] from W3C. Then I took the ex-
amples used in Harel’s paper [20]. For each example in the article
I tried to draw a UML diagram first, using MagicDraw. Then I
wrote the corresponding code for the SCXML model strictly fol-
lowing the W3C’s draft. After that I started testing the obtained
model with the Apache SCXML engine. For each model I had to
make small adjustments to fit the syntax expected from the en-
gine. In addition, I adopted some workarounds to obtain desired
features not directly supported with the Apache implementation.

5.3.1 Simple state

UML State

SCXML <state>

Apache <state> tag with a unique id
attribute

Table 1: State

• A UML state is a condition or situation during the life of an
object during which it satisfies some condition, performs
some activity, or waits for some event. An object remains in
a state for a finite amount of time.

• In SCXML <state> holds the representation of a generic
state.

• A working SCXML model for the Apache implementation
must have an unique id for each state.

In UML every element, including a state, is identified by a
qualified name. With SCXML states are identified by the attribute
ID, i.e. by the name of the states. This can cause some problems as
when modeling a system, defining substates with the same name
in different context is a common practice. While with an UML
tool this is not a problem as the tool store it with a full qualified
name, with an SCXML model this is an issue. Transforming the
model this must be taken into account.

40 model transformation

UML Initial PseudoState

SCXML initial as an attribute or <initial> tag

Apache initial attribute or <initial> tag (manda-
tory for complex states)

Table 2: Initial pseudostate

5.3.2 Initial pseudostate

• In UML diagrams the initial state is a pseudostate1. It has
an arrow that points to the initial state. The used symbol
is a small solid filled circle (Fig.17). With the same symbol
you can specify the default substate of a complex state.

Figure 17: Initial pseudostate

• In SCXML there are two ways to indicate the first state of a
state machine:

– initial as an attribute of the <scxml> tag. The value
must be the UNIQUE ID of the first state (if initial is
not defined the default Initial State is the first defined
state)

– For complex states <initial> as child of a <state> tag.
<initial> must enclose a conditionless <transition>
with a descendent of the parent <state> as target. In
complex states also the initial attribute can be used.
This attribute is shorthand for an <initial> child with
an unconditional transition. Again if an initial sub-
state is not defined the first defined sub-state is taken
as initial.

• With the Apache implementation an initial state MUST be
defined as attribute of <scxml>. Also in complex state a
default initial substate MUST be defined. If initial is defined
as attribute the processed model code will be modified to
obtain an equivalent <initial> tag.

1 Pseudostates do not have the properties of a full state and serve only as a
connection point for transactions (but with some semantic value). Within the
UML metamodel, Pseudostate is a sub-class of StateVertex.[22]

5.3 comparison 41

Figure 18: Which substate is the first entered?

If from a formal point of view the diagram in Fig.18 seems to
be a proper UML diagram, on a working implementation this
is not well defined. When entering the composite state is not
possible to select the first substate entered. While the SCXML
standard uses the first defined substate as a default state, this is
not enough for the Apache implementation. A default substate
must be explicitly defined using an initial pseudostate element
inside the composite state.

5.3.3 Final pseudostate

UML Final PseudoState

SCXML <final> tag

Apache <final> tag with id attribute

Table 3: Final pseudostate

• In UML the Final State is a pseudostate. When it is reached
the region is completed. When all the regions in the state
machine are completed the entire state machine is com-
pleted. A Final Pseudostate has no exit transition. The
symbol used is a circle surrounding a small solid circle
(Fig.19).

• In SCXML <final> element is used to indicate the Final
State of a compound state (as child of <state>) or of the
entire state machine (as child of <scxml> element).

• To get a model working with the Apache engine <final>
must have an id attribute with a valid id name as value.

42 model transformation

Figure 19: Final pseudostate

5.3.4 Entry and exit actions

UML Entry / Exit action

SCXML <onentry> / <onexit> tag

Apache <onentry> / <onexit> tag

Table 4: Entry an exit actions

• In a number of modeling situations,you might have the
need to dispatch the same action whenever you enter a
state, no matter which transition led you there. Similarly,
leaving a state, you might want to dispatch the same action
no matter which transition led you away. For doing this
UML Entry and Exit Actions can be used.

• In SCXML Entry and Exit actions consist of actions per-
formed as a part of the corresponding <onentry> or <onexit>
element.

• No particular differences with the Apache implementation.

5.3.5 Transition

UML Transition

SCXML <transition> tag

Apache <transition> tag

Table 5: Transition

• In UML a transition is a relationship between two states in-
dicating that an object in the first state will enter the second
state when a specified event occurs and specified conditions
are satisfied. On such a change of state, the transition is

5.3 comparison 43

said to fire. It is expressed in the form:

trigger[guard]/action

Trigger is the event that fires a transition . The guard is a
boolean condition. The action is some behavior executed
during the transition. All parts are optional. Every transition
must have at least one source and one target. A "dangling"
transition is not allowed.

Figure 20: A transition with all its elements.

• In SCXML <transition> element is child of a <state> ele-
ment and has event (valid values are SCXML events), condi-
tion (a boolean expression) and target (a state id) attributes.
All attributes are optional. A transition without a target
offers an event handler without the side-effect of leaving
the recent state (i.e. an internal transition).

5.3.6 Internal Transition

UML Internal transition

SCXML <transition> with no target

Apache <transition> with no target

Table 6: Internal Transition

• Events can be handled without leaving a State. These inter-
nal transitions don’t fire the state’s entry and exit actions
as state is not really left. Note that that’s different from
transitions whose target is the source state (self transition).
In this case the state is left and re-entered and Exit and
Entry Actions are triggered.

• In SCXML and Apache an internal transition is mapped
as a targetless transition. Such transition acts as an event
handler.

44 model transformation

5.3.7 Superstates and substates

UML Superstate

SCXML <state> or <parallel> a default substate
must be defined

Apache <state> or <parallel>

Table 7: Superstates

A substate is a state that’s nested inside another one. A Super-
state that has substates is called a composite state. A composite
state may contain either concurrent (orthogonal) or sequential
(disjoint) substates.

Figure 21: A configuration not supported by the Apache SCXML en-
gine.

• In UML a substate is rendered just as a state inside another
state. Substates may be nested to any level.

• In SCXML composite substates are defined with the <state>
element inside a parent <state> element. The default ini-
tial state is identified with the <initial> element. If not
present the default state is the first defined state. Orthogo-
nal states are defined through the <parallel> element. Each
orthogonal substate is identified with a <state> element.

• In Apache a default substate MUST be defined using <initial>
for both orthogonal and composite states. In addition with
<parallel> each orthogonal region of the state represents an
auxiliary state wrapping the substates. For this reason each
region should be identified with a name when modeling
it in MagicDraw. In the current version of Apache Com-
mons SCXML (v0.9) <parallel> can’t contain an <history>,

5.3 comparison 45

<onentry> and <onexit> as childs. A <transition> ele-
ment as child of <parallel> is ignored. A possible solution
is to use a <state> wrapper element around the <parallel>
to hold the deep history element, the Entry and Exit ac-
tions and the transition. Fig.22 shows a workaround for this
problem.

Figure 22: The workaround proposed.

UML Substate

SCXML <state> tag

Apache <state> tag

Table 8: Substates

Another limitation imposed by Apache Commons SCXML
is about <invoke> element in composite states. A compos-
ite state should contain either one <parallel>, one <invoke>
or any number of <state> children. That is <invoke> can-
not be a child of a complex state unless the state has no
substates (i.e. is a simple state).

5.3.8 History pseudostate

UML History pseudostate

SCXML <history> with a unique id

Apache <history> with a unique id and a condi-
tionless <transition> element as child

Table 9: History pseudostate

46 model transformation

• In UML diagrams a history pseudostate can remember
the last active configuration of the object before leaving a
composite state. There are two kind of history:

– Shallow history can remember only the history of the
immediate nested states

– Deep history can remember the configurations of all
the nested states, at any depth.

A default state must be defined, to enter when there is no
history for the state.

• In SCXML <history> is a child of <state>, must have
a unique ID and a <transition> element as a child. This
transition is conditionless and represents the default history
state taken when there is no history for the parent state.
If the history is shallow the target must be an immediate
substate, otherwise can be any other descendant state.

Figure 23: The history element with a default state.

5.3.9 Activities

• In UML an object, while in a state, can do some work.
DoActivities are activities that can take a finite amount of
time and can be interrupted by some events.

• In SCXML DoActivities are called with the <invoke> tag.
This element starts an instance of an external service. With
the <param> element data can be passed to the service.

5.4 custom actions 47

UML Activities

SCXML <invoke> tag

Apache <invoke> tag

Table 10: Activities

• Also the Apache engine can handle DoActivities via the
<invoke> element. An external state machine can be fired
and the developer can let this external element deal with
different implementations of activities. This allow to model
a concurrent execution of the external service.

5.4 custom actions

The execution of an action represents some transformation or
processing in the modeled system. As we saw in section 3.1
an action is supposed to be instantaneous. If there is the need
to model some more complex behaviors, that require time to
completed, a new state must be modeled. Inside the state a
DoActivity will be used.

The SCXML specification describes a basic set of command
implementing actions, useful for logging purposes or very sim-
ple executions. In many cases, this is not enough. The Apache
implementation, as defined in the SCXML working draft, allows
to define and use Custom actions. These are used to execute a
specific implementation of arbitrary commands or code defined
by the developer.

To transform this kind of actions and to generate a working
SCXML model, first a fictitious namespace is needed (I used
"http://my.custom-actions.domain/CUSTOM"). Then the custom tag,
named with the same name of the custom action, is created in
the proper context.

5.5 summary

Translating a model defined with UML statechart to an Apache
working SCXML model is not trivial. The developer must be care-
ful with small implementation details and in some cases special
workarounds must be taken. The Apache SCXML engine provide The mapping process

is essential: there are
many differences
between the
standards

an execution environment that can support all the features de-
fined in the GSME Software Requirements Specification[12]. With
this mapping proposal these features are interpreted correctly. It
was very interesting to see how things change from the standard
to a real and working implementation of the engine. Most of the

48 model transformation

problems are due to the latest modifications of the working draft
and to the old implementation of the Apache engine. In addition,
the fact that the W3C specifications are still in the form of a work-
ing draft keeps away the developers from investing too much
time in making changes that may be not definitive. Certainly
when the working draft will take the form of a recommenda-
tion a new impulse will hit also the development process of the
Apache engine. Hopefully this will smooth a lot of differences
and make easier the adoption of this interesting framework.

6
T H E C O D E G E N E R AT O R

Contents
6.1 The Generic State Machine Engine Architec-

ture 49
6.1.1 Model Independent State Machine

Engine 50

6.2 Implementation 52
6.2.1 Designing a model with MagicDraw 52

6.2.2 Transforming the model 53

6.2.3 Check 56

6.2.4 Xpand 58

6.2.5 Xtend 61

6.3 A running example: MasterComponent 63
6.3.1 Available substates 64

6.3.2 Substates of Online and Operational 65

6.3.3 A few modifications 65

6.3.4 The generated files 66

6.1 the generic state machine engine architecture

A Generic State Machine Engine is simply a SM Engine that
allows generating from the same SM Model, Software Component
skeletons that can be compiled on different Software Platforms.
The ability to support multiple platforms increases SM Model
reuse and therefore reduces development and test time.

Figure 24: Generic State Machine Engine Data Flow[12].

49

50 the code generator

The main goal of the Generic State Machine Engine project is
to develop a tool that can facilitate the creation of state machine
based Software Components for the VLT and ACS Software Plat-
forms. The architecture is built on top of a Java SCXML Engine
which executes SCXML Models. In the next future also a C++ im-
plementation of the engine is planned. A Generator takes as input
the configuration on the target platform (Platform Configuration)
and the UML Model to generate: all the Model Dependent Code,
the Build Procedure (for example the Makefile) and the SCXML
Model. Examples of Model Dependent Code are: the code to
propagate the events to the SCXML Engine, Actions, Guards, and
Activities skeletons. Platform Adapters Libraries, used to provide
a standard interface for services like logging, error handling, mes-
saging etc. (i.e. to abstract the Software Platform specific services),
are compiled together with the SCXML Engine, and the Model
Dependent Code to build the Software Component.

6.1.1 Model Independent State Machine Engine

A State Machine Engine is an executable implementation of a
State Machine Model. State Machine Engines can be developed
using different approaches: from the simple "switch" statements,
or the State Design Pattern1, up to building an interpreter of State
Machine Models. In [12] the definitions of "Model Independent
State Machine Engine" and "Model Dependent State Machine
Engine" have been introduced to classify two different types of
State Machine Engines: the ones whose implementation does not
change when a different State Machine Model is executed and
the ones whose implementation does change.

In a Model Dependent SM Engine the model (states, transitions,
etc.) is hard coded in the implementation language and therefore
defined at compile-time. Examples are:

• SM Engine based on "switch" statements

• SM Engine based on State Pattern

Disadvantages of this approach are:

• SM model must be defined at compile-time

• The size of the application is usually larger since it includes
the logic of the SM

1 From [17]: the state pattern is a behavioral software design pattern, also known
as the objects for states pattern. This pattern is used in computer programming
to represent the state of an object. This is a clean way for an object to partially
change its type at runtime

6.1 the generic state machine engine architecture 51

• SM Model and source code may easily get out-of-synch if
the code is not generated from the model every time it is
compiled

Advantages of this approach are:

• Performances and memory consumption can be optimized
(since the State Machine Engine is build specifically for that
given model)

• There is no need of the model once the application is built
(or generated). In many cases the model can be recon-
structed from the application if/when needed.

In a Model Independent SM Engine the model is stored in
memory. The SM Engine provides APIs to create states, transi-
tions, etc and build up an in-memory representation of the model.
The algorithm works with the in-memory representation of the
model to decide which transitions to take, which states to visit,
which actions to execute.

Disadvantages of this approach:

• Performances and memory consumptions may not be as
good as the one of Model Dependent SM Engines

• The model is needed for the execution of the application

• No type-safe invocation of actions/activities

Advantages of this approach:

• SM Engine can be reused by the applications

– Applications are smaller

– Similar advantages of the libraries

• SM Model can be defined at:

– Compile-time using the APIs provided by the SM En-
gine to build up the SM model. Development of ac-
tions, data, events is done using a compiled program-
ming language.

– Run-time using a parser which reads a SM Model Rep-
resentation and calls the SM Engine APIs to instantiate
the model. Note that in a fully Run-time SM Engine
also data, actions and events are defined in the model
and interpreted (i.e. the action language is interpreted).
This approach provides the flexibility of changing at
runtime the complete behavior of the application with-
out the need of recompiling the application.

52 the code generator

– Partially at compile time and partially at run-time:
data, actions and events are defined at compile time
while states and transitions are loaded and interpreted
at run-time.

The decision of selecting which approach is the best is similar
to evaluating the advantages and disadvantages of interpreted
vs. compiled programming languages. The mix case, where ac-
tions and data are compiled while the state machine logic (states
and transitions) are interpreted, is an interesting alternative that
minimizes the disadvantages of the compiled programming lan-
guages and introduces some of the advantages of the interpreted
languages: there is no need to recompile if the SM logic changes.
Recompilation is needed only if data/actions change which could
be a positive effect since it forces the type checking.

The ability of quickly modifying the application behavior (i.e.
the SM logic) without the need for recompiling the code be-
comes an important feature in all the scenarios where last minute
changes in the requirements have to be quickly implemented and
tested. The need of a Model Independent SM Engine is one of the
lessons learned in the development of previous projects at ESO

6.2 implementation

To develop the code generator, as stated in the first part of this
document, I used:

• MagicDraw to draw and export UML models (some tests
were made also with Papyrus, a UML design tool now part
of the eclipse software)

• Eclipse and the Eclipse Modeling Framework to load and
manage models

• XTEND, XPAND and CHECK languages, available on top
of EMF, useful to browse and analyze XMI models and to
generate the code.

• Apache Commons SCXML Standalone Engine, a java class
to test models

Here will follow a description of the whole process, from
creating a model with MagicDraw to the testing with the Apache
engine.

6.2.1 Designing a model with MagicDraw

First of all a UML state machine diagram is needed. With Magic-
Draw it’s easy to draw this kind of diagram from scratch. I made

6.2 implementation 53

this list of properties while comparing the specifications of the
standards with the Apache implementation of the SCXML engine.
In a state machine diagram:

• a state machines must have a name

• a state machines must have inner states

• a state machine must have an initial state

• every state must have a name

• if present, a final state must have a name

• in composite state, a default state is needed

• in orthogonal states, every region must have a name

To work with the current version of the Apache engine some
other rules must be respected:

• Entry actions are not allowed in orthogonal states

• Exit actions are not allowed in orthogonal states

• Transitions from orthogonal states are ignored

These limitations are only due to the current implementation of
the engine (v.0.9) and may change with a new version.

In any case my tool will check the models and see if they
fulfill these rules. Following these few guidelines a state machine
diagrams can be exported in Ecore, a format that can be handled
with eclipse. To do this, save the diagram and from the File menu
select Export To -> Eclipse UML (v2.x) XMI File.

6.2.2 Transforming the model

On the activity diagram of Fig.25 are defined the steps the code
generator will do to produce the application. The transformation
tool will be initialized with the platform configuration details.
The UML metamodel is loaded and the tool takes as input an
ecore model (or a MagicDraw model exported as XMI for Eclipse).
It will explore it, checking for constraints as specified in the Check
file called constraints.chk. If the model checking is ok, the output The file

constraints.chk
contains all the
constraints I
discovered and
described in the
mapping phase

directory is cleaned and the transformation will start. An XML
file will be created for every state machine in the model. These
XML are the SCXML models of the state machines. These files go
through the beautifiers and the final output files are generated.

The expand file FSMScxml.xpt defines how the model is ex-
plored.

54 the code generator

Figure 25: This activity diagram represents the workflow of the code
generator.

• First of all the XML file is created and the headers are
written. In this block the tool will look for the initial state
of the state machine. This is a mandatory attribute for the
actual implementation of the Apache engine.

• Then the top states (the most external states of the FSM)
are explored in alphabetical order. This block tests if the
state is a simple state or if it is a composite one and calls
the respective blocks.

– If it is a simple state the tool will test if it is also a final
state (and in this case write a <final> element in the
SCXML file) and it will explore actions and transitions.

– For composite states a first test for orthogonal states is
done, then it looks for the initial state (if the composite
state is not empty), for child states and at the end for
history pseudostates. Then, again, it explores actions
and transitions.

• When all the states are explored the SCXML file is closed.

6.2 implementation 55

With the Invoke block, if a do-activity is found in the Explore-
Actions block, an invoke element is created. The invoke tag has
an id attribute that is set equal to the name of the do-activity.
With the code generated as Java, the invoke element will call a
Java class with the same name of the do-activity. When called
this class will start a new Java thread running in parallel with the
main application.

Let’s see the implementation in details.

6.2.2.1 MWE workflow

Using a declarative XML-based language I have written the work-
flow file. This file specifies step by step the execution of the
different modules. The workflow file is used by the Modeling
Workflow Engine to explore and analyze the models.

Listing 2: Workflow file

<?xml version="1.0" encoding="ISO-8859-1"?>

<workflow>

<!-- Setup URIs -->

<property name="modelFileURI" value="./examples/

MasterComponent/MasterComponent.uml"/>

<property name="ouputFolderURI" value="./src-gen" />

<!-- Setup path to platform. Usually this is the workspace

location. -->

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">

<platformUri value="." />

</bean>

<!-- Setup UML2 support -->

<!-- initializes resourcemaps, urimaps, etc. -->

<bean class="org.eclipse.xtend.typesystem.uml2.Setup"

standardUML2Setup="true"/>

<!-- Reads the UML model and stores it into slot named ’

mymodel’ -->

<component class="org.eclipse.emf.mwe.utils.Reader">

<uri value="${modelFileURI}" />

<modelSlot value="mymodel" />

</component>

<!-- Checking model requirements-->

<component class="org.eclipse.xtend.check.CheckComponent">

<metaModel id="mm" class="org.eclipse.xtend.typesystem.

uml2.UML2MetaModel"/>

<checkFile value="constraints"/>

<emfAllChildrenSlot value="mymodel"/>

</component>

56 the code generator

<!-- Cleaning the room. Delete all the files on the output

dir -->

<component id="dirCleaner"

class="org.eclipse.emf.mwe.utils.DirectoryCleaner"

directory="${ouputFolderURI}"/>

<!-- generate code -->

<component class="org.eclipse.xpand2.Generator"

skipOnErrors="false">

<metaModel class="org.eclipse.xtend.typesystem.uml2.UML2

MetaModel"/>

<metaModel class="org.eclipse.xtend.typesystem.emf.

EmfRegistryMetaModel"/>

<expand value="templates::Root::Root FOR mymodel" />

<outlet path="${ouputFolderURI}">

<!-- Code beautifier -->

<postprocessor class="org.fornax.utilities.formatter.

xml.XmlFormatter"/>

<postprocessor class="org.eclipse.xpand2.output.

JavaBeautifier" />

</outlet>

</component>

</workflow> �
In the workflow first of all, the variable are initialized and

the resources are loaded. Then every component is called with
appropriate arguments. The relevant components are:

• the CheckComponent, calling the constraints.chk file

• the Generator, using the template files to explore the models

6.2.3 Check

The first component loaded is the CheckComponent. With the
constraints.chk I have specified some properties that the model
must fulfill. I defined these properties as described in Chapter 5.

Listing 3: constraints.chk file

import uml;

context StateMachine ERROR "StateMachine must have a name" :

name.length != 0;

context StateMachine ERROR "StateMachine must have an initial

state." :

allOwnedElements().typeSelect(Pseudostate).select(e|(

e.kind.toString() == "initial")&& (e.container.

owner == this)).size > 0;

6.2 implementation 57

context StateMachine WARNING "StateMachine must have inner

states" :

allOwnedElements().typeSelect(State).size > 0;

context State ERROR "State must have a name" :

name.length != 0;

context State if this.metaType.name == "uml::FinalState"

WARNING "Final states must have a name" :

name.length != 0;

context State if isOrthogonal() ERROR "Orthogonal Regions

must have a name" :

allOwnedElements().typeSelect(Region).select(e|(e.

owner == this)&&(e.name.length == 0)).size == 0;

context State if isOrthogonal() WARNING "Initial state is

missing in orthogonal region" :

this.allOwnedElements().typeSelect(Pseudostate).

select(e|e.kind.toString() == "initial").select(e

|this.ownedElement.contains(e.container)).size ==

this.ownedElement.typeSelect(Region).size ;

context State if (isComposite() && !allOwnedElements().

typeSelect(State).select(e|!(e.name == "Unavailable") &&

!(e.metaType.name == "uml::FinalState")).isEmpty) ERROR

"Composite States must have a default initial state" :

allOwnedElements().typeSelect(Pseudostate).select(e|(

e.kind.toString() == "initial")&&(e.container.

owner == this)).size > 0;

context State ERROR "Name of states must be unique":

!this.allOwnedElements().typeSelect(State).name.

contains(this.name);

context State if isOrthogonal() WARNING "Entry action not

allowed on orthogonal states":

(this.entry.name.toString() == "null");

context State if isOrthogonal() WARNING "Exit action not

allowed on orthogonal states":

(this.exit.name.toString() == "null");

context State if isOrthogonal() WARNING "Transitions from

orthogonal states are ignored":

this.outgoing.size == 0;

context Pseudostate if kind.toString().contains("History")

ERROR "History state must have a name":

this.name.length !=0;

context Pseudostate if kind.toString().contains("History")

ERROR "History state must have a default state":

58 the code generator

this.outgoing.toList().size !=0;

context Pseudostate if kind.toString().contains("initial")

ERROR "Every initial state must have an outgoing

transition":

!this.outgoing.isEmpty; �
First the UML metamodel is imported. Then for every element

to check, a context is specified. This means that the check is not
made with a simple textual analysis.

Once loaded the metamodel the Check language "understand
the model", recognizing the different elements of the model itself.
For every kind of element a different behavior can be defined
and different constraint can be checked.

Two types of action can be taken:

• a warning, that prints a message

• an error, that prints a message and stops the processing of
the model

6.2.4 Xpand

After the check procedure, the Xpand component starts to follow
the Root.xpt template.

Listing 4: Root.xpt file

«DEFINE Root FOR uml::Model»

«REM» Foreach element of type StateMachine expand Root from

FSMScxml «ENDREM»

«EXPAND FSMScxml::Root FOREACH allOwnedElements().

typeSelect(uml::StateMachine)»

«ENDDEFINE» �
For each state machine the element Root from FSMScxml.xpt

is expanded. Also with Xpand files a context can be defined,
specifying different action for different kind of elements. The
"EXPAND" statement "expands" another DEFINE block (in a
separate variable context) and inserts its output at the current
location.

Listing 5: The Root block in FSMSCxml.xpt

«DEFINE Root FOR StateMachine»

«REM» Generate SCXML Model «ENDREM»

«FILE this.name+".xml"»

«REM» Write the headers «ENDREM»

«EXPAND SCXMLcodeScxmlCode::Headers»

«REM» Select TopStates and explore «ENDREM»

6.2 implementation 59

«FOREACH listStates().select(e|e.isTopState()).sortBy

(e|e.name) AS st»

«EXPAND ExploreState FOR st»

«ENDFOREACH»

«REM» Outer FinalStates «ENDREM»

«EXPAND ScxmlCode::FinalState»

«EXPAND ScxmlCode::CloseScxml»

«ENDFILE» �
The tool creates a file called as the state machine, writes the

headers defined in a block later, and starts to browse the model
from the most external states. For each state of the machine the
block ExploreState is expanded. Then the outer final states are
hooked and the corresponding tag is generated.

Listing 6: The ExploreState block in FSMSCxml.xpt

«REM» Explore Generic States «ENDREM»

«DEFINE ExploreState FOR State»

«IF this.isSimple()»

«EXPAND ExploreSimpleState»

«ELSE»

«IF this.isComposite()»

«EXPAND ExploreCompState»

«ENDIF»

«ENDIF»

«ENDDEFINE» �
With this block states are divided into simple and composite

and the suitable block is expanded. With simple states it checks
for the name, for actions and transitions. With complex states the
block is a bit more tricky:

Listing 7: The ExploreCompState block in FSMSCxml.xpt

«REM» Explore Complex States «ENDREM»

«DEFINE ExploreCompState FOR State»

«IF this.isOrthogonal()»

«EXPAND ExploreOrthState»

«ELSEIF !this.listStates().isEmpty»

«EXPAND ScxmlCode::StateName»

<initial><transition target="«this.

getInitialState().getFullName()»"/></

initial>

«FOREACH this.listCompChilds() AS cc»

«EXPAND ExploreCompState FOR cc»

«ENDFOREACH»

«FOREACH this.listSimpleChilds() AS sc»

«EXPAND ExploreSimpleState FOR sc»

«ENDFOREACH»

«IF this.hasHistory()»

60 the code generator

«EXPAND ExploreHistory»

«ENDIF»

«EXPAND ExploreActions»

«EXPAND ExploreTransitions»

«EXPAND ScxmlCode::CloseState»

«ELSE»

«EXPAND ExploreSimpleState»

«ENDIF»

«ENDDEFINE» �
First it checks for orthogonal states and calls the appropriate

block, then if it’s not an orthogonal state the tool looks for the
default state and writes the required initial tag. Each child state
is distinguished between simple and composite, and again the
suitable block is called recursively.

Listing 8: The ExploreOrthState block in FSMSCxml.xpt

«REM» Explore Orthogonal States «ENDREM»

«REM» Parallel Regions MUST have a nome in the ecore model

«ENDREM»

«REM» Parallel Regions are mapped as Complex states: a

default state is needed «ENDREM»

«DEFINE ExploreOrthState FOR State»

<parallel id="«this.getFullName()»">

«FOREACH this.allOwnedElements().typeSelect(

Region).select(e|(e.owner == this)) AS

oreg»

<state id="«oreg.getFullName()»">

<initial><transition target="«oreg.

getInitialState().getFullName()»

"/></initial>

«FOREACH oreg.allOwnedElements().typeSelect(

State).select(e|(e.owner == oreg)) AS

ost»

«EXPAND ExploreState FOR ost»

«ENDFOREACH»

«EXPAND ScxmlCode::CloseState»

«ENDFOREACH»

«IF this.hasHistory()»

«EXPAND ExploreHistory»

«ENDIF»

«EXPAND ExploreActions»

«EXPAND ExploreTransitions»

</parallel>

«ENDDEFINE» �
With orthogonal states parallel regions are mapped as complex

states and a default initial state is needed for every region.
Then every inner state is explored recursively again. Even if the

engine does not allow actions and transitions from orthogonal
states the tool map also those. In case they are present a warning
in the checking phase will inform the developer.

6.2 implementation 61

Listing 9: The ExploreActions block in FSMSCxml.xpt

«REM» Explore Actions and Activities «ENDREM»

«DEFINE ExploreActions FOR State»

«IF this.hasOnEntry()»

«EXPAND ScxmlCode::CAEntry»

«EXPAND CustomActionCode::JCAEntry»

«ENDIF»

«IF this.hasDoActions()»

«EXPAND ScxmlCode::Invoke»

«EXPAND ActivityThreadCode::InvActivity»

«ENDIF»

«IF this.hasOnExit()»

«EXPAND ScxmlCode::CAExit»

«EXPAND CustomActionCode::JCAExit»

«ENDIF»

«ENDDEFINE» �
Entry actions are now explored. If the state has an entry action

two blocks are expanded: one to generate the corresponding
SCXML tag with a custom action, and the other to generate the
file containing the Java implementation of the custom action. If
the state has a DoActivities the invoke tag is generated and the
Java code to generate a new thread is written. Finally the exit
actions (if present) are explored in the same way as the entry
actions.

The Xtend language has provided me the possibility to define
rich libraries of independent operations and metamodel exten-
sions based on Java methods. The defined extensions are used to
generate the output.

6.2.5 Xtend

The scxmlutil.ext file contains all the needed methods to build the
scxml file.

Listing 10: Some functions from ScxmlUtil.ext file

//Check if State is a FinalState

boolean isFinalState(State this):

if isComposite

then false

else

if (this.metaType.name == "uml::FinalState")

then true

else false;

// If this State is the topmost, returns true.

boolean isTopState(State this):

if(this.container.owner == containingStateMachine()

)

then true

62 the code generator

else false;

boolean isTopState(Pseudostate this):

if(this.container.owner == containingStateMachine()

)

then true

else false;

boolean isTopState(Region this):

if(this.owner == containingStateMachine())

then true

else false;

// Lists composite child states

List[State] listCompChilds(StateMachine this):

allOwnedElements().typeSelect(State).select(e|(e.

isComposite() && (e.parentState() == this))) ;

List[State] listCompChilds(State this):

allOwnedElements().typeSelect(State).select(e|(e.

isComposite() && (e.parentState() == this))) ;

//Lists simple child States

List[State] listSimpleChilds(StateMachine this):

allOwnedElements().typeSelect(State).select(e|(!e.

isComposite) && (e.parentState() == this)).

removeAll(this.allOwnedElements().typeSelect(

State).select(e|e.metaType == "uml::FinalState"))

;

List[State] listSimpleChilds(State this):

allOwnedElements().typeSelect(State).select(e|(!e.

isComposite) && (e.parentState() == this)).

removeAll(this.allOwnedElements().typeSelect(

State).select(e|e.metaType == "uml::FinalState"))

;

// Get all Transition owned by this State

List[Transition] getTransitions(State this):

allOwnedElements().typeSelect(Transition);

//Check if the state has entry or exit actions

boolean hasOnEntry(State this):

!(this.entry.name.toString() == "null");

boolean hasOnExit(State this):

!(this.exit.name.toString() == "null");

//Check if State has activities

boolean hasDoActions(State this):

!(this.doActivity.name.toString() == "null");

//Check if transition has a guard

6.3 a running example : mastercomponent 63

boolean hasCond(Transition this):

!(this.guard.name.toString() == "null");

//Check if transitions has an event that triggers itself

boolean hasEvent(Transition this):

!(this.trigger.isEmpty);

//Check if transition has target

boolean hasTarget(Transition this):

!(this.target.name.toString() == "null");

//Check if transition has Actions

boolean hasAction(Transition this):

!(this.ownedElement.typeSelect(Activity).isEmpty); �
6.3 a running example : mastercomponent

One of the of the objective of my work, was to be able to generate
the code for a working MasterComponent from the corresponding
UML model. This state machine use many of the supported
features of the code generator and was the ideal test for the tool.

The Master Component is an ACS component that represents
an ALMA subsystem (’subsystem’ in its technical meaning) to-
ward the rest of the ALMA software system. It manages life-cycle
details and provides information on the current subsystem state
and a number of modes.

Figure 26: The MasterComponent State Machine.

There are two logical high level states:

64 the code generator

• Available: When a Master Component can be contacted and
is able to receive commands it is Available

• Unavailable: When an attempt to contact a Master Compo-
nent fails with an exception, it is Unavailable. This happen
if the system has no power or if the software has never been
started or crashed.

Available and Unavailable are not real states, in the sense that
they are not really coded in the State Machine. The Executive
or another client will declare that a component is Unavailable
if it fails to get in touch with it, Available in all other cases.
Whenever a Master Component is instantiated, it will be New
and the constructor will leave it in an Available substate when
"construction completed" or it will die in case of disastrous failure
and become Unavailable

6.3.1 Available substates

These are the real states that are represented in the state machine
of a Master Component

• Offline is the state when the component exists but has not
been initialized. There are three substates:

– Shutdown: The component goes in this state upon
initial creation and upon completion of the shutdown
procedure. Here the component can be contacted but
is not able to perform any activity.

– Initializing: When receiving the init() command the
component tries to initialize itself. This can take a
sizable amount of time and therefore it goes into a
transient Initializing substate. When "init completed"
successfully, it transitions to the Online state. Notice
that the transition from Shutdown to Initializing im-
plies a "hard" initialization, where everything is reset,
while in any other case the init() command is only per-
forming a "soft" initialization. For example hardware
is not reset in this case.

– Shuttingdown: The component goes into this tran-
sient state upon receiving the shutdown() command.
A shutdown can require a sizable amount of time,
and therefore the component remains in this substate
until completed and then automatically transitions to
Shutdown

• Online: In the Online state the subsystem is able to receive
commands and perform engineering work, but it is not

6.3 a running example : mastercomponent 65

fully functional for science operation. The start() command
would take it into the Operational state

• Operational: In the Operational state the subsystem is fully
functional and able to perform science. The stop() command
would take it into the Online state.

• Error: When an error occurs that cannot be immediately
automatically recovered (but the component is not physi-
cally destroyed and it is still possible to interact with it), the
Component goes into the Error state. A typical case is when
there are hardware problems with devices in the subsystem
or with resources like disk space. In such cases normally
an intervention from the operator is required. After the
operator has fixed the problem, he/she can issue an init()
or shutdown() -> init() sequence to soft/hard initialize the
Master Component.

In principle a Master Component could automatically go from
Online to Operational upon init (as requested by Pipeline) if the
two states are effectively identical.

6.3.2 Substates of Online and Operational

Applications can define context specific substates for Online and
Operational. Executive would not make general assumptions on
such substates. They will be eventually used for context specific
purposes that require knowledge of the details of the state ma-
chine of a specific subsystem. It would be in any case better to use
common names for equivalent substates in different subsystems.
Here are some examples:

• OK: everything is fine and alive

• IDLE / BUSY: as an alternative to OK for subsystems that
can be just IDLE waiting for commands or are BUSY and
therefore cannot perform other actions in parallel. For "in-
termediate" situation, the usage of OK is usually better.

• RECOVERING: when a subsystem is recovering from a
temporary bad situation/error

6.3.3 A few modifications

Starting from the original concept of the MasterComponent as
developed in ESO, I made some changes to the model. First of all
I added a default state to all the composite states, following the
guidelines I have emphasized in the first part of my work. These
initial states are needed to identify the default starting substate

66 the code generator

in a composite state. Then I added events to the transitions.
Among these, there are some special ones. These events are called
".done events" and they are generated in the state machine when
a DoActivity, started in the substates, has finished his job. This is
done every time an external service is called via the <invoke>
tag, as stated in the SCXML standard. I also added some entry
and exit actions for testing purposes.

6.3.4 The generated files

The generator will produce a Java application. The following filesOnce the files are
generated developers

have only to write
the code for actions

and activities

are created starting from the model:

• StatemachineName.xml: the SCXML model

• Application.java: the main class containing informations and
data for the executor

• JavaInvoker.java: the class implementing Invoker. For each
activity an instance of JavaInvoker is created. This will
launch the corresponding thread with the implementation
of the activity through the start() method.

• ActivityThread.java: a generic class for activity threads. In
this class there is the implementation of the generic stop()
method for the activity threads

• MyTreadActivityName.java: for each activity a specific class
is generated. These classes extend ActivityThread.java and
must be filled with the correct implementation of the Ac-
tivities. When the activity is finished a special event (*.in-
voke.done) is sent to the parent state. This must be the last
generated event from the thread.

• StatemachineNameActionList.java: create the list of Custom
Actions used in <onentry> and <onexit> blocks

• CAActionName.java: a class for each custom action contain-
ing the implementation of the custom action

• CustomActionListMap.txt and DoActivitiesMap.txt: two text
files with the list of Activities and Actions and the names
of the respective Java classes. To be used in future for a
different mapping (each action or activity could be mapped
as a method of a class).

The generated files must be filled with the desired implemen-
tation of actions and activities. Developpers have only to write
the desired implementations for actions and activities. Only the
files MyTreadActivityName.java and CAActionName.java have to be
modified with hand-written code.

6.3 a running example : mastercomponent 67

To run the generated application Application.java must be
started. The application will launch the SCXMLExecutor and on
the console window a very basic interface will log events, current
states and transitions. Events can be fired from the console. The
application use the SCXML model to react to the events.

The application behave as expected: the SCXML model is cor-
rectly interpreted. In addition DoActivities are implemented as
threads, to model the concurrency in the execution of the pro-
cesses. If the state where the DoActivity is called is left the activity
thread is stopped as as provided in the standards.

7
C O N C L U S I O N S A N D F U T U R E W O R K

Contents
7.1 Targets achieved 69
7.2 What to do next? 70

I developed this project working at the headquarters of the Eu-
ropean Southern Observatory, located in Garching bei München,
Germany. Here I worked for the Software Development Division
in a team of 20 people.

In this work I addressed the following topics:

• A first part where I gave an introduction on the Model
Driven Development principles and on the statecharts for-
malism, to give to the reader the basic knowledge needed
to better understand my work.

• A description of the standards adopted to model state ma-
chines in this project (UML and SCXML).

• A brief introduction on the available tools used to edit
and manage models and useful for the automatic code
generation.

• The mapping proposal I developed and used to transform a
UML model in the corresponding SCXML model. A formal
mapping for this kind of transformation has never been
presented in the literature.

• The design and the implementation of a code generator
capable of producing code for an application. The logic
of the application is based on the state machine described
using an SCXML model.

7.1 targets achieved

With my work I achieved all the prefixed objectives. First of all,
staring from a UML state machine model, the corresponding
SCXML model is properly generated. All the features of the
model are translated with using the correct SCXML syntax.

The skeleton of the application is generated. The Apache
SCXML Engine is enclosed in the application and is used to
parse the SCXML model. The model encloses the logic of the

69

70 conclusions and future work

application and is used by the SCXML engine to react to the
external events.

Developers have to fill the generated skeletons with hand-
written code. This code tie the application to the implementation
details.

7.2 what to do next?

Once the design of the application is defined, is time to focus on
the refactoring of the code. The application should be modified
to run as an ACS component. People at ESO are now working to
integrate my project in the ACS Code Generator, a tool capable
of generate Java application for the ALMA platform.

Here follow possible developments of this work:

• For the moment the generated code is for a Java application.
Next step may be to generate in a different language, like
C++, and for a different platform like the VLT software
platform.

• The automatic regression testing procedure of the code
should be implemented to check that the application behave
properly. A model for this purpose should be designed and
a test script prepared.

• Another useful feature should be a simulation toolkit: a
visual representation of the state machine with an high-
lighting of the flow could help to monitor the application
and to spot possible errors on the model.

Part III

A P P E N D I X

A
C O D E L I S T I N G S

a.1 the code generator

The complete listings of the developed tool could be downloaded
from the page of the project on Google Code. The home page of
the project can be reached browsing following URL:

http://acsccg.googlecode.com

Everyone can download the code using a svn client. Use this
command to anonymously check out the latest project source
code:

Non-members may check out a read-only

working copy anonymously over HTTP.

svn checkout http://acsccg.googlecode.com/svn/trunk/

acsccg-read-only

The gsmecg folder contains the full Eclipse project, with the
examples used to define the mapping and the test models.

Here follows a description of the structure of the project.
gsmecg is the main folder of my project.

• src: this folder contains all the source code. The file work-
flow.mwe with the sequence of the operations to be executed,
the file constraints.chk contains all the rules for the models
as specified in the mapping phase.

– In the templates folder you can find all the template
files used to explore models. The file are written using
The Xtend and Xpand languages.

• lib: in here are all the libraries needed to run the code
generator and the generated application.

• src-gen: this folder is used to store the generated application.

• examples: here you can find all the examples used to develop
the code generator. In every folder there is the MagicDraw
file (.mzip) and the exported model in XMI format.

73

B I B L I O G R A P H Y

[1] Model to text (m2t) eclipse project. URL http://www.

eclipse.org/modeling/m2t/.

[2] Qt labs website. URL http://developer.qt.nokia.com.

[3] Commons SCXML, July 2010. URL http://commons.apache.

org/scxml/.

[4] UML specification, May 2010. URL http://www.omg.org/

spec/UML/2.3/.

[5] State Chart XML (SCXML): State machine notation for con-
trol abstraction, December 2010. URL http://www.w3.org/

TR/2010/WD-scxml-20101216/.

[6] Astronet website, 2011. URL http://www.astronet-eu.

org/.

[7] The atacama large millimeter/submillimeter array, March
2011. URL http://www.eso.org/sci/facilities/alma/.

[8] The european extremely large telescope ("e-elt") project,
March 2011. URL http://www.eso.org/sci/facilities/

eelt/.

[9] La silla paranal observatory, March 2011. URL http://www.

eso.org/sci/facilities/lpo/.

[10] Eso website, 2011. URL http://www.eso.org/.

[11] Eso - the very large telescope, 2011. URL http://www.eso.

org/paranal/.

[12] L. Andolfato and G.Chiozzi. Generic state machine engine
software requirement specification.

[13] Thomas J. Bergin and Richard G. Gibson. History of Program-
ming Languages. Addison Wesley, 1996.

[14] Bruce Powel Douglass. Uml statecharts. Embedded Systems
Programming, January:22–42, 1999.

[15] G. Filippi, P. Sivera, and F. Carbognani. Software engineering
practices for the ESO VLT programme, 2001.

[16] David S. Frankel. Model Driven Architecture: Applying MDA
to Enterprise Computing. Wiley, 2003.

75

http://www.eclipse.org/modeling/m2t/
http://www.eclipse.org/modeling/m2t/
http://developer.qt.nokia.com
http://commons.apache.org/scxml/
http://commons.apache.org/scxml/
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/
http://www.w3.org/TR/2010/WD-scxml-20101216/
http://www.w3.org/TR/2010/WD-scxml-20101216/
http://www.astronet-eu.org/
http://www.astronet-eu.org/
http://www.eso.org/sci/facilities/alma/
http://www.eso.org/sci/facilities/eelt/
http://www.eso.org/sci/facilities/eelt/
http://www.eso.org/sci/facilities/lpo/
http://www.eso.org/sci/facilities/lpo/
http://www.eso.org/
http://www.eso.org/paranal/
http://www.eso.org/paranal/

76 bibliography

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John M.
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[18] G.Chiozzi, A.Caproni, R.Cirami, P.Di Marcantonio, D.Fugate,
S.Harrington, B.Jeram, M.Plesko, M.Sekoranja, H.Sommer,
and K.Zagar. The alma common software, acs status and
developments, 2005.

[19] Roberto Gilmozzi and Jason Spyromilio. The 42m euro-
pean elt: status, 2008. URL http://www.vt-2004.org/sci/

libraries/SPIE2008/7012-19.pdf.

[20] David Harel. Statecharts: a visual formalism for complex
systems. Science of Computer Programming, 8:231–274, 1987.

[21] Object Management Group. MDA specifications, August
2010. URL http://www.omg.org/mda/specs.htm.

[22] Object Management Group. UML Superstructure specifica-
tion, May 2010. URL http://www.omg.org/spec/UML/2.3/

Superstructure/.

[23] Object Management Group. Object Management Group
website, March 2011. URL http://www.omg.org/.

[24] Miro Samek. Practical UML Statecharts in C/C++, Sec-
ond Edition: Event-Driven Programming for Embedded Systems.
Newnes, 2008.

[25] Richard Soley. Model driven architecture, November 2000.
URL http://www.omg.org/~soley/mda.html.

[26] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. Eclipse Modeling Framework. Addison Wesley,
2008.

[27] Peter J. Young, Mario J. Kiekebusch, and Gianluca Chiozzi.
Instrument control software requirement specification for
extremely large telescopes.

http://www.vt-2004.org/sci/libraries/SPIE2008/7012-19.pdf
http://www.vt-2004.org/sci/libraries/SPIE2008/7012-19.pdf
http://www.omg.org/mda/specs.htm
http://www.omg.org/spec/UML/2.3/Superstructure/
http://www.omg.org/spec/UML/2.3/Superstructure/
http://www.omg.org/
http://www.omg.org/~soley/mda.html

	Dedication
	Abstract
	Sommario
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Understanding the topic
	1 Introduction
	1.1 Objectives of this work
	1.2 ESO
	1.2.1 The organization
	1.2.2 Main projects

	1.3 Structure of the document

	2 Model Driven Development
	2.1 Why we model
	2.2 Models
	2.3 The MDA approach

	3 State machines
	3.1 Statecharts
	3.2 UML: a very general purpose definition for State Machines
	3.3 SCXML: a well defined standard

	4 Used tools
	4.1 MagicDraw
	4.2 Eclipse
	4.3 EMF
	4.3.1 Generator Workflow Component
	4.3.2 Xpand
	4.3.3 Check
	4.3.4 Xtend

	4.4 Apache SCXML and the Apache engine

	Developing the solution
	5 Model transformation
	5.1 Problems
	5.2 A proposal for UML to SCXML mapping
	5.3 Comparison
	5.3.1 Simple state
	5.3.2 Initial pseudostate
	5.3.3 Final pseudostate
	5.3.4 Entry and exit actions
	5.3.5 Transition
	5.3.6 Internal Transition
	5.3.7 Superstates and substates
	5.3.8 History pseudostate
	5.3.9 Activities

	5.4 Custom actions
	5.5 Summary

	6 The code generator
	6.1 The Generic State Machine Engine Architecture
	6.1.1 Model Independent State Machine Engine

	6.2 Implementation
	6.2.1 Designing a model with MagicDraw
	6.2.2 Transforming the model
	6.2.3 Check
	6.2.4 Xpand
	6.2.5 Xtend

	6.3 A running example: MasterComponent
	6.3.1 Available substates
	6.3.2 Substates of Online and Operational
	6.3.3 A few modifications
	6.3.4 The generated files

	7 Conclusions and future work
	7.1 Targets achieved
	7.2 What to do next?

	Appendix
	A Code listings
	A.1 The code generator

	Bibliography

