
THE ELT CONTROL SYSTEM: RECENT DEVELOPMENTS
G. Chiozzi, L. Andolfato, J. Argomedo, N. Benes, C. Diaz Cano, A. Hoffstadt Urrutia,

N. Kornweibel, U. Lampater, F. Pellegrin, M. Schilling,
B. Sedghi, H. Sommer, M. Suarez Valles

 European Southern Observatory, Garching bei Muenchen, Germany

Abstract
The Extremely Large Telescope (ELT) is a 39m optical

telescope under construction in the Chilean Atacama desert.
The design is based on a five-mirror scheme, incorporating
Adaptive Optics (AO). The primary mirror consists of 798
segments with 1.4m diameter. The main control challenges
can be identified in the number of sensors (~25000) and
actuators (~15000) to be coordinated, the computing
performance and small latency required for phasing of the
primary mirror and the AO. We focus on the design and
implementation of the supervisory systems and control
strategies. This includes a real time computing (RTC)
toolkit to support the implementation of the AO for
telescope and instruments. We will also report on the
progress done in the implementation of the control
software infrastructure necessary for development, testing
and integration. We identify a few lessons learned in the
past years of development and major challenges for the
coming phases of the project.

INTRODUCTION
The ELT is a large segmented telescope, where

significant wavefront perturbations are induced by the
telescope itself (deformation through gravity, temperature,
and wind loads), in addition to perturbations added by the
atmosphere. The goal is to control the telescope enabling
the delivery of a diffraction limitable beam at each of the
ELT Nasmyth foci, i.e. where the light beam is transferred
to the instruments. This means the “spectrum of wavefront
aberrations induced by the observatory is below that of the
free atmosphere.” [1].

The ELT Control System implements the overall control
of the telescope (and dome), including the computers,
communication and software infrastructure. It defines
standards for control and electronics hardware and
software and data communication. It includes the high-
level coordination software, wave front control computer
and engineering data archive.

In a system the size of the ELT Control System,
decisions on algorithms and computational performance
are not the only major design problems. The organization
of the overall system, its behavior and interactions
represent a significant organizational complexity which
must be addressed.

An important factor influencing the architecture of the
control software is the procurement strategy, that foresees
the outsourcing of all components and services which can
be efficiently delivered by industrial partners, while
maintaining in-house those tasks for which ESO has a
particular domain expertise. Based on this principle, also

the overall control system shall be composed of
components designed, built and delivered by many
industrial partners or in-house. Distributed development
and integration of the subsystems demand clear interfaces
which should match not only a functional breakdown of the
control system, but reflect the organizational boundaries of
the many development locations.

CONTROL STRATEGY
The main challenge of ELT is to provide a wavefront

with an error in the range of 10th of nm in the presence of
perturbations that can be in the range of mm (in the case of
gravity deformation when changing the telescope pointing
from zenith to horizon). The most important role in the
associated control strategy is played by the deformable
quaternary mirror (M4). It is controlled in an on-sky loop
using stellar light with a large temporal and spatial
bandwidth. This requires a deformable mirror of
unprecedented size. M4 has 5352 degrees of freedom, with
the on-sky loop being closed at rates up to 1 kHz [2]. The
limited stroke (100um) of the M4 actuators and the limited
capture range of the wavefront sensors exclude that the
wavefront can be controlled solely by M4, but require it to
be supported by several additional control systems:

Figure 1: Telescope subsystems following the light path.

• Feed-forward control is used mainly during the "blind
phases" of the Telescope when on-sky loops are open.
E.g. a pointing system is used to preset the telescope
to a new target, with the feed forward model taking
into account astrometry and telescope deformations
due to gravity and temperature to bring the telescope
within the acquisition range of on-sky sensors [3].

• Feedback loops based on telescope internal metrology
(as opposed to on-sky loops) are used to control the
state of the telescope. E.g. the large segmented primary
mirror consisting of 798 hexagonal segments, and the
M1 control system moves each segment in piston, tip,
and tilt (2394 degrees of freedom) to control the shape
of M1 based on measurements of relative
displacements between segments using 4524 Edge
Sensors. The M1 Figure Loop can reduce relative edge
displacements to several nm and can keep low order
deformations (in the mm range due to gravity) at levels
that are within the capture range of M4 [4].

• Stroke Management is a background task to
redistribute the slowly building non-zero-mean
components in low order modes of M4 to other degrees
of freedom:
o tip and tilt modes are controlled in a collaborative

control scheme together with M5 and Telescope
Main Axes, which desaturates M4 eventually
through a Main Axes guide correction. This
process is referred to as Field Stabilization [5,6].

o focus and coma are transferred to M2 occasionally,
at most every 5 minutes [7].

o higher orders are continuously offloaded to M1,
essentially by commanding the low pass filtered
modal amplitudes accumulated on M4 to the M1
figure loop control system.

Moving optical surfaces changes the wavefront error
measured by the Adaptive Optics system and causes the
M4 to desaturate, i.e. saturation management requires a
closed on-sky loop. Stroke management redistributes
stroke between the optics degrees of freedom but does not
aim on maintaining the telescope at its prescription [7].

While the control strategies outlined above are simulated
[8] and tested [9,10,11] in detail, it is important to note that
the unprecedented size of ELT is expected to lead to
surprises during commissioning. Changes in the control
strategy are hence expected, and therefore the control
system is built such that well understood subsystem control
is decoupled from less defined high-level (on-sky) control,
and the latter one is developed in a way that allows for the
flexible adjustment of algorithms during commissioning.

CONTROL SYSTEM ARCHITECTURE
 The ELT Control System architecture has been

described in [12] and since then we have consolidated and
further developed it in the details, using the feedback from
prototypes and the first applications. Here and in the next
sections we will describe just some key aspects to have a
context and we will describe the most important
developments since the publication of [12].

The architecture enforces a distinction between a
telescope device (the System Under Control - SUC, e.g. the
M2 unit) and the component controlling that device (the
Control System - CS). This terminology is adopted from the
State Analysis (SA) methodology developed at JPL [13].

As a system of systems, the ELT contains layers of
controllers. A lower level component comprising a CS and
SUC appears as a SUC to a higher-level CS. For example,
the primary mirror segment position actuators (PACT) with
embedded position controller and course and fine stage
actuators appear as components of the SUC to the M1 CS
responsible for figure control.

Figure 2 shows an overview of the ELT CS, with some
simplifications and omissions for readability (numbers
circled in orange are used to identify items referenced with
Fig. 2-# in the text below).

The first breakdown of the ELT CS is into the many
individual control systems associated with Telescope
subsystems (called the Local Control Systems (LCS)) (Fig.
2-1), and the single system that integrates these, termed the
Central Control System (CCS) (Fig. 2-2), whose internal
structure is described in the corresponding section below.

The LCS-CCS discrimination not only separates unit-
level from telescope-level safety and control, it also
matches organizational boundaries in-line with the ELT
procurement strategy: individual subsystems (mirror units,
main structure, …) are designed, built and delivered by
industrial partners; their integration is ESO responsibility.

On the other side of CCS are instruments (Fig. 2-3),
developed by Consortia of ESO partner institutes. Each
instrument includes an independent Instrument Control
System (ICS) developed following the ELT standards, and
interfacing with the telescope through the CCS interface,
split over a control and a deterministic network (Fig. 2-4).

The interfaces between LCSs, CCS, and instruments are
defined in a series of ICDs specifying the logical addresses,
data types, formats, rates and characteristics of the data
communication. The same applies to the interfaces
between the internal components of CCS, even if that is
fully developed inside ESO. This strict interface
management is key, given the distributed nature of the ELT
CS and the range of developers and suppliers.

From State Analysis we have also adopted the State
Variable and Estimator-Controller-Adapter patterns[13].

The term State Variable (SV) refers to an element of the
CS that represents a physical state of the SUC. For example,
a limit switch in the SUC will physically be in an
opened/closed state and the CS will use evidence such as
sensor measurements to estimate the state of the switch as
opened/closed. SVs are observable by clients.

The Estimator-Controller-Adapter pattern is based on:
• The Adapter that allows to communicate with the SUC

to command and measure.
• The Estimator that receives measurements from the

SUC via the Adapter and computes State Variables.
Estimators do not send commands to the SUC.

• The Controller that is responsible to control the SUC
via the Adapter. It can access State Variables if needed.

Commands sent by a Controller affect the CS and
therefore the value of State Variables.

We have decided (after analysis and prototyping) not to
adopt SA goal-based operation. This would have changed
radically our way of viewing the system with respect to
previous projects and the experience of the astronomers
developing observations. Since we do not have the
requirement to develop an autonomous system (where
goals-based operation is a major advantage), we believe
that the cost of a paradigm shift would have not been
compensated by the benefits.

 LOCAL CONTROL SYSTEMS
A Local Control System (LCS) contains two key

functional groups: control and safety. Control functions
enable standard operations, while safety functions preserve
integrity and guarantee safety of personnel and equipment.

The control functions include Control Software, Local
Control Unit(s), remote IO and a local communication.

The safety functions include Safety Logic, Local Safety
Unit(s), Safety IO devices and a fail-safe communication.

The LCS enables safe control of the functions of the
associated subsystem (e.g. M2 mirror cell). The functions
provided by the LCS can make no assumptions as to the
nature of the subsystem use in the context of the telescope
control system (the operation and wave front control
strategies being implemented by the CCS). For example,
the M4 adaptive mirror has to be available and operable to
full performance irrespective of whether or not the
telescope is observing or calibrating or parked.

The LCS provides interfaces to CCS that enable
individual and independent control of subsystem devices

and functions (Fig. 2-5). For example, it must be possible
to move the warping harness of an M1 segment irrespective
of the status of edge sensors and position actuators.

The common characteristics of LCSs and the specific
example of the M1 LCS, that is developed directly at ESO
as well as the Laser Guide Star (LGS) LCS, have been
described with more details in [14]. All other LCSs are
being implemented by the contractor responsible for each
individual subsystem; at present time, most telescope
subsystems have passed final design review and are in
different stages of implementation. Each contractor is
followed-up by a member of the ESO CCS development
team. Particularly important is the definition and
consolidation of the ICDs between each LCS and CCS as
the detailed design and implementation progress.

CENTRAL CONTROL SYSTEM
The Central Control System (CCS) integrates the many

Local Control Systems into a single system implementing
the coordinated control, system level safety, monitoring
and user interfaces required to operate the telescope.

It provides monitoring, logging and archiving for long
term trending and configuration control. Control Room
terminals, GUIs and tools belong to CCS. CCS is therefore
the primary user interface to operate the Telescope.

CCS (developed in-house, to leverage our specific
astronomical expertise) is responsible for coordination and
for all what concerns the astronomical domain.

CCS applications are organized in a shallow hierarchy of
loosely coupled cooperating components as can be seen in
(Fig. 2-2). All applications are based on a common
software infrastructure (see [12] and the section below) and

Figure 2: ELT Control System overview.

in particular on the Rapid Application Development
(RAD) framework [15]. RAD helps in the development of
event driven applications by imposing a common design
and providing tools to quickly produce application
skeletons ready to use. RAD applications are built around
a BOOST ASIO event loop [16] integrated with a SCXML
state machine interpreter [17]. Anonymous publisher-
subscriber communication and shared access to an Online
Database are used to keep the coupling as loose as possible.

LSVs
Within CCS, a Local Supervisor (LSV) (Fig. 2-6) is a

software component that provides access to specific Local
Control System (LCS) functionalities. The LSV is
responsible for implementing the telescope domain logic
and translating the telescope concepts into the device
domain handled by the corresponding LCS. For example,
the M1 LSV is responsible for controlling and maintaining
a certain optical quality of the whole telescope primary
mirror surface while the M1 LCS is managing the actuators
and sensors installed on each segment of the mirror.

There is one LSV for each of the following telescope
LCSs: M1, M2, M3, M4, M5, Pre-Focal Stations, Main
Structure, Dome, and Laser Guide Star. Each is
independent from the other LSVs and can use only the
services of the corresponding LCS. For instance, M1 LSV
is not allowed to communicate directly to M4 LSV and can
send commands only to M1 LCS.

The services provided by an LSV are grouped in
"subsystem functions". Each subsystem function
corresponds to a set of functionalities implemented by the
LCS. For example, since the Main Structure LCS allows to
position the altitude and azimuth axes independently, the
Main Structure LSV provides two subsystem functions,
one to deal with altitude and one for azimuth. For each
subsystem function an operational state is estimated by the
LSV using the published LCS measurements. The
subsystem functions are supposed to be, as far as possible,
independent (e.g. it should be possible to use altitude axis
even if azimuth is not available and vice-versa).

Each subsystem function is made of an adapter library,
one or more estimator applications, and zero or more
controller applications following the Estimator-Controller-
Adapter design pattern. Each estimator and each controller
are implemented by a dedicated application. LSV estimator
and controller applications share the same architecture to
allow faster development and easier maintenance.

Common requirements across all LSVs and specific
requirements have been identified, a set of common design
patterns has been drawn and implemented in pathfinder
LSV applications. Detailed design for the individual LSVs
is being analyzed and the development has started and will
be the main activity for the coming years until deployment
in the ELT Control Model[12] and at the telescope.

HLCC
The High-Level Coordination and Control (HLCC)

software layer lies above the LSVs (Fig. 2-7). It offers a
single interface of the whole telescope toward operators

and the instrument control software. Its main task is for
supervisory applications to coordinate the various
telescope subsystems.

The main challenge for HLCC is to implement a well-
structured system that at the same time can be modified to
a large extent during telescope commissioning.

To reach this objective we have identified the building
blocks that can be seen in Fig. 2. An important role will be
played by the SequencerProcedures (Fig. 2-8). These will be
developed around features[12], independent supervisory
applications designed to perform a complete operational
function/use case of value to the users of the system.

We have planned for a long period of integration and
commissioning[18], during which we will discover how to
operate our machine and how the elementary functions
provided by the LSVs will have to be composed together.
Implementing features as independent components, using
an interpreted language (Python) accessible to the
commissioning team (not necessarily SW developers)
allows us to evolve them in an easy way, with minimal
impact on other features.

In the last two years we have developed a prototype to
validate our architecture and design with respect to the
software infrastructure and the application framework. We
chose a vertical slice from a dashboard GUI down to
several services representing a telescope tracking the sky.
Here we give a few examples of design choices that differ
from existing software at other ESO telescopes.

 Measurement data was treated using estimators
subscribing to the publishers that deliver input data to them,
processing this data in Java code or in external Python
scripts (Jep framework[19]), and pushing results out
through StateVariables. Estimators form a hierarchy, e.g.
with 2 estimators for incoming Alt and Az positions of the
telescope, and downstream estimators that combine or
convert this data. The use of pub-sub communication
makes deployment of estimators in one or many processes
a flexible choice. We got smooth data flow through these
estimators when feeding them with simulated data at 20 Hz.
One of the estimators for derived data produced the
telescope's actual state, e.g. as "tracking" or "moving".

The first HLCC prototype of the RAD applications was
implemented in Java, that we considered better suited than
C++ for high-level coordination, without demanding
performance requirements.

For the current implementation of the HLCC
applications, we decided to change from using Java and
Python to using C++ and Python. Java worked very well
for the prototype, and likely would have worked well also
for the final applications. But LSV and instrumentation
applications are being developed in C++ to leverage the
huge experience in the ELT software development team
and to avoid potential performance problems coming from
JVM garbage collection, which could introduce unwanted
jitter to applications. We hope that the lower efficiency we
experience working with C++ will be compensated by
synergies and code reuse across subsystems as well as less
maintenance in the lower level infrastructure software
through decreased support for the Java language.

We identified the HLCC interfaces and applications in a
first design iteration and we have started now with the
implementation. The Telescope Interface implements the
ICD between all of CCS and the instruments. All requests
from Telescope Interface will be served by delegating to
other HLCC or LSV applications or to the Telescope Real-
time Executor (TREx), described below.

As an alternative, especially during early development
when these other applications do not yet exist or do not yet
provide simulation capabilities of their own, the
TelescopeInterface (Fig. 2-9) will delegate to the
CcsSimulator (Fig. 2-10). The CcsSimulator will be also
delivered to the consortia developing instruments, to have
a frontend for testing their interactions with CCS.

In addition to the request-reply and publish-subscribe
communication described in the ICD, instruments, as well
as operators, will be able to access dedicated telescope data
published in the Online Database.

The PointingKernel (Fig. 2-11) application controls all
telescope subsystems. It interacts with TREx for most of
the pointing logic, but also commands the LSVs directly.

The CentralFDIR (Fig. 2-12) application monitors those
aspects of quality and failures that involve more than a
single subsystem.

Other dedicated applications exist for star catalogues,
monitoring and configuration, alarms, or specific tasks
such as segment exchanges.

TREx
Control loops with demanding real-time requirements

described in the Control Strategy section are not part of
HLCC; instead, they are allocated to the Telescope Real-
time Executor (TREx) (Fig. 2-13), which communicates
directly with LSVs and LCSs using, when necessary, the
deterministic network (not shown in the figure). HLCC
commands and monitors TREx.

This component of the system is now in the requirements’
collection phase. What is clear is that the WFC and stroke
management strategy and algorithms will, for a big part, be
developed as part of commissioning, while gaining
experience on the as-built telescope.

For this purpose, a flexible software framework for real-
time control applications is required. The framework must
be suitable for use by control engineers and a visual
programming environment, comprising a palette of data
analysis and algorithmic building blocks, is foreseen. The
framework should not require detailed knowledge of real-
time systems when mapping the application to the
underlying hardware resources.

A demonstration prototype was developed in 2019 based
on GNU Radio[20], a free open-source development
toolkit to implement signal processing tasks. Although
GNU Radio is not built with low-latency and control
systems in mind, it seems possible to overcome the
limitations with minor adaptions and by tailoring our use
to the pure algorithmic domain. CS specific functions (e.g.
I/O, monitoring, error handling and recovery) should be
handled in a separate entity that interfaces the real world
with GNU Radio. GNU Radio comes with a GUI usable by

non-software engineers and integrates well with C++ and
Python.

Results with a computational load comparable to TREx
show that 1kHz loop rates are reliably achievable.
Measurements indicate that 2kHz loop rates may be
possible.

RTC AND ADAPTIVE OPTICS
The core component of any AO system is the Real Time

Computer (RTC) which measures the incoming wavefront
aberrations by means of sensors and corrects for them by
means of a deformable mirror.

During scientific observation, the ELT telescope
performs only guide probe AO, i.e. measurements done
with a wavefront sensor (WFS) installed on the pre-focal
station (PFS) and limited to the first few modes are used to
reject low and mid spatial/temporal frequency wavefront.
This is required to provide an image quality sufficient for
handover to an instrument. Guide probe AO is performed
by TREx, which stops performing it after INS handover; at
this point the instrument drives the M4 to achieve the
desired image quality [7].

There will be therefore one RTC per each instrument to
implement high order AO modes and one RTC used on the
telescope for commissioning and diagnostic (the Phasing
and Diagnostic Station).

The ELT RTC architecture [21] is defined by ESO not
only for the telescope, but also for the instruments, with the
aim of streamlining development and leveraging re-
usability. This architecture identifies two distinct
components (Fig. 3).

Figure 3: RTC architecture.

 Each of them targets functions in a specific domain and
timescale and follows its own technology roadmap.

The Hard Real-Time Core (HRTC) implements the main
AO control loops, which perform demanding computations
on incoming WFS measurements and command actuators
within tight timing constraints. The HRTC is interfaced to
the AO WFSs and actuators on the Instrument via a
dedicated RTC Real-Time Network. The HRTC commands
both the M4 and the M5 via the Deterministic Network.

The Soft Real-Time Cluster (SRTC) is a set of
computing nodes in charge of the high-level supervision
and optimization of the HRTC. It is driven by requests from
Instrument Control Software (ICS), as well as by the
reception and automatic processing of telemetry data (e.g.
measurements, commands). Computations elapse from
seconds to minutes and involve algorithms operating on
large data sets. A dedicated AO RTC Telemetry Network

interconnects the HRTC and SRTC. ESO has defined
standards for the SRTC technology and delivers the AO
RTC Toolkit: common RTC functions are addressed by a
suite of software tools, libraries and reference
implementations.

The HRTC is on the cutting edge of technology, and
therefore rather than standardizing technology, we have
decided to specify only interfaces, to achieve full
replaceability as mitigation of obsolescence.

Nonetheless, the HRTC prototype (HRTCp) has been
developed to explore the feasibility of building an ELT-size,
AO RTC based on mainstream CPU and Ethernet
technology - i.e. without accelerators or specific-purpose
hardware. Key aspects to be assessed are modularity,
scalability, long-term maintainability and upgradeability.

The HRTCp addresses a Multi-Conjugate AO (MCAO)
configuration with six LGS WFS and adopts a functional
breakdown that enables scaling it down to Single
Conjugate AO (SCAO), such as the ELT Wavefront RTC
(WFRTC), i.e. the RTC to be used in combination with the
PFS and during commissioning for verification of
telescope SCAO capabilities. The HRTCp operates at 500
Hz and implements a pseudo open-loop control (POLC)
algorithm dominated by two memory-bound, Matrix-
Vector-Multiplication (MVM) operations of size
6,316x55,392 per loop cycle. All the external interfaces use
10 GbE signaling to ingest an aggregate 44.4 Gbps
incoming pixel traffic and produce 87 Mbps actuator
commands and 2.7 Gbps telemetry data towards the SRTC.
Simultaneously, the system continuously receives
disturbance data at 1 Gbps.

The as built HRTCp is comprised of 14 mainstream
servers: two front-end nodes (namely A and B) per LGS
WFS, one shared back-end node and one low-level
supervisory node. Front-end node A implements the MVM
in the direct control path using 48 CPU cores on a dual-
socket AMD EPYC 7742 server. Front-end node B is
responsible for the MVM in the offline control path (burst
computation) and employs 56 cores on a dual-socket AMD
EPYC 7501 server. Aggregate, each pair of front-end
nodes delivers in excess of 600 GB/s memory bandwidth
and 300 GFLOP/s only for these operations.

The internal communications employ 10 GbE, except for
the collection of results from the front-end A nodes by the
back-end node. Early tests showed that this is a major
serialization point (contributing a 100 us delay over 10
GbE), thus dictating the use of single 100 GbE link. With
this, the current HRTCp end-to-end latency (measured
from last pixel image packet received to last command
packet sent) is 244 us. The associated deviation is below 4
us over 2-minute intervals, with maximum excursions of
25 us.

The key challenge has been to achieve the required
performance using only hardware platforms and software
techniques with long-term maintainability and upgrade
paths. A key mandate was to widen the profiles that could
contribute to RTC development by targeting knowledge
domains (i.e. CPU-based computation and Ethernet
networking) available at ESO.

The development was started in early 2018 and the
system is currently in operation at ESO premises.
Important picks from this prototype development are:

• Recent, mainstream CPU architectures targeting High
Performance Computing and providing fine NUMA
granularity can be leveraged to fit our problem.

• Deterministic networking can be achieved with the
native Linux network stack, using interrupt routing
and controlling packet coalescence. Deterministic,
overall latency performance is possible exploiting
real-time techniques such as NUMA affinity, core
isolation, thread pinning and inter-thread polling.

• It is possible to write maintainable C++ software that
implements the above techniques, with little or no
explicit vectorization (i.e. offloading this to the
compiler). The current trend for increased CPU core
count in CPU families helps mitigate the architectural
constrains derived from core isolation and thread
pinning.

The HRTCp will be used as a flexible platform where
upcoming CPU families and networking devices can be
benchmarked. In addition, several of the HRTCp design
choices will be at the core of the ELT WFRTC.

A subset of the techniques developed within the HRTCp
scope have been ported to the VLT domain. An upgrade of
the VLT SPARTA systems will replace the obsolete,
FPGA-based real-time core with a single server, while
respecting the legacy (non-Ethernet) I/O interfaces.

THE MINUSCULE ELT (MELT)
The Miniscule ELT (MELT) [9] is an optomechanical

test bench comprised of key components such as a
segmented primary mirror, a secondary mirror on a
hexapod, an adaptive fourth mirror, and a fast tip/tilt mirror
together that mimic certain functionalities of the ELT.

It is meant for testing and validating key functionalities
to be used on the ELT during system verification,
wavefront control commissioning, through the handover to
science, up to regular diagnostic, monitoring, or validation
during operations.

The main objectives of MELT are to deploy and validate
the telescope control system as well as wavefront control
algorithms for commissioning and operations.

The optomechanical setup uses the Active Segmented
Mirror (ASM) with 61 piezo-driven segments and a
diameter of 15 cm. It was used on sky on a VLT telescope
during the Active Phasing Experiment (APE)[22].

Several beam paths after the optical train on MELT are
conditioned and guided to wavefront sensors and cameras,
sensitive to wavelength bands in the visible and infrared to
emulate wavefront commissioning and phasing tasks.

In MELT, the ELT main axis control is emulated with a
moveable diffraction-limited source that emits white light
from the visible up to the K band through a turbulence
generator. A single conjugate adaptive optics Shack
Hartmann (SH) WFS is used in closed loop with an ELT
RTC and M4 to test and validate offloading scenarios to
M5 and the main axis. In addition, it is used to deploy and

validate wavefront control algorithms and the influence of
AO on M1 phasing using the baseline SH high order WFS,
but also M4 phasing issues with its petals, and scalloping.
The bench also allows to test different phasing concepts.

The MELT Control System applies the same
architectural concepts as the ELT. Furthermore, the central
services developed for the ELT, are deployed in MELT as
soon as they are released, such that their usage provides
early feedback. MELT is therefore an excellent testbed also
for the whole control SW architecture and tools.

The bench will help us to be as much as possible
prepared when the telescope will send the star light through
the optical train to be able to tackle the unforeseeable
problems and not be caught up with the foreseeable ones.

COMMON SW INFRASTRUCTURE
The control software of the ELT is built on top of a

common software infrastructure, comprising libraries,
frameworks and development tools for building, deploying,
documenting and testing the applications.

Among these, particularly important is the Core
Integration Infrastructure (CII). CII comprises
communication libraries, configuration infrastructure,
network value cache, and logging infrastructure for control
applications. The communication part includes an interface
definition language for defining the request/reply
interfaces as well as the publish/subscribe contracts,
independent from the actual protocol (ZMQ, DDS,
OPC/UA, and others) used. CII provides APIs in three
languages (C++, Python, and Java).

CII relies on a number of third-party products. For
example, the Online Database (a central value cache on the
control network) keeps its data split over three third-party
databases: elasticsearch, redis, minIO. While we benefit
from the stability and feature richness of these products,
mastering them is a challenge. We also often find the need
of creating additional tooling, in particular when we aim to
allow our users to handle them on their development set-
ups without direct support from the CII team.

Navigating in the problem space of performance versus
usability versus maintainability, we are frequently
discussing whether a given usage pattern should be
supported in the CII infrastructure layer or not. A clear cut
would be desirable between functionality implemented in
ground-layer infrastructure, versus middle-layer
frameworks, versus higher-layer subsystems. Defining this
cut, or clear criteria for it, is an on-going challenge.

CII has been developed by Cosylab for ESO, from a
specification of about 800 requirements in three years; the
first version is being adopted by the control subsystems.

Different subsystems have different usage patterns for
using the CII software, and currently the main activity
consists in adjusting functionality according to user
feedback and moving features between software layers.

We have recently transferred the user documentation
from documents (word / pdf) to a collaborative platform
(GitLab / reST / Sphinx / Jenkins). This enables users to
prepare and propose improvements, while still being
governed by a well-defined process. This has well

decreased the turn-around time for documentation updates
and makes our documentation more helpful.

While CII gets more and more used in the control
subsystems, we are getting ready to deal with the resulting
higher amount of user feedback and support requests.

The development of GUIs is addressed instead by the
Control UI Toolkit (CUT). CUT is a set of libraries,
widgets and graphical design patterns tailored to the ELT
Control System requirements. Qt is used for graphical
rendering; Taurus [23,24] as an abstraction layer that
provides a powerful MVC pattern specifically designed
with control systems in mind. Additional custom widgets,
utilities, color schemes, and documentation based in
Taurus and Qt complete the GUI development environment.

 Taurus was selected due to similarities in requirements
to our own specification, offering:

• Extension capabilities: plugins for Taurus can be
developed to enhance its communication capabilities,
model access, plotting and image rendering.

• MVC design: allows decoupling widget and views
development from models. While we develop models
to access CII services, we can still continue
development of application views using the "eval"
model plugin, or any other plugin.

• Multiple expertise levels: developers in ELT varies in
GUI software development experience. Taurus offers
three ways to develop GUIs, from a very simple no-
code approach, to complete freedom [24].

• Declarative binding: supports declaration in UI
specification of binding between datapoints and
widgets.

• Subscription, polling, filtering, customization and
declarative configuration of UI.

 Taurus is extensible by design, a fact that is appreciated
and allows us to provide support for CII communication
libraries and infrastructure as they are integrated in the
development environment. At this moment, ELT includes
Taurus in its Software Development environment, and we
contribute our bug fixes and development directly to the
upstream project. It also includes the Taurus CII Online
Database Plugin. The Control UI Toolkit has been used
until now to implement prototype and engineering GUIs.

CONCLUSION
The ELT Control System faces major challenges that are

expected to be overcome by the development of a System
of Systems flexible up to the commissioning phase. After
the requirements and design phase and the development of
the technical infrastructure and of (large scale) prototypes,
we are now moving to the serial development of the actual
system components. The LCSs, primarily developed exter-
nally by outsourced contractors, LSVs and HLCC, shall be
integrated into one single System user interface. Specific
validation test benches (MELT) are operational and follow-
ing the evolution of the project.

The Scientific First Light for the ELT is foreseen for the
end of 2027 and our schedule is in line with this target.

REFERENCES
[1] H.Bonnet et al., “Adaptive optics at the ESO ELT,” Proc.

SPIE 10703, Paper 10703-10, 2018.
[2] R.Biasi et al., “E-ELT M4 adaptive unit final design and

construction: a progress report”, Proc. SPIE 9909, Paper
9909-7Y, 2016.

[3] P.T.Wallace, “A rigorous algorithm for telescope pointing,”
Proc. SPIE 4848, 2002.

[4] B.Sedghi, M.Müller, “Dynamical aspects in control of E-
ELT segmented primary mirror (M1),” Proc. SPIE 7733,
Paper 7733-2E, 2010.

[5] B.Sedghi et al., “Field stabilization (tip/tilt control) of E-
ELT”, Proc. SPIE 7733, Paper 7733-40, 2010.

[6] B.Sedhi, “Tip/tilt control strategies at ELT” Wavefront
sensing and control in the VLT/ELT era, 3rd edition, invited
talk, Paris, 2018
https://indico.obspm.fr/event/56/contributio
ns/145/

[7] H.Bonnet et al., “Adaptive optics at the ESO ELT”, Proc.
SPIE 10703, Paper 10703-10, 2018.

[8] B.Sedghi et al., “E-ELT modeling and simulation toolkits:
philosophy and progress status”, Proc. SPIE 8336, Paper
8336-06, 2011.

[9] T.Pfrommer et al., “MELT: an optomechanical emulation
testbench for ELT wavefront control and phasing strategy”,
Proc. SPIE 10700, Paper 10700-3F, 2018.

[10] M. Dimmler et al., “E-ELT M1 test facility”, Proc. SPIE
8444, Paper 8444-1Y, 2012.

[11] H.Bonnet et al., “Fast optical re-phasing of segmented
primary mirrors”, Proc. SPIE 9145, Paper 9145-1U 2014.

[12] G.Chiozzi et al., “The ELT Control System”, Proc. SPIE
10707, Paper 10707-31, 2018.

[13] M.Ingham et al., “Engineering Complex Embedded
Systems with State Analysis and the Mission Data System,”
Proceedings of First AIAA Intelligent Systems Technical

Conference, 2004,
https://trs.jpl.nasa.gov/handle/2014/38225

[14] L. Andolfato et al., “The ELT M1 local control software:
from requirements to implementation, Proc.
ICALEPCS2019, New York, USA, 2019.

[15] ELT ICS Rapid Application Development (RAD),
http://www.eso.org/~eltmgr/ICS/documents-
latest/RAD/sphinx_doc/html/

[16] Boost asio,
https://www.boost.org/doc/libs/1_77_0/doc/ht
ml/boost_asio.html

[17] State Chart XML, https://www.w3.org/TR/scxml/
[18] R.Tamai et al., “The ESO’s ELT construction progress”,

Proc. SPIE 11445, Paper 114451E-16, 2020.
[19] JEP – Java Embedded Python,

https://github.com/ninia/jep

[20] GNU Radio, https://gnuradio.org
[21] M. Suárez Valles et al., “Adaptive Optics Hard and Soft

Real-Time Computing Developments at ESO,” AO4ELT6
Adaptive Optics for Extremely Large Telescopes, Quebec,
June 9-14, 2019.

[22] F.Gonte et al., “APE: the Active Phasing Experiment to test
new control system and phasing technology for a European
Extremely Large Optical Telescope,” Proc. SPIE 5894,
Paper 5894-0z, 2005.

[23] C.Pascual-Izarra et al. “Taurus big & small: from particle
accelerators to desktop labs,” in Proc. 16th Int. Conf. on
Accelerator and Large Experimental Physics Control
Systems (ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp.
166-169.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL02

[24] C.Pascual-Izarra et al., “Effortless creation of control & data
acquisition graphical user interfaces with taurus,” in Proc.
15th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS'15), Melbourne,
Australia, Oct. 2015, pp. 1138-1142.
doi:10.18429/JACoW-ICALEPCS2015-THHC3O03

<<
 /ASCII85EncodePages true
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ABSALOM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /ALIBI
 /AllegroBT-Regular
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BankGothicBT-Medium
 /BaskOldFace
 /Batang
 /BATAVIA
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CASMIRA
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CharlesworthBold
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DauphinPlain
 /EdwardianScriptITC
 /ELEGANCE
 /Elephant-Italic
 /Elephant-Regular
 /ELLIS
 /English111VivaceBT-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EXCESS
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /GENUINE
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HELTERSKELTER
 /HERMAN
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /ISABELLE
 /JOAN
 /Jokerman-Regular
 /JuiceITC-Regular
 /JUSTICE
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /Lithograph-Bold
 /LithographLight
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MANDELA
 /Mangal-Regular
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MATTEROFFACT
 /MaturaMTScriptCapitals
 /MICRODOT
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MT-Extra
 /MVBoli
 /NATURALBORN
 /NEOLITH
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /OPENCLASSIC
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /PosterBodoniBT-Roman
 /PRETEXT
 /Pristina-Regular
 /PUPPYLIKE
 /Raavi
 /RADAGUND
 /RageItalic
 /Ravie
 /REALVIRTUE
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /SHELMAN
 /ShowcardGothic-Reg
 /Shruti
 /SimSun
 /SnapITC-Regular
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /Stencil
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TRENDY
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENG ()
 /ENU (Setup for JACoW - paper size, embed all fonts, compression, Acrobat 7 compatibility.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.000 791.000]
>> setpagedevice

