

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 1 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Table of Contents
1. Purpose ... 2

2. Gitlab basic definition .. 2

2.1 Group.. 2

2.2 Project .. 2

2.3 Roles / Permission ... 2

2.4 Fork 2

2.5 Merge Request ... 3

3. Gitlab at ESO .. 3

3.1 Gitlab personal account ... 3

3.2 Gitlab Instrument Group ... 4

3.3 Instrument Control Software Git projects... 4

3.4 Gitlab Instrument private area ... 5

4. Git/Gitlab ICS Workflow ... 7

4.1 Description ... 7

4.2 Creating the fork ... 9

4.3 Create the Merge Request... 10

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 2 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

1. Purpose

The purpose of this document is to describe the usage of the ESO Git repository together with
ESO GitLab for external Instrument Control Software (ICS) development.

2. Gitlab basic definition

2.1 Group

With GitLab Groups you can assemble related projects together and grant members access
to several projects at once.

Groups can also be nested in subgroups, to better manage people and control visibility.

For example all projects related to HARMONI ICS will be grouped together in one group and
HARMONI developers will be members of this group and will have access to all projects inside.

2.2 Project

In GitLab you can create projects for hosting your codebase (Git repository), collaborate on
code (review, merge request).

The project’s visibility can be set to Public, Internal, or Private:

• Public: The project can be accessed without any authentication over https.

• Internal: The project can be accessed by any logged in user except external users

• Private: The project can only be accessed by the members of the project.

All ICS Gitlab group/projects will be private and visible by approved members only.

2.3 Roles / Permission

Members of group/project can have different roles, which give a different permission scheme,
adjusted at the level of the project.

• Reporter: Members with this role can only view the code and clone, but cannot carry
out push operations.

• Developer: Members with this role can also create branches and push to non-
protected branches, and submit merge requests.

• Maintainer: Members with this role can also push to protected branches (master
branch by default) and accept merge requests.

• Owner: This is the member who created the group/project and can add other
members and subgroups.

While Maintainer is the highest project-level role, some actions can only be performed by a
personal namespace or group owner, or an instance administrator, who receives all

permissions.

2.4 Fork

“Forking” is not a Git operation but a GitLab feature.

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 3 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

A fork is a personal copy of the repository and all its branches, which the user creates in a
namespace of his choice. In this way the user can make changes to his own fork and submit
them through a merge request to the original repository, where he cannot commit directly (not
enough permission).

2.5 Merge Request

A Merge Request (MR) is a request to merge one branch into another.

MRs in GitLab allow to visualise and collaborate on proposed changes to source code.

There are two main ways to have a merge request flow with GitLab:

1. Working with protected branches in a single repository.

2. Working with forks of a project with restricted permission.

With the protected branch flow (case 1) everybody works within the same GitLab project.

The project maintainers get Maintainer access and the regular developers get Developer
access.

The maintainers will define “protected” branches; by default master branch is protected.

The developers push feature branches to the project and create MRs to have their feature
branches reviewed and merged into one of the protected branches. By default, only users with
Maintainer access can merge changes into a protected branch.

With the forking workflow (case 2) the maintainers get Maintainer access and the regular
developers get Reporter access to a centralised “authoritative” repository, which prohibits
them from pushing any changes to it.

Developers create forks of the centralised project and push their feature branches to their own
forks. To get their changes into master they need to create a merge request across forks.

The two merge request flows will be used during ICS development, protected branches for the
ongoing development and the fork workflow for the delivery to ESO (see 4)

3. Gitlab at ESO

3.1 Gitlab personal account

All consortia developers will have a personal external account in the ESO Gitlab:

https://gitlab.eso.org

External users will use the “Standard” tab in login page (https://gitlab.eso.org/users/sign_in)

to connect (not ESO ADS).

https://gitlab.eso.org/
https://gitlab.eso.org/users/sign_in

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 4 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Figure 1: GitLab Sign-in

The account gives access to the ICS Framework, https://gitlab.eso.org/ifw and it is a member
of the Instrument Group.

If a user needs an account, he should contact the ESO ICS contact person, assigned to the

project.

3.2 Gitlab Instrument Group

For each Instrument, a private Gitlab group has been created:
https://gitlab.eso.org/<instrument-name>

Example: https://gitlab.eso.org/harmoni

All instrument consortia ICS developers are members of the Instrument group with the role
Reporter. The ESO ICS software responsible following the ICS development will have the
role Maintainer.

The <instrument-name> namespace will host the Instrument Git projects. This will be the
production area during all development phases, where the software will be delivered to ESO
for regular deliveries approximately every 3 months and at each milestones (mid-term review,
PAE, etc).

3.3 Instrument Control Software Git projects

The Instrument group will contain the Instrument Gitlab projects as described in document
ESO-351071. The standard INS structure forsees at least the following Git projects:

<prefix>-ics : storing the source code of the ICS

<prefix>-aocs : storing the AOCS source code.

<prefix>-resource : storing configuration data of the instrument

https://gitlab.eso.org/ifw
https://gitlab.eso.org/%3cinstrument-name
https://gitlab.eso.org/harmoni

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 5 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

This structure is flexible and instrument may need to add additional repositories to store the

source code of other components.

Example of basic structure for HARMONI :

- hrm-ics
- hrm-aocs
- hrm-resource

The group configuration is such that only maintainer (ESO) can create new Gitlab projects.

By default those three main Git projects will be created by ESO with a basic set of files and
should be completed by consortia developers following the standard structure defined in the
document ICS Software Specification (see ESO-351071 section 2.5).

Example for HARMONI, the following projects will be created and be accessible from:
https://gitlab.eso.org/harmoni

Figure 2: Example of Gitlab Projects.

Each Git project will be created with an empty README.md file, which should be completed
later to describe the project.

Some Git related files (.gitattributes, .gitignore) will also be added as example, and should be

completed (see also https://github.com/github/gitignore).

Example:

<prefix>-resource

 ├── .gitattributes # example: git-lfs setting for FITS files

 ├── README.md

<prefix>-ics

 ├── .gitignore # example: ignore waf directories (build, lock-waf)

 ├── README.md

3.4 Gitlab Instrument private area

https://gitlab.eso.org/harmoni
https://github.com/github/gitignore

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 6 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Consortia developers are also members of another private subgroup “external/<instrument>”,

with the role Developer by default, or Maintainer for the consortia ICS responsible.

In this area, consortia developers can create prototypes to be shared with others but also the
fork of the production Git project (see workflow). In this group, ESO members, following the
ICS development, will have the role Reporter.

Example: https://gitlab.eso.org/external/harmoni

Figure 3: Private Area.

https://gitlab.eso.org/external/harmoni

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 7 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

4. Git/Gitlab ICS Workflow

4.1 Description

The ICS workflow would be based on a forking workflow to manage the deliveries to the ESO
Production Repository.

The Production Repository will be located in the <instrument-name>/<repo-name>.

To use the ESO Gitlab repository,the consortia ICS maintainer shall create a fork of the
production repository in the private area external/<instrument> (see details in section 4.2).

Once the Fork Repository is created, it will be cloned by each developer to create a Local
Repository on the local machine (workstation) (see

Figure 4: Creation of Fork and Local Repositories).

Example:

Figure 4: Creation of Fork and Local Repositories.

The following terms are used in Git to identify the different remote repositories:

Origin: Shorthand name used by Git for the remote repository that a project was originally
cloned from (Fork repository in

Figure 4).

Upstream: Shorthand conventional name in Git for the remote repository that was forked
(Production repository in

$ git clone https://gitlab.eso.org/external/harmoni/harmoni.git

https://gitlab.eso.org/external/harmoni/harmoni.git

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 8 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Figure 4).

During the development phase, the Local Repository and Remote Origin will be used following
the branching strategies (or protected branch flow).

The following will describe mainly how to set up the ICS workflow for delivering to ESO, the
detailed internal workflow of the Fork Repository will be defined and managed by consortia.
Depending on the size of the development team or how much the ESO Gitlab will be used by
the consortium (exclusively or together with another Gitlab server) different branches
strategies could be used.

However as basic workflow (

Figure 5: ICS Workflow), we suggest to create branches(2) for new features in the Local
Repository. Subsequently to push(3) the feature branch to the origin and then merge the feature
branch into the origin master branch, by means of a Gitlab merge request(4). And in order to
synchronise the Local Repository with Origin Master changes, a git pull(1) will be needed.

When the Origin Master is ready to be delivered to ESO, a Gitlab merge request(5) to the
Production Repository should be done.

Figure 5: ICS Workflow.

During the maintenance/production phase, the workflow will certainly need to be more
complex, and a synchronisation of the Local Repository with the remote Upstream Master also

needed.

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 9 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

4.2 Creating the fork

Only one fork will be created and used as the common repository by all consortia ICS
developers.

Forking a project, in most cases, is a two-step process.

1. On the project’s home page, in the top right, click the Fork button.

Figure 6: Fork creation.

2. Select the external namespace to fork to.

Figure 7: Fork location.

Note: By default, an external account cannot create a project in the personal namespace.

Once the fork is created, developers can use the project as origin and clone, pull/push to it.

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 10 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

When the code in the fork is ready to be delivered to ESO, the MR can be created, to send it

back to the upstream project.

4.3 Create the Merge Request

The Gitlab MR should be always used when merging to the Production Repository to take
advantage of the Gitlab MR features, in particular code reviews and automatic testing

As shown in

Figure 5: ICS Workflow, the MR when delivering, will be created from the Fork Master Branch
to Production Master Branch.

MRs will also be created from the Feature Branch (feature or bug fix branch) to the Master
Branch within the Fork Repository. In this case it is recommended to delete the Fork Feature
Branch after the merge, to avoid multiplication of unused branches in the Fork repository, and
to use the JIRA issue number in the name of the branch when possible.

Example of Git branch naming convention

bugfix-<issue-number>-<short_descriptor>

feature-<issue_number>-<short_descriptor>

To create the MR in Gitlab, from the Fork Repository, select Merge Requests and New merge
request as shown in Figure 8.

Figure 8: Merge request creation screen.

Then select the source branch to be used for the merge

For the Source branch, choose the forked project’s master branch. For Target branch,
choose the original project’s master branch (Figure 9).

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 11 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Figure 9: Merge request Source branch selection screen.

In the New Merge Request screen it is necessary to fill in some fields.

Assignee: The name of the ESO responsible (mandatory), who will review and accept the
merge.

Milestone: Reference to the delivery milestone (optional).

Labels: To categorize the MRs (examples: bug, documentation, patch, review…) (optional).

Merge options (recommended)

- Squash commits when the MR has been accepted.
- [Delete source branch when MR is accepted]. Only when the MR is done from the

Fork Branch

Then click Submit merge request to conclude the process. Once successfully merged, the
changes are added to the repository and branch merged into (Upstream Master).

Note: If an MR is not yet ready to be merged, it can be prevented from being accepted by
flagging it as a draft (Draft prefix) and the flag shall be removed only when it is ready. This
provides the possibility to propose a MR, asking for some preliminary checks (code review,
test)

Example of MR approved Figure 10

Figure 10: Merge Request approved screen.

Technical Note Doc. Number: ESO-380356

ELT ICS - GitLab Usage Guidelines

 Doc. Version: 1.2

 Prepared on:

 Prepared by:

 Page: 12 of 12

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

For each MR to the Production Repository, a pipeline will be executed and will run a Jenkins
job. The project is configured in a way such that the MR can be accepted only if the pipeline
succeeds. The content of the pipeline (Jenkins job) is defined per Git project.

The Jenkins job, called by the MR pipeline, will execute by default the build, unit test (waf build
,waf test), inline documentation generation but also integration tests, and other quality control

checks defined by ESO (coverage, Valgrind/sanitizers, coding standards).

In addition to the MR Jenkins Job, a Continuous Integration (CI) Jenkins job will also be
executed from the master branch of the Production Repository.

The infrastructure for the CI, MR Pipeline (in Jenkins) will be provided by ESO only for the
Production Repository. It is the responsibility of the consortium to replicate it for their Fork
Repository, with the help of ESO if needed.

