

 European Organisation for Astronomical Research in the Southern
Hemisphere

European Southern Observatory
Headquarters Garching

Karl-Schwarzschild-Straße 2
85748 Garching bei München

www.eso.org

Programme: E-ELT

Project/WP: E-ELT Telescope Control

Guide to Developing Software for the ELT

Document Number: ESO-288431

Document Version: 3.1

Document Type: Manual (MAN)

Released On: 2021-07-08

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Owner: Pellegrin, Federico

Validated by PA/QA: Kurlandczyk, Hervé

Validated by WPM: Kornweibel, Nick

Approved by PM: Kornweibel, Nick

 Name

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 2 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Authors

Name Affiliation

F. Pellegrin ESO

S. Feyrin ESO

Change Record from previous Version

Affected
Section(s)

Changes / Reason / Remarks

All Updates for new release of ELT DEV

3.1 New directory structure based on RootAreas.docx 03/04/2018

3.8 Added wtools documentation

3.2-3.3 Added lmod documentation

All Updates to DevEnv CentOS-8

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 3 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Contents
1. Introduction ... 5

1.1 Scope ... 5

1.2 Definitions and Conventions ... 5

1.2.1 Abbreviations and Acronyms ... 5

1.2.2 Stylistics Conventions ... 5

1.2.2.1 Example code ... 5

1.2.2.2 Example execution .. 6

2. Related Documents ... 6

2.1 Applicable Documents .. 6

2.1.1 ESO Documents.. 6

2.1.2 Standards .. 6

2.1.3 Reference Documents ... 6

3. Linux Development Tools .. 7

3.1 Generic structure indications .. 7

3.2 Environmental Modules System (Lmod) ... 9

3.2.1 Lmod basic commands.. 11

3.3 ELT Common Basic Software ... 12

3.4 Inline documentation .. 13

3.5 C++ Tools ... 14

3.5.1 Compiler suite ... 14

3.5.2 Unit testing framework ... 14

3.5.3 Static checking tools .. 14

3.5.4 Dynamic checking tools ... 14

3.6 Python Tools .. 15

3.6.1 Python interpreter .. 15

3.6.2 Python test framework ... 15

3.6.2.1 Python doctest example .. 16

3.6.2.2 Python unittest example .. 16

3.6.3 Python tools .. 16

3.6.4 Python documentation ... 17

3.7 Java Tools .. 17

3.7.1 Java Software Development Kit ... 17

3.7.2 Unit test framework ... 17

3.7.3 Java code checking tools .. 18

3.8 GUI Toolkit ... 18

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 4 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.9 Build system ... 18

3.9.1 Introduction to waf scripts .. 19

3.9.2 waf and the ELT directory structure ... 20

3.9.3 Installing files ... 22

3.9.4 C++ example ... 23

3.9.5 C++ and QT example .. 24

3.9.6 Python example... 24

3.9.7 Python and QT5 example .. 25

3.9.8 Mixing Python and C++ and QT5 .. 25

3.9.9 Java example .. 26

3.9.10 Doxygen documentation generation .. 27

3.10 ESO waf extension: wtools .. 29

3.11 Developer’s IDE .. 30

3.11.1 Eclipse waf integration .. 30

3.12 Software versioning and revision control ... 31

3.13 Integration tests ... 31

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 5 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

1. Introduction

This document contains a brief description, a series of typical usage cases and usage
practices of the ELT development tools. The aim of the document is to introduce and simplify
the usage of the ELT development tools and introduce practices considered good by ESO.

This document should be used in conjunction with the various tools official documentation
and usage examples, as this document does not pretend to be a complete documentation
of the mentioned tools but just an additional ELT specific support.

1.1 Scope

The target audience of this document are software developers and software integrators
working on ELT software. Software project managers may also receive insights on how the
development tools are structured.

1.2 Definitions and Conventions

1.2.1 Abbreviations and Acronyms

The following abbreviations and acronyms are used in this document:

TBC To Be Confirmed

TBD To Be Defined

VM Virtual Machine

CS Control System

EULA End User License Agreement

DevEnv (ELT CS) Software Development Environment

1.2.2 Stylistics Conventions

Courier font is used to indicate source of code or scripts while courier bold font is used to
indicate execution on the system, either input or outputs.

1.2.2.1 Example code

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

 printf("Hello world!\n");

 return 0;

}

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 6 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

1.2.2.2 Example execution

fede@esopc ~/waf/example/pkg1/exProgC $ ps

 PID TTY TIME CMD

 9331 pts/8 00:00:00 bash

23663 pts/8 00:00:00 ps

2. Related Documents

2.1 Applicable Documents

The following documents, of the exact version shown, form part of this document to the
extent specified herein. In the event of conflict between the documents referenced herein
and the content of this document, the content of this document shall be considered as
superseding.

2.1.1 ESO Documents

AD1 ELT Linux Installation guide;

 ESO-287339 Version 5.3

AD2 ELT Git Usage Guidelines (In Preparation);

AD3 Control GUI Developers Guidelines;

 ESO-288608 Version 1

2.1.2 Standards

AD4 ELT Programming Language Coding Standards;

 ESO-254539 Version 4

2.1.3 Reference Documents

The following documents, of the exact version shown herein, are listed as background
references only. They are not to be construed as a binding complement to the present
document.

RD1 VLT Software Development Platform Lessons Learned

ESO-289257

RD2 <Document name>;

<Drawing Number Revision X>

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 7 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3. Linux Development Tools

3.1 Generic structure indications

Based on experiences from VLT software there are a series of recommendations given. For
a full comparison and rationale refer to RD1.

Definition: A software module is a piece of software (code and documentation) able to
perform functions and having an interface available to an external user to access the
functions provided. Technically a module is a way to organize functions in homogeneous
groups. The interface hides the implementation and system dependencies from the user.
Managerially the module is the basic unit for planning, project control, and configuration
control.

Definition: A software package is a logical grouping of software modules. The only reason
of the grouping is to simplify the management of the modules in a hierarchic way. Multiple
level of package hierarchy is permitted (<pkg1>/<pkg1-1>/<pkg1-1-1>/<module>)

Naming: Each module is identified by a name and is therefore unique in the project. The
module_name can be made of a minimum of two up to a maximum of sixteen, suggested
six, characters (a-z, 0-9) and shall be unique in the project. Names equal or too similar to
UNIX names shall be avoided. The case cannot be used to build different names: i.e., the
following are referring to the same module: xyz, XYZ, xYz. The module_name is used in the
naming of all elements that belong to the software module. The module_name should start
with an alphabetic character (a-z). for the ELT it has been decided to use namespaces (as
it is the case for the majority of Linux SW applications) instead of using unique module
names. Still it is required to have unique binary names. The following convention is
suggested: the package name is prefix to the module name. This has to be done using
lower-camel-case, for example packageModule or packageModuleFeature.

Each software module should produce only one artefact (one <module> per produced
artefact) where “artefact” is like a program, a library, etc.

The module should include the build script (wscript for waf) which includes the specification
of the processor, (cross-)compiler, compiler options, etc., so the build systems knows for
which HW to build the artefact.

The binaries and libraries are produced by the build system in a local temporary directory
(build) so that is does not pollute the source code. The local temporary directory repeats
the structure of the source tree, so there are no names collisions.

In case of C/C++, public include files are located in a dedicated directory within src (to
facilitate the identification of the include files to install, alternatively this information would
have to be added to the build or installation script): src/include/<a>. <a> can either replicate
the directory structure of the package and map to the namespace or use a free-form
structure. It is evident that when using a free-form structure a name collision could happen
and this has to be managed by the developer.

The recommended directory structure is to use a one level directory named after the
module, which name is guaranteed to be unique by module definition.

For example:

• the most descriptive <a>=package/directory/structure/module/ or

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 8 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

• the suggested <a>=module/ or

• a free form structure <a>=freeform/structure/.

Generated code to be archived could also go in a dedicated gen/ directory within src/ while
the test/ directory contains unit tests.

Integration tests should have their own artefact or even a separate module/artefact
depending on the type of interaction required: integrating several artifacts in a module or
integrating several modules.

The resource/config/ directory contains runtime configuration data which are “read only”,
not subject to modification during execution like the CDT in the VLT. Configuration
information may be provided by the configuration service of the SW platform; however, it
should be possible to have a local representation.

The resource/data/ directory contains runtime configuration data which may need to be
modified during/after execution (like calibration data).

The suggested structure, able to support different programming languages and different
target types, is the following:

<package>/<module>/src # Any source files (incl, headers, mocs etc.)

 /src/include/<a> # public include files in case of C/C++

 /src/gen/ # generated code to be archived

 /resource # Resources (e.g. GUI glyphs, sounds, configs etc.)

 /interface # Interface specifications (IDL, mockups?)

 /doc # non-generated documentation

 /test # unit tests

 wscript # build script

Inside the resource/ directory a tree of different subdirectories will be present to differentiate
between type of resources. The types we see now are:

<module>/resource/<directory path to module>/

• config/ - contains default configuration files

• audio/ - contains sounds, music and other audible files

• image/ - contains images and other visual artefacts

• model/ - contains models

• dictionary/ - contains dictionaries

• data/ - contains runtime configuration

Inside each resource subdirectory, as now, the structure is free form but by convention the
rule is to create a subdirectory structure that clearly identifies the path to the module. In
case of shared resources the subdirectory with the module path may not needed.

The build system is supposed to just recursively copy the structure to the destination
directory.

Additionally, a set of directories, which are pointed by same named environment variables,
are defined where the various result of an installation or execution can be stored:

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 9 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

• System Root (SYSROOT): directory delivered by the ELT project that contains

basic software and resources widely shared between everybody in the project.

This includes for example source templates, basic libraries, basic utilities, build

system support and so on. This is installed on the system and is read-only to the

user and instrument manager.

• Integration Root (INTROOT): directory where the user, instrument for example,

builds and installs specific software and support files. Default configuration files

and resources are also part of the Integration Root. This is installed read-only to

the user and is populated by the instrument manager.

• Data Root (DATAROOT): directory where all generated output data is stored. This

is read-write for the user.

• Configuration Root (CFGROOT): directory where all instance configuration is

stored. This is read-write for the user.

All the described Root areas are physical areas on the filesystem. Nevertheless, especially
for the Integration Root that may be assembled from multiple projects output, the usage of
filesystem overlaying may be introduced in the future.

3.2 Environmental Modules System (Lmod)

Environment Modules provide a convenient way to dynamically change the users’
environment through modulefiles. This includes easily adding or removing directories to the
PATH environment variable.

The software Lmod, a Lua based environment module system, is used in the ELT
Development environment and replace the former VLT pecs.

A modulefile contains the necessary information to allow a user to run a particular
application or provide access to a particular library. All of this can be done dynamically
without logging out and back in. Modulefiles for applications modify the user’s path to make
access easy. Modulefiles for Library packages provide environment variables that specify
where the library and header files can be found.

Packages can be loaded and unloaded cleanly through the module system.

It is also very easy to switch between different versions of a package or remove it.

The latest online user guide of Lmod can be found under:

 https://lmod.readthedocs.io/en/latest/010_user.html

The modulefile contains commands to add to the PATH or set environment variables. When
loading the modulefile the commands are followed and when unloading the modulefile the
actions are reversed.

Example of commands which can be used in a modulefile:

prepend_path("PATH", value)

setenv("NAME", value)

set_alias("name","value")

family("name")

load("pkgA", "pkgB", "pkgC")

https://lmod.readthedocs.io/en/latest/010_user.html

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 10 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

The standard ELT development environment provides some lua files to set default

variables (PATH, LD_LIBRARY_PATH …). There are located under:

/elt/System/modulefiles

> ll /elt/System/modulefiles

total 12

-rwxr-xr-x 1 eltmgr elt 1813 Jul 6 10:25 eltdev.lua

-rwxr-xr-x 1 eltmgr elt 531 Jun 28 14:36 introot.lua

drwxr-xr-x. 2 eltmgr elt 46 Jul 4 09:00 jdk

-rwxr-xr-x 1 eltmgr elt 149 Apr 10 12:44 python.lua

The eltdev.lua file is loaded by default at login and contains all the default setting

(including the load of package python and jdk)

The introot.lua can be loaded by the user to set up the PATH, LD_LIBRARY_PATH..

when he defines an INTROOT.

In addition, the user can define private lua files under the directory :

$HOME/modulefiles

~/modulefiles 1062 > ll

total 12

-rw-r--r-- 1 eltmgr elt 129 Jul 5 07:37 private-eltint20.lua

-rw-r--r-- 1 eltmgr elt 61 Jul 4 09:47 private-eltint21.lua

-rw-r--r-- 1 eltmgr elt 130 Jul 6 10:03 private.lua

And from this directory, Lmod will make available all the lua file and load by default, the files
private.lua and private-<hostname>.lua if exist.

Example: supposing that INTROOT and DATAROOT are created in the home directory of
the user, create and edit the file $HOME/modulefiles/private.lua with the following lines:

local home = os.getenv("HOME")

local introot = pathJoin(home, "INTROOT")

setenv ("INTROOT", introot)

setenv ("PREFIX", introot)

local dataroot = pathJoin(home, "DATAROOT")

setenv ("DATAROOT", dataroot)

load ("introot")

local pythonpath = pathJoin(introot, "lib/python3.7/site-packages/")

append_path("PYTHONPATH", pythonpath)

Note: Log-out and log-in again to allow new environments from the newly created
$HOME/modulefiles/private.lua to be loaded.

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 11 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.2.1 Lmod basic commands

$ module help # display Lmod help message

$ module list # list of modules loaded

$ module show package # Display what is executed by the module

$ module avail # list of modules available to be loaded

Lmod uses the directories listed in $MODULEPATH to find the modulefiles to load,
/elt/System/modulefiles and $HOME/modulefiles are added by default.

With the sub-command avail Lmod reports only the modules that are in the current

MODULEPATH. Those are the only modules that the user can load.

User can add/remove a directory to the MODULEPATH with;
$ module use /path/to/modulefiles # Add the directory to $MODULEPATH search path

$ module unuse /path/to/modulefiles # Remove directory from $MODULEPATH

A user logs in with the standard modules loaded. Then the user modifies the default setup

through the standard module commands:

$ module load package1 package2 … # load modules

$ module unload package1 package2 … # unload modules

Once users have the desired modules load then they can issue:

$ module save

This creates a file called ~/.lmod.d/default which has the list of desired modules

(collection). This default collection will be the user’s initial set of modules (loaded at login).

Users can have as many collections as they like. They can save to a named collection with:

$ module save <collection_name>

And, at any time, it is possible to restore the set of modules saved in that named collection
with:

$ module restore <collection_name>

A user can print the contents of a collection with:

$ module describe <collection_name>

Examples:

eltint20 eltmgr:> module list

Currently Loaded Modules:

 1) jdk/java-openjdk 2) python 3) eltdev 4) private-eltint20 5) private

eltint20 eltmgr:> module avail

------------------ /home/eltmgr/modulefiles ------------------------------------

 private (L) private-eltint20 (L) private-eltint21

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 12 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

------------------ /elt/System/modulefiles -------------------------------------

 eltdev (L) introot jdk/java-openjdk (L) python (L)

------------------ /usr/share/lmod/lmod/modulefiles/Core ------------------------

 lmod/6.5.1 settarg/6.5.1

 Where:

 L: Module is loaded

eltint20 eltmgr:~ 1002 > module load introot

eltint20 eltmgr:~ 1003 > module list

Currently Loaded Modules:

 1) jdk/java-openjdk 2) python 3) eltdev 4) private 5) private-eltint20

6) introot

eltint20 eltmgr:~ 1004 > module save

Saved current collection of modules to: default

3.3 ELT Common Basic Software

The System Root (SYSROOT) delivered by the ELT project is by default installed under:

the directory /elt/.

It is distributed with the RPM elt-common-X.Y.Z-n

The default location for the SYSROOT is defined in the default lua file by the variable

SYSROOT:

SYSROOT=/elt/X.Y

where X.Y is the version of the rpm elt-common- X.Y.Z-n

The SYSROOT includes in particular the following:

- build system support wtools

- getTemplate utility, used to generate module, wscript… from template

- ESO Sphinx theme

- elt-devenv utility, to highlight modifications introduced on the default ELT

installation

- msgsend utility, used to send one-shot commands via CII MAL

It is installed by user eltmgr and is read-only to the user and instrument manager.

Example of usage of getTemplate:

$ cd <the location for introot>

$ getTemplate -d introot INTROOT

$ cd <the location for dataroot>

$ getTemplate -d dataroot DATAROOT

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 13 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.4 Inline documentation

As indicated in AD4 the inline documentation in source code files should be managed using
the Doxygen format. This gives the possibility to generate at the end a unique
documentation even if the project consists of different languages source code files.

Nevertheless, language specific extensions to Doxygen can be managed using additional
custom filters. The specific language filters present in the ELT Linux Development
environment are discussed in the language section.

Configuration options to Doxygen should be passed via the configuration file and not by
command line or otherwise. A template Doxygen configuration file can be generated with:

fede@esopc ~/waf/example $ doxygen -g mytemplate.config

Configuration file `mytemplate.config' created.

Now edit the configuration file and enter

 doxygen mytemplate.config

to generate the documentation for your project

The configuration should be instructed to generate at least HTML documentation which is
the most used in the ELT software development.

To improve readability and organization of the documentation it is highly suggested to make
good use of Doxygen groups, entities that permit to group together similar topics into a
common documentation section. A simple grouping can be done by reflecting the directory
structure: therefore, defining for each package a group, for each module a group that is part
of the package group and then adding every artifact in the module to the module group.
This would create a documentation group structure that totally reflects the filesystem
structure, making it easy to find and maintain the information needed.

To define a group the Doxygen directive \defgroup can be used, for example:

\defgroup groupName Long Description of the group

And once defined the group can be referenced as:

\ingroup groupName

Additional details can be found in the Grouping section of the Doxygen manual.

When creating documentation in the scope of a wtools project, the Doxygen documentation
can be automatically generated using the waf build system. Please refer to the
documentation of the build system for further details on how to generate documentation in
such case.

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 14 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.5 C++ Tools

3.5.1 Compiler suite

The ELT Programming Languages Coding Standards (AD4) specify the usage of the
standard C++17 which requires the GNU Compiler Suite of version 9.x or higher for an
appropriate support.

At present the ELT Linux Development environment ships with version 9.x (specifically
9.2.1) using the RedHat Software Collections packages. The GNU Compiler Suite is
installed in the /opt/rh/gcc-toolset-9/ directory structure.

3.5.2 Unit testing framework

There are multiple frameworks to write C++ unit tests supported by the ELT Development
Environment and also integrated in the waf build framework. Those are:

• Google Test framework. It is installed on the system in /opt/gtest

o Additionally Google Bench benchmarking framework is supplied and can be
used in addition to provide a benchmarking environment for Google Test

• Catch2 header only testing framework. It is installed on the system in /opt.catch2

• Qt5 Unit test can be also used for C++ programs using the Qt framework.

3.5.3 Static checking tools

The ELT Linux development environment currently ships clang-tidy (in /opt/llvm as part of
the LLVM toolkit) for source code style checking and cppcheck (installed system wide in
default path) for common programming errors checking.

Configuration files for source code style checking are also provided as part of the wtools
build framework. This provides also automatic code style checking on a project with specific
command line options. Please refer to the wtools manual for details on how to invoke code
linting on a project.

3.5.4 Dynamic checking tools

Several dynamic checking tools are included in the ELT Linux development environment
and their usage is highly encouraged:

• gdb, the GNU debugger

• valgrind, a suite of tools for debugging and profiling

• strace, the system calls and signal tracer

• gcov, the GNU coverage library and tools to analyse the code coverage amount.
The programs and libraries have to be compiled with coverage options enabled to
use the feature provided, namely:

o compiler flags to be added: -O0 -fprofile-arcs -ftest-coverage

o linker flags to be added: -lgcov

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 15 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

• To produce easily readable HTML or XML output from the gcov binary data the tool
gcovr is supplied as part of the Python distribution

• GCC sanitizers. The wtools build system supports address, thread, leak and
undefined sanitizers provided by GCC

3.6 Python Tools

3.6.1 Python interpreter

The ELT Linux development environment uses the Anaconda Python distribution as the
main Python environment based on Python 3.7.x version. The distribution is installed in
/opt/anaconda3 and can be easily added to the user’s environment executing:

source /opt/anaconda3/bin/activate

Or alternatively by manually setting up the binary and library paths in the personal
environment. By default the local configuration of LMOD will already set up the Anaconda
Python distribution as the default one.

The ELT Linux development ships also a 3.6.x version of Python as this is used by the
underlying distribution the system is based and its total removal may break system tools.
Usage of that version is heavily discouraged.

The Anaconda distribution is shipped with all the default Python modules updated at the
date of creation with the addition of some others deemed of use for the ELT. A list of the
installed modules and their versions can be retrieved with the command

conda list

Private Python environment can be created and managed using the conda tool. A good
starting point is executing the conda environment help request:

conda env --help

usage: conda-env [-h] {attach,create,export,list,remove,upload,update} ...

positional arguments:

 {attach,create,export,list,remove,upload,update}

 attach Embeds information describing your conda environment

 into the notebook metadata

 create Create an environment based on an environment file

 export Export a given environment

 list List the Conda environments

 remove Remove an environment

 upload Upload an environment to anaconda.org

 update Update the current environment based on environment

 file

optional arguments:

 -h, --help Show this help message and exit.

3.6.2 Python test framework

The Python code unit tests can be performed in two ways:

• By writing in-lined doctest tests inside the source code.

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 16 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

• By writing totally separate tests under the test/ subdirectory that use the standard
Python unittest library, nose2 tests syntax or pytest syntax. While both the nose2
and pytest runners are fully integrated into the build system, it is highly suggested
to stick to pytest as that is the newer and therefore longer supported choice.

In both cases the tests can be run by calling directly the Python interpreter and eventually
executing the test starter. To uniform the test execution the usage of the test runner using
the build framework test execution commands is highly suggested. Please refer to the build
framework manual for more details.

3.6.2.1 Python doctest example

def helloworld(name):

 """ Returns a greeting to the person passed as a parameter

 >>> print(helloworld("Teri"))

 helloworld Teri

 >>> print(helloworld("Ale"))

 helloworld Ale

 """

 return "helloworld "+name

if __name__ == "__main__":

 import doctest

 doctest.testmod()

It is important to notice that in some cases, for example when using together with Qt5
libraries, the usage of doctest can be problematic due to the necessity to scan and initialize
multiple libraries. It is therefore suggested not to use doctest for testing complex situations
or modules with high level library dependencies.

3.6.2.2 Python unittest example

The following unittest example is based on the previous helloworld module used as an
example in the previous section:

#! /usr/bin/env python

encoding: utf-8

import unittest

from hello import hello

class test_helloworld(unittest.TestCase):

 def test_helloworld_print1(self):

 self.assertEqual('helloworld Teri', hello.helloworld("Teri"))

 def test_helloworld_print2(self):

 self.assertEqual('helloworld Ale', hello.helloworld("Ale"))

3.6.3 Python tools

The tool for checking Python code for code style and common errors is pylint, included in
the Anaconda distribution. The graphical frontend pylint-gui can be also useful.

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 17 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Example command line execution for pylint:

PYTHONPATH=.;for i in `find . -name "src" -type d -exec readlink -f {} \\; | sort | uniq`;

do export PYTHONPATH=$PYTHONPATH:${i}; done; pylint -f parseable `find . -name *.py | grep -

v "./build/\\|./INTROOT/\\|./wtools/"` > pylint.log

The command line is pretty complicated as it tries to set the PYTHONPATH in the project
for the various modules, so dependant modules can see each other when they are
executing an import statement.

It is therefore highly recommended to use instead the build framework command line to
execute the linting operations, which will take care of setting all the needed paths as
explained.

3.6.4 Python documentation

Python documentation using doxygen is enhanced in the ELT Linux development
environment using the doxypypy Python module (https://github.com/Feneric/doxypypy) that
extends the Doxygen notation with specific Python language constructs.

Doxypypy is generally recalled by a wrapper script named py_filter which just passes some
default parameters to it:

#!/bin/bash

doxypypy -a -c $1

3.7 Java Tools

3.7.1 Java Software Development Kit

The Java SDK used in the ELT Linux development environment is the OpenJDK 1.8.x. It is
shipped as a system package and its compiler and bytecode interpreter are seen in the
user’s default path.

fede@esopc:~ $ java -version

java version "1.8.0_262"

Java(TM) SE Runtime Environment (build 1.8.0_161-b14)

Java HotSpot(TM) 64-Bit Server VM (build 25.161-b14, mixed mode)

3.7.2 Unit test framework

The unit test framework for Java in ELT Linux development environment is TestNG
(http://testng.org/doc/index.html) and is located under /opt/testing directory. Execution of
tests with TestNG require the preparation of an XML file containing the test description and
the execution of the code using the TestNG runner class org.junit.runner.JUnitCore.

For code coverage calculation and reporting the JaCoCo project (http://www.jacoco.org/) is
used and is located under /opt/jacoco directory. To generate the binary coverage data the
tests have to be run using the JaCoCo jar as a Java agent (using the -javaagent command
line option). The jacococli.jar package, JaCoCo command line interface, can be used to
generate easily readable HTML coverage reports.

https://github.com/Feneric/doxypypy
http://testng.org/doc/index.html
http://www.jacoco.org/

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 18 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.7.3 Java code checking tools

The ELT Linux development environment offers mainly two tools for Java code checking:

• checkstyle (in /opt/checkstyle-7.x.y) for implementing code style checking.
Example execution:

java -jar /opt/checkstyle-7.1.1/checkstyle-7.1.1-all.jar -f xml -c /checks.xml *

• findbugs (in /opt/findbugs-3.x.y) for common coding bugs checking.
Example execution:

FINDBUGS_HOME=/opt/findbugs-3.0.1 $FINDBUGS_HOME/bin/findbugs -xml Test.jar

3.8 GUI Toolkit

The GUI Toolkit selected for the ELT project is QT5 (https://www.qt.io/). The ELT Linux
development environment provides QT5 libraries for C++ and Python language bindings.
Python language bindings for QT5 are currently via the Python module PyQt5.

Further information about the GUI developing can be found in AD3.

3.9 Build system

The build system used for ELT Linux software is waf (https://waf.io). waf is a rather recent
build system written in Python which natively support C, C++, Java and obviously Python,
along with many other languages, such as for example D, C#, Ocaml and Fortran, and many
toolkits, such as Qt or glib. Build scripts in waf are written in Python and therefore particular
customizations can be made using this full programming language, making the tool very
powerful and without the need to learn some specific macro language specific to the build
system as in the other cases. The build system can be further customized using “tools”
which expand the build system to other languages or interfaces. Nevertheless, for standard
cases of the supported languages the syntax is very easy and intuitive, the learning curve
is very gentle.

To further ease the development process on the ELT, ESO prepared an additional layer on
top of waf that simplifies the configuration scripts of the most common ELT related software
(as for example in the past the vltMakefile for VLT software and acsMakefile for ALMA
software). Usage of this layer, named wtools, also makes future enhancements and
upgrades much easier as they are concentrated into a single library instead of being spread
throughout multiple configuration files. Nevertheless, when advanced features not
supported by wtools are needed, native waf/Python code can be used to override and
augment the functionalities for a single module.

So, usage of wtools is highly desired, although a basic knowledge of waf, presented
hereafter, is very useful to understand the basic functions of the build system and to give
the tools for very specific customization for specific advanced needs of modules. An
introduction to wtools is given in the section 3.10.

https://www.qt.io/
https://waf.io/

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 19 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

The version of waf must be 2.0.21 or greater, as from this version on the full support for the
QT graphical toolkit for both C++ and Python has been natively added and tested.

The reference documentation for waf is the Waf Book at https://waf.io/book/

3.9.1 Introduction to waf scripts

The waf build system used as a configuration file a so called wscript. Therefore, the first
step to work with waf is to prepare such a script, for example given a single file C++ in the
directory src named exProgC.cpp from which we want to compile an executable named
exProgC this could look like:

encoding: utf-8

def configure(conf):

 # We are using C++

 conf.load('compiler_cxx')

def options(opt):

 # We are using C++

 opt.load('compiler_cxx')

def build(bld):

 # Define the main program.

 bld.program(source='src/exProgC.cpp', target='exProgC’)

As the waf build system contains also the configuration step of the build procedure,
something usually separate in other packages such as GNU Make or CMake, a wscript will
usually contain a configure and an options section that contain respectively the
configuration, done when explicitly requested by the waf configure execution, and options
to be used for the build. A configuration step of the example may look as follows:

fede@esopc ~/waf/example/pkg1/exProgC $ waf configure

Setting top to : /home/fede/waf/example/pkg1/exProgC

Setting out to : /home/fede/waf/example/pkg1/exProgC/build

Checking for 'g++' (C++ compiler) : /usr/bin/g++

'configure' finished successfully (0.033s)

The execution of the configure stage will create the build directory, where all temporary
build files and the results are stored. Depending on the configuration requested waf will also
check for the necessary tools needed, for example compilers or libraries, and report them
in this stage. All this data is stored so further steps can then rely on them for a faster and
coherent execution.

A more articulate example, using Python and PyQt extensions, of configuration may look
like this:

fede@esopc ~/waf/example/pkg2/exPyqt5 $ waf configure

Setting top to : /home/fede/waf/example/pkg2/exPyqt5

Setting out to : /home/fede/waf/example/pkg2/exPyqt5/build

Checking for program 'python' : /usr/bin/python

Checking for program 'pyuic5, pyside2-uic, pyuic4' : /usr/bin/pyuic5

Checking for program 'pyrcc5, pyside2-rcc, pyrcc4' : /usr/bin/pyrcc5

Checking for program 'pylupdate5, pyside2-lupdate, pylupdate4' : /usr/bin/pylupdate5

https://waf.io/book/

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 20 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Checking for program 'lrelease-qt5, lrelease' : /usr/bin/lrelease

Checking for python version >= 2.7.4 : 2.7.6

'configure' finished successfully (0.099s)

Once the build tree is configured the build, defined in the build section of the wscript, can
be executed with waf build:

fede@esopc ~/waf/example/pkg1/exProgC $ waf build

Waf: Entering directory `/home/fede/waf/example/pkg1/exProgC/build'

[1/2] Compiling src/exProgC.cpp

[2/2] Linking build/exProgC

Waf: Leaving directory `/home/fede/waf/example/pkg1/exProgC/build'

'build' finished successfully (0.088s)

The output shows how first the cpp file is compiled and then linked, to create the desired
executable. Everything is done under the build directory. By default waf if also run unit tests,
if any, defined in the configuration file. The –notests option can be added on the command
line not to execute the command line tests.

Of course as waf keeps track of file changes it will not rebuild parts of the software that are
not necessary to be rebuilt. Executing immediately the same command as before once more
it will therefore lead to:

fede@esopc ~/waf/example/pkg1/exProgC $ waf build

Waf: Entering directory `/home/fede/waf/example/pkg1/exProgC/build'

Waf: Leaving directory `/home/fede/waf/example/pkg1/exProgC/build'

'build' finished successfully (0.015s)

Usually used command line invocations for waf include also clean, to clean up the build but
keeping the configuration data, distclean, to totally clean up every file waf generated, and
install, to install the generated results on the final filesystem (as specified by the
configuration script or in general by default in the /usr/local directory tree).

Of course the configuration part can contain specific customization, a few examples:

 # Check for gtest library on the system

 conf.check(compiler='cxx',lib='gtest',mandatory=True, use='GTEST')

 # Check that Python is at least 3.4.0

 conf.check_python_version((3,4,0))

 # Set some flags to the compiler flags variable

 conf.env.append_unique('CXXFLAGS', ['-g', '-O2'])

The text encoding comment at the beginning of the wscript files is not mandatory when
Python version 3.x is used as by the PEP8 Style Guide the UTF-8 is the default. As one of
waf goals is to be both 2.7.x and 3.x compatible, the text encoding comment may be often
found in build script examples.

3.9.2 waf and the ELT directory structure

As mentioned in section 3.1 it is highly suggested that each directory generates one single
result, be it an executable, a library or a Python module.

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 21 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

This approach of course poses two immediate questions for the waf scripts: recursive
execution and specification of dependencies.

For the recursive execution waf natively support the recurse function, that can be used in
the configuration, options and build sections, to include other waf scripts. Using recurse waf
will optimize tools that are eventually loaded multiple times and the dependencies between
the different trees will also be matched. As an example given the structure:

fede@esopc ~/waf/example $ find . -name wscript

./wscript

./pkg2/wscript

./pkg2/exCqt5/wscript

./pkg2/exPyqt5/wscript

./pkg2/exProgC2/wscript

./pkg1/wscript

./pkg1/exProgLinkedC/wscript

./pkg1/exJava/wscript

./pkg1/exPython/wscript

./pkg1/exLibC/wscript

./pkg1/exProgC/wscript

The wscript at the top level would look like:

module_list = 'pkg1 pkg2'

def options(opt):

 # We recurse options in our submodules

 opt.recurse(module_list)

def configure(conf):

 # We recurse configurations in our submodules

 conf.recurse(module_list)

def build(bld):

 bld.recurse(module_list)

And following for example the in pkg2 directory will contain:

artifact_list = 'exProgC2 exPyqt5 exCqt5'

def options(opt):

 # We recurse options in our artifacts

 opt.recurse(artifact_list)

def configure(conf):

 # We recurse configurations in our artifacts

 conf.recurse(artifact_list)

def build(bld):

 bld.recurse(artifact_list)

The second interesting topic is how to specify a dependency explicitly. This is as easy as
adding a use= indication where the usage is required, pointing the argument to the name of
the file that is generated elsewhere. For example:

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 22 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

def options(opt):

 # We are using C++

opt.load('compiler_cxx')

def configure(conf):

 # We are using C++

 conf.load('compiler_cxx')

def build(bld):

Define the main program. Note: it is using (use=) a library that is

generated as another artifact someplace else in the build tree

 bld.program(source='src/exProgLinkedC.cpp', target='exProgLinkedC',

 use='exLibC')

For the build of the program we require the usage of exLibC, a target generated in another
directory with the following script (configuration and options have been omitted):

…

def build(bld):

 # Define the main program

 bld.shlib(source='src/exLibC.cpp', includes='src/', target='exLibC',

 export_includes='src/')

This target will create a shared library with the name exLibC (the operating system specific
prefix and suffix will be managed by waf) and will also export automatically the include files
from the src/ directory. If another build rule in the same waf scope will add it using the
use=exLibC option, then automatically the library will be linked and the needed includes
imported.

In general, considering the base idea that each module creates just one product as it will
be in the future ESO supplied additional layer, a generic pattern could be used:

bld.program(target='xyz', source=bld.path.ant_glob('src/*.cpp'),

 includes=bld.path.ant_glob('src/includes/*.hpp'), …)

Where the target name would indeed be the module directory name itself with the eventual
package name prepended.

3.9.3 Installing files

The waf build system supports natively installation of the built artefacts using the install
directive to the waf command line executable. In a similar fashion also a very clean uninstall
directive is present to exactly revert the installation process. Both of these directives rely on
another optional command line option specifying the root prefix of the whole installation,
namely –destdir.

If not specified otherwise, waf will try to install the artefacts accordingly to their types into a
standard Unix directory tree starting from the root destination directory, therefore binaries
in bin/, libraries in lib/ and so on. Each build rule can have the installation position specified
by adding an install_path parameter to the rule. Additionally to strip part of the path (for
example the src/ from the proposed directory structure) an additional parameter install_from
is present.

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 23 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

bld(name='hello', features='py', source=bld.path.ant_glob('src/**/*.py'),

 install_path=’$PREFIX/lib/python_modules/’, install_from='src')

Additionally files can be installed which are not built as artefacts by waf using particular
directives that are exemplified below:

 bld.install_files('${PREFIX}/include', ['a1.h', 'a2.h'])

 bld.install_as('${PREFIX}/dir/bar.png', 'foo.png')

 bld.symlink_as('${PREFIX}/lib/libfoo.so.1', 'libfoo.so.1.2.3')

It is important to notice that all the waf installation directives are just executed if waf is called
with install or uninstall and not otherwise.

3.9.4 C++ example

The following is an example showing how to build a shared library and create a program
that is a unit test based on the Google Test library. The Google Test library is defined in the
configuration and then used as a normal dependency. The unit tests for C++ are handled
by the standard waf_unit_test extra and are marked with the test feature. A shared library
is created using the shlib directive, while a shared library can be created with a stlib directive
and a program with the program directive)

The build script looks as follows:

def options(opt):

 # We are using C++ and Unit testing library

 opt.load('compiler_cxx waf_unit_test')

def configure(conf):

 # We are using C++ and Unit testing library

 conf.load('compiler_cxx waf_unit_test')

 # Define that the configuration stage requires Google test library

 conf.env.LIBPATH_GTEST = ['/opt/gtest/lib']

 conf.env.INCLUDES_GTEST = ['/opt/gtest/include']

 conf.check(compiler='cxx',lib='gtest',mandatory=True, use='GTEST')

def build(bld):

 # Define the main program

 bld.shlib(source='src/exLibC.cpp', includes='src/include',

target='exLibC', export_includes='src/include')

 # Define the unit test program (features='test')

 bld.program(features='test', source='test/unit_test.cpp src/exLibC.cpp',

includes=['src/include'] , use=['GTEST'], target='unit_test')

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 24 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.9.5 C++ and QT example

The following example compiles a simple C++ application using QT5 GUI libraries. The
example takes care of generating user interface as needed from QT5 UI files. Waf also
supports QT5 resources and language files generation.

def options(opt):

 # We are using C++ and QT5. Important: order matters!

 opt.load('compiler_cxx qt5')

def configure(conf):

 conf.load('compiler_cxx qt5')

def build(bld):

 # Define the main C++ program

 bld(features = 'qt5 cxx',

 uselib = 'QT5WIDGETS QT5CORE',

 source = 'src/m1uiCmdCpp.cpp src/m1uiCmdCppUi.cpp

 src/include/m1uiCmdCppUi.ui',

 target = 'm1uiCmdCpp',

 includes = 'src/ src/include',

 defines = 'WAF=1'

)

It is important that for automatic generation of MOC files the WAF=1 is passed as from the
example and then in the used C++ file the MOC is referenced so waf will generate it:

#if WAF

#include "include/m1uiCmdCppUi.moc"

#endif

3.9.6 Python example

Python modules and programs can be included in waf and as such they will be compiled to
bytecode (to .pyc and .pyo by default for Python 2.x and just .pyc for Python 3.x) and will
therefore be checked for formal correctness. Modules can be easily managed using the
ant_glob to manage entire directory trees.

Unit tests are supported by the pytest extra which is based on the generic waf_unit_test
module and therefore output of Python and C++ unit tests can be united in a common report.
The parameter pytest_source points to the sources to be examined and ut_str to the
command line to execute the tests. In the example it is both presented the use of tests
embedded inside the main sources themselves, using doctest feature, or as truly separate
source files in the test/ subdirectory.

def configure(conf):

 # We are using Python and use Python unit tests

 conf.load('python pytest waf_unit_test')

 conf.check_python_version(minver=(2, 7, 4))

def options(opt):

 opt.load('python waf_unit_test')

def build(bld):

 # Example module

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 25 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

 bld(name='hello', features='py', source=bld.path.ant_glob('src/**/*.py'),

 install_from='src')

 # Module tests using doctest tests embedded in the source code itself

 bld(features='pytest', use='hello', pytest_source=bld.path.ant_glob

('src/**/*.py'), ut_str='nosetests --with-doctest ${SRC}')

 # Module tests using standard separate unit test

 bld(features='pytest', use='hello', pytest_source=bld.path.ant_glob

('test/*.py'), ut_str='${PYTHON} -B -m unittest discover')

3.9.7 Python and QT5 example

Using the pyqt5 extra waf supports automatic generation of Python files from QT5
definitions (for UI, languages, resources). An example:

def options(opt):

 # Load also python to demonstrate mixed calls

 opt.load('python pyqt5')

def configure(conf):

 # Load also python to demonstrate mixed calls

 conf.load('python pyqt5')

 conf.check_python_version((3,4,0))

def build(bld):

 # Demostrates mixed usage of py and pyqt5 module, and tests also

 # install_path and install_from (since generated files go into build

 # it has to be reset inside the pyqt5 tool)

 bld(features="py pyqt5", source="src/sample.py src/firstgui.ui",

 install_path="${PREFIX}/play/", install_from="src/")

The pyqt5 waf module supports both PyQt5, PyQt4 and PySide2 bindings, being PyQt5 the
default. To change the default value the options --pyqt5-pyqt4 or --pyqt5-pyside2 can be
passed at waf configuration time.

3.9.8 Mixing Python and C++ and QT5

It is important to notice that natively in waf the pyqt5 and qt5 extras cannot be loaded at the
same time as they will try to handle the same exact files based on their name extension (for
example .ui files). In a single-artefact directory structure this also applies when recursively
creating the build structure with the recurse command ad described. To overcome this
restriction and additional extra shipped in the playground section of waf must be loaded as
last extra named qtchainer:

…

def options(opt):

 # Load what needed for qt5 and pyqt5 and chainer as *last* so it

 # will chain to the proper one depending on feature

 opt.load('compiler_cxx qt5 python pyqt5')

 opt.load('qtchainer',

 tooldir='/usr/share/doc/waf-1.9.5/playground/qt5-and-pyqt5/qtchainer')

def configure(conf):

 conf.load('compiler_cxx qt5 python pyqt5 qtchainer')

 conf.check_python_version((3,4,0))

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 26 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

…

The specific feature to use should be then defined, for example:

…

bld(features="pyqt5", source="sampleRes.qrc")

…

Or

…

 bld(features = 'qt5 cxx cxxprogram', source="sampleRes2.qrc")

…

3.9.9 Java example

Using the java tool waf supports building java programs, preparing JAR archives and
running Java unit tests. So the basic setup in a wscript file is:

def options(opt):

 opt.load('java')

def configure(conf):

 conf.load('java')

 conf.check_java_class('java.io.FileOutputStream')

The check_java_class gives the possibility to check if a given class is available in the
classpath. Additional classpaths can be defined in the configuration step as:

 conf.env.CLASSPATH_ADDNAME = ['aaaa.jar', 'bbbb.jar']

And then the additional name can be used as a standard use dependency in a java build
step:

…

 use = 'ADDNAME',

…

Following to just compile java sources for example:

 bld(features = 'javac',

 srcdir = 'src/',# folder containing the sources to compile

 outdir = 'src', # where to output the classes (build directory)

 compat = '1.8', # java compatibility version number

 sourcepath = ['src'],

 classpath = ['.', '..'],

 name = 'exJava-src',

)

And to create a JAR archive:

 bld(features = 'jar',

 basedir = 'src', # folder with the classes and files to package

 # (must match outdir)

 destfile = 'exJava.jar', # generated artifact name

 manifest = 'src/exJava.Manifest',

 name = 'exJava',

 use = 'exJava-src',

)

The operations can be also combined into a single step:

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 27 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

 bld(features = 'javac jar',

 srcdir = 'src/', # folder containing the sources to compile

 outdir = 'src', # where to output the classes (build directory)

 compat = '1.8', # java compatibility version number

 sourcepath = ['src'],

 classpath = ['.', '..'],

 basedir = 'src', # folder with the classes and files to package

(must match outdir)

 destfile = 'exJava.jar', # generated artifact name

 manifest = 'src/exJava.Manifest',

)

Unit testing can be done using the javatest waf extra:

def options(opt):

 …

 opt.load('java waf_unit_test javatest')

def configure(conf):

 …

 conf.load('java javatest')

 bld(features = 'javac javatest',

 srcdir = 'test/',

 outdir = 'test',

 sourcepath = ['test'],

 classpath = ['src'],

 basedir = 'test',

 use = ['JAVATEST', 'mainprog'], # mainprog is the program being

 # tested in src/

 ut_str = '${JAVA} -cp ${CLASSPATH} ${JTRUNNER} ${SRC}',

 jtest_source = bld.path.ant_glob('test/*.xml'),

)

Executing the test with code coverage enabled would require the unit test execution script
to include JaCoCo as an agent :

ut_str = '${JAVA} -cp ${CLASSPATH} -

javaagent:/opt/jacoco/lib/jacoco.jar=destfile=/some/path/jacoco.exec ${JTRUNNER}

${SRC}',

The HTML report can be generated by hand or by generating a new waf task invoking the
JaCoCo command line interface with something like:

${JAVA} -jar ${JACOCOCLI} report ${OUTDIR}/jacoco.exec -–classfile ${CLASSFILE1} -

–classfile ${CLASSFILE2} … -–classfile ${CLASSFILEN} --html ${OUTDIR}/jacoco --

sourcefiles ${SRCPATH}/src --sourcefiles ${SRCPATH}/test

3.9.10 Doxygen documentation generation

The waf build system supports Doxygen documentation generation using the doxygen
extra. A Doxygen configuration file has to be supplied. For example:

def options(opt):

 # Doxygen extra

 opt.load('doxygen')

def configure(conf):

 # Doxygen extra

 conf.load('doxygen')

 if not conf.env.DOXYGEN:

 conf.fatal('doxygen is required, install it')

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 28 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

def build(bld):

 # Doxygen generation

 bld(features='doxygen', doxyfile='doxy.config',

 install_path='${PREFIX}/doc')

In the Doxygen configuration file a few options are suggested to generate the recursive
documentation without including in the indexes the waf generated build tree:

The RECURSIVE tag can be used to turn specify whether or not subdirectories

should be searched for input files as well. Possible values are YES and NO.

If left blank NO is used.

RECURSIVE = YES

The EXCLUDE tag can be used to specify files and/or directories that should be

excluded from the INPUT source files. This way you can easily exclude a

subdirectory from a directory tree whose root is specified with the INPUT tag.

Note that relative paths are relative to the directory from which doxygen is

run.

EXCLUDE = build/

If the value of the INPUT tag contains directories, you can use the

EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude

certain files from those directories. Note that the wildcards are matched

against the file with absolute path, so to exclude all test directories

for example use the pattern */test/*

EXCLUDE_PATTERNS = */.*/*

EXCLUDE_PATTERNS += */build/*

Also setting the extensions of the files the user wants to generate the documentation for is
a good idea if the defaults are not as desired:

If the value of the INPUT tag contains directories, you can use the

FILE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp

and *.h) to filter out the source-files in the directories. If left

blank the following patterns are tested:

*.c *.cc *.cxx *.cpp *.c++ *.d *.java *.ii *.ixx *.ipp *.i++ *.inl *.h *.hh

*.hxx *.hpp *.h++ *.idl *.odl *.cs *.php *.php3 *.inc *.m *.mm *.dox *.py

*.f90 *.f *.for *.vhd *.vhdl

FILE_PATTERNS = *.c *.h *.cpp *.hpp *.py *.java *wscript

The latest pattern in the example, *wscript, instructs Doxygen to pick up also the build
scripts in the documentation. This is very useful to create the documentation grouping in
the package build scripts and have them available in the modules, for example for our
example structure in the wscript of pkg1 we can define:

"""

@file

@brief Top level pkg1 build script

@defgroup pkg1 pkg1 module

"""

That will create the pkg1 Doxygen group that can be then referenced in the modules to
group documentation.

To fully support the build scripts in Doxygen documentation there are two more details to
setup in the configuration file, namely tell Doxygen to treat such files as Python scripts and

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 29 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

to pass them through the Python documentation filter (which is doxypypy, as described in
3.6.4) for example as follows:

Doxygen selects the parser to use depending on the extension of the files it

parses. With this tag you can assign which parser to use for a given

extension. Doxygen has a built-in mapping, but you can override or extend it

using this tag. The format is ext=language, where ext is a file extension,

and language is one of the parsers supported by doxygen: IDL, Java,

Javascript, CSharp, C, C++, D, PHP, Objective-C, Python, Fortran, VHDL, C,

C++. For instance to make doxygen treat .inc files as Fortran files (default

is PHP), and .f files as C (default is Fortran), use: inc=Fortran f=C. Note

that for custom extensions you also need to set FILE_PATTERNS otherwise the

files are not read by doxygen.

EXTENSION_MAPPING = no_extension=Python

The FILTER_PATTERNS tag can be used to specify filters on a per file pattern

basis.

Doxygen will compare the file name with each pattern and apply the

filter if there is a match.

The filters are a list of the form:

pattern=filter (like *.cpp=my_cpp_filter). See INPUT_FILTER for further

info on how filters are used. If FILTER_PATTERNS is empty or if

non of the patterns match the file name, INPUT_FILTER is applied.

FILTER_PATTERNS = *.py=py_filter *wscript=py_filter

3.10 ESO waf extension: wtools

wtools is a library that extends waf with helpers and implementation of a lot of default
features. Specifically, it allows a user to declare a waf project and corresponding modules
in a simplified way.

It also provides a homogeneous access to various operations such as running tests,
executing code coverage inspections, doing code style checks, installing artefacts into a
directory structure and so on.

The official documentation of wtools is automatically generated for each ELT Linux
Development Environment version. The latest version of the document can be found at this
URL:

www.eso.org/~eltmgr/documents/latest/wtools-docs/html/index.html

Since version 2.1.13 of ELT DevEnv, wtools documentation corresponding to the version of
environment can be reached using the following format of URL:

www.eso.org/~eltmgr/documents/<devenv-version>/wtools-docs/html/index.html

For example:

www.eso.org/~eltmgr/documents/2.1.13/wtools-docs/html/index.html

http://www.eso.org/~eltmgr/documents/latest/wtools-docs/html/index.html
http://www.eso.org/~eltmgr/documents/2.1.13/wtools-docs/html/index.html

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 30 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.11 Developer’s IDE

The ELT Linux development environment officially supported IDE is Eclipse. Currently
shipping the 2020-06 version, it is located under /opt/eclipse and set by default in the user’s
path.

The installation is shipped with a couple of additional non-default plugins useful for the ELT
development:

• pydev, Python development integration in Eclipse

• CDT, C/C++ development integration in Eclipse

• JDT, the Java Enterprise development integration in Eclipse

• SubVersive SVN plugin for Subversion integration in Eclipse

• EGit plugin for GIT integration in Eclipse.

• LinuxTools Valgrind for valgrind memory checking integration in Eclipse

• LinuxTools GCOV plugin for C/C++ code coverage integration in Eclipse

3.11.1 Eclipse waf integration

Starting with version 1.9.12 the waf build system supports generation of Eclipse
configuration files for C++, Python and Java.

To make sure the correct version is running either waf can be queried for the version or the
RPM version can be checked, as in the following example:

(root) ELTjen00 root:~ 495 > waf --version

waf 1.9.12 (7641eac6c337687ada2e21655c0202345270cc22)

(root) ELTjen00 root:~ 496 > rpm -qa | grep waf

waf-1.9.12-1.noarch

Once verified that the waf version is correct, to generate the Eclipse configuration files
starting from a wscript configuration and a configured instance (see 3.9.1) the command
waf eclipse can be run:

fede@esopc ~/waf/example $ waf eclipse

Generating Eclipse CDT project files

'eclipse' finished successfully (0.021s)

The Eclipse configuration file will automatically contain the command line commands to
launch the various phases of the build system and all the directories references needed to
automatically resolve symbols in files will be added.

It is important to notice that IDE configuration files should not be included in the repository
but just used locally.

It is also important to notice that the Eclipse configuration generation can be rerun from waf
at any time to regenerate dependencies. Of course any changes made by hand will be
eventually lost.

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 31 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.12 Software versioning and revision control

The current versioning and revision control system for ELT is Git using Gitlab
(https://gitlab.eso.org/) as web-based Git repository manager. Git and the command line
tools gitk, git-gui, git-lfs are also provided in the ELT Linux development environment.

Additional information and guidelines on Git usage can be found in AD2.

3.13 Integration tests

The integration tests framework in the ELT Linux development environment is Robot
Framework (http://robotframework.org/) version 3.1.2. Robot Framework is a generic test
automation framework for acceptance testing and acceptance test-driven development
(ATDD). It has easy-to-use tabular test data syntax and it utilizes the keyword-driven testing
approach. Its testing capabilities can be extended by test libraries implemented either with
Python or Java, and users can create new higher-level keywords from existing ones using
the same syntax that is used for creating test cases.

Robot Framework is shipped in the ELT Linux development environment in its Python
flavour and installed in the Anaconda distribution described early. If the Anaconda
distribution binary directory is in the path it can therefore be accessed launching the pybot
(or robot) executable, for example:

fede@esopc ~/rtest $ robot test.rst

==

Test

==

Sample Code 1: launches ls -la /tmp/mustexistdir. Checks that rc 0... | FAIL |

2 != 0

--

Sample Code 2: launches ps ax and checs that ntpd is inside | PASS |

--

Sample Code 3: start two sleeps processes, sleeps a bit, and check... | PASS |

--

Test | FAIL |

3 critical tests, 2 passed, 1 failed

3 tests total, 2 passed, 1 failed

==

Output: /home/fede/rtest/output.xml

Log: /home/fede/rtest/log.html

Report: /home/fede/rtest/report.html

The execution will generate output and report files as stated at the end of the execution.
The file passed on the command line is usually a file written in structured text. Writing such
tests doesn’t require the tester to have a knowledge of Python or Java. Documentation for
the syntax can be found starting at http://robotframework.org/robotframework/#user-guide .

A very simple shell execution-based test that produces the before-mentioned output is
presented below:

Robot Framework test script, done just to try and demonstrate Robot at work

.. code:: robotframework

 *** Settings ***

 Library OperatingSystem

 Library Process

https://gitlab.eso.org/
http://robotframework.org/
http://robotframework.org/robotframework/#user-guide

Guide to Developing Software for the EELT

 Doc. Number: ESO-288431

 Doc. Version: 3.1

 Released on: 2021-07-08

 Page: 32 of 32

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

 *** Test Cases ***

 Sample Code 1: launches ls -la /tmp/mustexistdir. Checks that rc 0 and

mustexistfile inside it. Logs all to robot log

 ${rc} ${stdout}= Run and Return RC and Output ls -la

/tmp/mustexistdir

 Should Be Equal As Integers ${rc} 0

 Should Contain ${stdout} mustexistfile

 Log ${stdout}

 Sample Code 2: launches ps ax and checs that ntpd is inside

 ${result} = Run Process ps ax

 Should Contain ${result.stdout} ntpd

 Sample Code 3: start two sleeps processes, sleeps a bit, and checks that one

is still there and one not. kills them. to fail put first sleep for ex to 10

 Start Process sleep 3 alias=proc1

 Start Process sleep 9 alias=proc2

 Sleep 6

 Process Should Be Stopped proc1

 Process Should Be Running proc2

 Terminate All Processes kill=true

