

Phase2 ObsPrep

Vincenzo Forchì (SCS), on behalf of the ObsPrep team

Agenda

- History
- Motivation
- Architecture
- Features
- Future developments

History

Phase 2:

- > P2PP
 - v2: until 2007 (Paranal), 2019 (La Silla)
 - v3: 2007-2018 (Paranal only)
- Web based p2: 2018 (Paranal), 2019 (La Silla)

Observation preparation:

- Dedicated versions of TCL/TK based GuideCamTool (VIMOS, PILMOS) until 2015
- Unified GuideCamTool: (2015-2019)
- Web based ObsPrep: 2019

Motivation

For the desktop tool:

- > Reduce the number of tools needed by the user
- > Harmonize observation preparation
- > Hide the specifics of the different instruments to the user

For the web tool:

- > Improve user experience:
 - Integrated into p2, no need to go back and forth between two different tools
 - Homogeneous controls and conventions
- No need to download desktop tools
- We can transparently deploy new features and bugfixes

Architecture

P2: main interface

P2: ObsPrep UI

Features - Background

- Defined in the instrument configuration, can depend on the filter defined in the OB
- Standard surveys: DSS2, 2MASS
- Images from the ESO science portal
- Image generated from the GAIA DR2 catalog
- Image loaded from local disk

Background

Object selection

- Stars (TTS, NGS, acquisition star...) can be selected from a catalog
- GAIA DR2 is currently used for all queries
- Magnitude ranges are instrument and OB dependent

Proper motion

- All coordinates (Target, TTS, NGS...) are corrected with the proper motion, if present.
- The coordinates are calculated at the middle of the planned observing period.
- The tool saves the corrected coordinates, and calculates all the offsets based on them.

Blind offset

Observing Offsets

Adaptive optics

VLT guide stars

Validation

- The tool verifies that:
 - > The blind offset is compatible with the VLT GS
 - The observing offsets are compatible with the VLT GS
 - The observing offsets (object) are compatible with the TTS/NGS

Customization

- The vast majority of parameters is configurable and can depend on the Instrument/OB/template:
 - Magnitude to be queried for TTS/NGS/acquisition stars
 - Search radius (area) for TTS/NGS/acquisition stars
 - Offset conventions
 - > Template keywords
 - > ...
- There is no concept of instrument mode
- Instrument specific features can be added in dedicated tabs:
 - MOONS: fiber positioning
 - MICADO: AO performance

Supported instruments

- MUSE
- HAWK-I
- X-SHOOTER
- ESPRESSO
- UVES
- VISIR
- CRIRES+ (commissioning)

Future developments

2020:

- Finalize CRIRES+
- Add support for ERIS
- Implement the microservice infrastructure and integrate it with the tools from the consortia (MOONS)
- Improve usability (user testing)

2021+:

- Support for more VLT instruments (MOONS...)
- Support for ELT instruments

https://www.eso.org/p2demo