Observational Constraints

Bruno Leibundgut

Core collapses

missing high-mass progenitors

distinction between
 C/O cores and ONeMg cores

– where is the exact lower mass limit?

Core collapses

- Binary evolution → 'free for all'
 - any meaningful constraints?
- very little information on companion stars
 - e.g. SN 1993J

Thermonuclear

- white dwarfs about 30 magnitudes fainter than supernova → direct detection unlikely
- look for companions (binaries!)
- possible detection for a SN lax

Confusion!

Core collapses

- 'wrong' progenitors
 - where are the massive explosions?
 - how will η Car look as supernova?
- binary star evolution
 - combination with development of the core?

Thermonuclears

- several progenitors?
- how can they be separated?
- companion of SN 2012Z?

Asymmetries

- directly observed

Larsson et al. 2016

Asymmetries

- in remnants (Cas A)

Boggs et al. 2015

Asymmetries

- Elemental distributions
 - Ti

Grevenstette et al. 2014

No asymmetries for thermonuclears

Separate physics from 'weather' (core evolution from stellar atmosphere)

- classification system not really helpful
 - sub-classes not necessarily distinct physics
- separate relevant topics
 - explosion mechanisms
 - compact remnants
 - influence of binaries
 - remaining H and He envelope → Ib/c
 - circumstellar interaction
 - depends on individual stellar evolution → IIn

Thermonuclears

- variations on a theme
- critical parameters?
 - nickel mass
 - ejecta mass
 - explosion energy(?)
 - explosion mechanism? * -16
 - progenitor evolution?

Taubenberger 2017

Thermonuclears

- Second peak in the near-IR is the result of the recombination of Fe⁺⁺ to Fe⁺ (Kasen 2006)
- Uniform ejecta structure
 - late declines very similar

- higher luminosity indicates higher ⁵⁶Ni mass
- later secondary peak also indicates higher
 Fe/Ni mass
- Ni mass and (optical) light curve parameters correlate (Scalzo et al. 2014)

Luminosity function of SNe la

- Use the phase of the second maximum to derive the bolometric peak luminosity
 - calibrated on a sample of reddening-free SNe Ia
 - apply to reddened objects

Luminosity function of SNe la

$M_{\rm Ni}$ (inferred)	σ	Method	Reference
0.62	0.13	γ ray lines	Churazov et al. (2014)
0.56	0.10	γ ray lines	Diehl et al. (2015)
0.37		Bolometric light curve $A_V = 1.7$ mag	Churazov et al. (2014), Margutti et al. (2014)
0.77		Bolometric light curve $A_V = 2.5 \text{ mag}$	Churazov et al. (2014), Goobar et al. (2014)
0.64	0.13	NIR second maximum	this work (combined fit)
0.60	0.10	NIR second maximum + measured rise	this work

- SN 2014J test passed
- Potential to determine the luminosity function and Ni distribution

Fast-declining SNe la

- Two groups?
 - separation in
 - bolometric luminosity
 - phase of NIR first peak
 - luminosity of NIR first peak
 - lack of second second NIR maximum

Dhawan et al., in prep

Summary

Core Collapses

- no more spherical cows
- missing important explosions
- asymmetries point to explosion mechanism(s)
- sub-classes of limited usefulness

Thermonuclears

- order in chaos? → how?
 - unclear what sub-classes tell us
 - diversity through progenitor evolution?
 - explosion mechanisms?
- compact progenitors
- nickel masses, ejecta masses